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Measurement and Prediction of
Helix-Loaded Chiral Composites

Colin R. Brewitt-Taylor, Peter G. Lederer, Frank C. Smith, and Sajad Haq

Abstract—A method is described for the extraction of the
permittivity, permeability, and chirality of composite chiral ma-
terials, using measurements of reflection and transmission in
a circular waveguide. This has been applied to a number of
helix-loaded composites, in the frequency band 8–12 GHz. The
properties of these composites have also been computed from the
helix geometry and other basic information. The theory correctly
predicts the frequency of the half-wavelength resonance observed,
the relative magnitude of the constitutive parameters, and the
low-frequency dielectric constant. But it has been found necessary
to adjust the host-medium loss to obtain the correct absolute
magnitudes. This agreement provides a confirmation that the
theory is basically sound and so assists in discovering what
chiral parameters are practically obtainable and in exploring
applications of chiral materials.

Index Terms—Chrial material, composite materials, helixes.

I. INTRODUCTION

T HERE has been an increasing interest in recent years in
artificial chiral media for the microwave frequency range.

Many possible applications have been proposed, for example
radar absorbing materials [1], radomes [2], waveguides [3],
and antennas [4]. An overview has been given by Cory [5]. In
these initial theoretical explorations, apparently useful results
have been obtained by the use of arbitrary chiral parameters.
To put these explorations on a firmer foundation, it is necessary
to discover what chiral parameters are obtainable in practice,
and so establish whether the chirality can be made large
enough for the applications envisaged. It is also necessary
that no undesirable side effects are introduced along with the
chirality.

In the present paper we report on the manufacture of a
number of helix-loaded chiral samples, and the measurement
of their constitutive parameters (complex permittivity, perme-
ability, and chirality) using a circular waveguide. This provides
practically realizable parameter values which can be used in
theoretical explorations.

Now a chiral inclusion, such as a helix, produces contri-
butions to all three constitutive parameters. Thus, the chirality
cannot in practice be varied independently of the other parame-
ters. Optimizations that allow arbitrary constitutive parameters
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are therefore likely to lead to unrealizable values. If possible, it
is better to incorporate a theory of the constitutive parameters
of the composite in terms of the basic properties of the host
medium and the chiral inclusions. These basic parameters can
be varied independently, and provided sensible values are
chosen, it is then guaranteed that the composite constitutive
parameters obtained are realizable.

We have previously [6], [7] used such a theory of chiral
composites in an exploration of chiral radar absorbing ma-
terials. We here also report comparisons of the constitutive
parameters predicted by this theory with the constitutive
parameters measured by our circular waveguide method. This
provides a test of the theory. In most respects the predictions
do match the measured values, which shows that we do have a
sound basic understanding of helix-loaded chiral composites.
This provides a firm foundation for further exploration of
possible applications.

II. SAMPLE FABRICATION

A number of chiral composites have been fabricated for
measurement in circular guide in the frequency band 8–12
GHz [8]. These samples are in the form of disks, 23.3 mm in
diameter, and approximately 3 mm thick. The samples were
cast directly into the brass test-cells, to ensure a precise fit.
The host material was Struers Epofix epoxy resin; this is
transparent so as to allow visual inspection of the inclusions.
Its dielectric constant was measured as in
our circular waveguide. The helixes were made from stainless
steel wire of 0.15 mm diameter. The “standard” helixes were
1.5 mm in height, and 1 mm in outside diameter, with three
turns; though a number of variations on this have been used
to explore the effects of changing parameters. Each disk
contains from 50 to 250 helixes, which corresponds to metal
fractions up to 2.5%. The helix dimensions were chosen to put
the expected half-wavelength resonance within the frequency
range of the measurement. The helix dimensions are similar
to those used by Roet al. [9], [10], but their measurements
have been at much higher frequencies, so that their results are
not directly comparable to ours.

The resin was degassed for a period of 40 min to reduce
the number of bubbles. The helixes are added to the viscous
resin individually and the resin is built up to the required total
thickness in several layers. This procedure allows control of
the orientation and concentration of the helixes and prevents
settling and clumping. Some experimentation was required to
determine optimum time and temperature for these procedures.
The faces of the completed disk are polished to remove any
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Fig. 1. Circular waveguide measurement.

meniscus and ensure the faces are parallel and flat. Since the
resin is transparent, the completed sample can be visually
inspected for bubbles and other defects.

Similar methods have been used for the fabrication of sam-
ples containing oriented helixes, which are then anisotropic,
and for larger plate samples for free-space measurement. The
waveguide method was chosen over free-space methods for
these investigations because the sample required is much
smaller, reducing the effort in fabrication.

III. PARAMETER MEASUREMENT IN CIRCULAR WAVEGUIDE

A. Experimental Method

The experimental method is an extension of the standard
method of measuring the complex permittivity and perme-
ability of a conventional medium from the-parameters of a
sample filling a waveguide. Circular waveguide measurements
have also been made in a similar manner by Jacobet al.
[11], [12]. A medium having complex permittivity, perme-
ability, and chirality will require a minimum of three complex

-parameter measurements to characterize the macroscopic
properties of the material. In a chiral medium, the cross-polar
transmission coefficient is nonzero. Thus, the necessary three
measurements are obtained from the reflection coefficient,
the copolar transmission coefficient , and the cross-polar
reflection coefficient . Theoretically, there should be no
cross-polar reflection, since the medium is assumed isotropic
and reciprocal.

A cylindrical plug of chiral material is placed into a section
of circular waveguide propagating a single TE plane polarized
mode (Fig. 1). The mode is launched in rectangular waveguide
and fed to the circular waveguide through a rectangular-
to-circular waveguide transition. The waveguide transition
contains a section of resistive film to absorb any fields cross-
polarized from the fields being measured: this prevents them
being reflected from the waveguide transition back on to the
sample, and so corrupting the-parameter data.

The -parameters are measured using an automatic net-
work analyzer, which is calibrated using the usual TRL
(through/reflect/line) calibration standards. Two sets of mea-
surements are performed. One set has the two ports parallel,
and gives values of the reflection and copolar transmission
coefficients. In the second set the second waveguide port
is rotated 45 relative to the first port, and modified TRL
calibration is carried out. This gives a repeat measurement
of the reflection coefficient and a 45transmission coefficient

. The true 90 cross-polar transmission coefficient is then
obtained from simple component resolving:

. The 90 transmission coefficient is not measured
directly because the calibration cannot be carried out, since
the through and line calibration measurements would give
no signal with the ports at 90to each other. In the results
reported below, measurements were made from 8 to 12 GHz
at intervals of 0.02 GHz. The measured-parameters are
smoothed to remove equipment-induced ripples, and every
tenth value selected for further processing (giving an interval
of 0.2 GHz). Some check on reproducibility is provided by
the repeat measurements of the reflection coefficient and by
the values of transmission coefficient in each direction through
the sample, which should be the same by reciprocity.

B. Waveguide Modes

Consider a cylindrical plug of the chiral medium of length
entirely filling the radius of a circular waveguide. We wish

to extract the electromagnetic parameters from measurements
of the reflection and two transmission coefficients. We first
tackle the forward problem of calculating the transmission
and reflection from a known medium. We find the propagating
modes in the waveguide, and then use the usual field boundary
conditions to find the reflection and transmission coefficients
[13].

In our work we shall use the following set of constitutive
relations:

(1)

Here the parameter is the chirality, with the symbol chosen
for its mnemonic value. The factoris introduced so that the
chirality is real in a lossless medium. It is assumed that the
helixes are randomly oriented, so that the medium is isotropic.
This form of constitutive relations is similar to those used
by Sihvola and Lindell [14], [15]. When we come to display
values of the constitutive parameters, we will normalize the
permittivity to and the permeability to in the usual way,
and normalize the chirality to . The relative values are
then of order unity, and it is easier to judge the magnitude of
the values obtained.

The procedure for finding the waveguide modes is parallel
to that of Hollingeret al. [16], amended as necessary for our
different constitutive relations. Starting from Maxwell’s curl-
equations, we make the change of variables known as Bohren’s
decomposition and . The
new variables and are related to left- and right-circular
polarized waves. Introducing the usual pseudo-wavenumber

and impedance , we obtain separate
equations for and as follows:

curl with

curl with (2)

The constants and are recognized as the wavenumbers of
circularly polarized plane-waves in an infinite chiral medium.

We now look for solutions of these curl-equations in the
form: . Here is an integer
constant giving the azimuthal order of the solution (we shall
need only ); and is the wavenumber of propagation
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along the -direction (the length of the waveguide). Writing
these equations in cylindrical coordinates, we find that
obeys Bessel’s differential equation, and so has solutions

, with and a constant. The
other components of are obtained from the curl-equations.
The analysis for the equation is exactly parallel. We then
construct expressions for and from the and
solutions, with two constants and

(3)

(4)

Here means the derivative with respect to the total
argument , rather than with respect to the radius

.
These solutions depend on the propagation constantwhich

is so far unknown. The boundary conditions are that the
tangential components of electric field are zero on the metal
waveguide wall. Each condition fixes the ratio , and
requiring that these be consistent leads to

(5)

We then find the propagation constantby iteratively solving
this equation. Since the Bessel functions are oscillatory, there
is a series of possible solutions, one for each mode. For chiral
media, it is not obvious what starting value to use for the
iteration. Our software always starts with a nonchiral medium,
for which this equation simplifies, and is solved when either

or . Since the zeros of Bessel’s
function and its derivative are known, we can guarantee the
correct solutions in the nonchiral case. The software then
increases the chirality in small steps up to the desired value,
using the solution for the previous chirality to start the next
solution and thus ensuring that the different solutions are
followed. The program also checks that the solutions obtained
are different: otherwise the method would fail later on. Once
the propagation constant for each mode has been found,
one obtains and , and hence the ratio from the

boundary condition equations. We also need the modes for
air-filled part of the waveguide, which can be obtained as the
nonchiral special case of the above theory.

C. Boundary Matching

At the boundaries on each end of the plug, the waves must
satisfy the usual tangential field continuity conditions. Modes
with different azimuthal number are orthogonal, and so
are not mixed at the boundary. But modes with different
mode number are mixed because modedoes not have the
same radial variation in nonchiral and chiral media. This is a
new complication arising with the chirality. Thus, we cannot
solve the boundary problem for each radial mode separately,
but must solve for all modes simultaneously. We do this by
least squares matching at several radial positions, with the
number of points at least equal to the number of radial modes
taken into account. For each mode, there are four unknown
wave amplitudes (reflected, transmitted, and up and down in
the plug), assuming unit incident wave. But there are eight
boundary conditions, namely those on, , , and ,
and the two faces and of the plug. These
boundary conditions are presumably not all independent, but
it is not obvious what subset of them is sufficient. We have
simply included them all in the least squares fitting. Our
method differs from that of Jacob [11] in that we perform
mode matching at the two faces of the plug simultaneously,
whereas he treats each boundary separately. This includes
coupling of the two faces by higher order modes, which may be
propagating rather than evanescent in a high-dielectric sample.

We have found that four modes and eight matching radii are
sufficient for the present purpose, in that using more modes
or matching radii does not significantly affect the reflection
and transmission coefficients obtained. This is similar to the
requirement of five modes mentioned by Busse and Jacob [17].
Inspection of the matched fields at the plug boundaries shows
evidence of difficulty at the waveguide wall. We suspect that
there is a field singularity at this junction of three media:
the chiral plug, the air, and the waveguide metal. However,
this does not appear to upset the reflection and transmission
calculation.

The above analysis is carried through for and for
, corresponding to left and right circularly polarized

incident waves. The ratios of coefficients for in
the air-filled guide give the reflection and transmission
coefficients of the dominant mode. These must then be
combined in the usual way to give the-parameters for the
plane polarized waves used in the measurements.

The inverse problem of finding the properties of the chiral
plug is then solved by iterative fitting of the properties to
the measured -parameters. The standard parameter extraction
procedure for nonchiral media is used to obtain starting values
of permittivity and permeability, and the starting chirality is
always zero, as explained above. Since the samples are thin,
we are not seriously troubled by the ambiguity in this method:
there is usually only one plausible solution. Alternatively, if
the measurement has been made at a series of frequencies, the
extracted parameters for the previous frequency can be used
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for starting values, together with the previous mode propaga-
tion constants. The number of iterations required varied from 5
to 30, with high chirality samples requiring more iterations. A
series of 19 frequency points, as used below, takes 30–60 min
on a Sun workstation, but little manual intervention is required.

IV. PREDICTIONS FROMHELIX GEOMETRY

We will now describe the method of predicting the com-
posite’s constitutive parameters from the geometry of the
helixes and other basic information. The method has been
previously described [6], [7], and so will only be outlined
here. Similar methods have also been used by several other
authors [18]–[21]. The method-of-moments program NEC [22]
is used to carry out an analysis of a single inclusion. We
then calculate the effective medium parameters of a composite
material containing such inclusions, and compare this to the
values measured by the method described above.

The computer program NEC can compute the current dis-
tribution in a given wire structure, in response to any incident
plane wave. Once the current has been computed, a separate
computer program is used to compute the electric moment

and magnetic moment by numerical integration. The
moments are

(6)

Here is the vector from an origin to an element of the current,
and is the vector element of length pointing along the
wire; is the current in the wire and its magnitude; and

is the angular frequency. Gu´erin [20] and Luebbers [21] use
an alternative method of obtaining the polarizabilities, via the
forward and backward scattered fields. The two methods are
equivalent, neglecting mutual coupling between the helixes.
Our method can easily be extended to compute the quadrupole
and higher moments, which recent work suggests is necessary
for anisotropic chiral composites [23].

There are in general four complex polarizability tensors,
relating the induced electric and magnetic moments to the
incident electric and magnetic fields

(7)

Here is the usual electric polarizability, and is
the usual magnetic polarizability; these both have dimen-
sions of volume. There are two cross-polarizabilities
and , which we have defined with factors of and

(the impedance of free-space) introduced to give all the
polarizabilities the same dimensions of volume.

These four 3 3 tensors have 36 components between
them. We can apply six different incident plane waves to
the object (up and down each of the three axes), with two
polarizations each. For each incident wave we can compute
the three components each of and . Thus, there are 72
complex values available, which is more than enough to find
the 36 polarizability components. We use pairs of oppositely

Fig. 2. Incident waves for extraction of polarizabilities.

directed waves (Fig. 2) to find the effects of the separate
fields by adding and subtracting the dipole moments obtained
with each of the pairs. For example, in Fig. 2, adding the
results of waves 1 and 2 will yield the effects of , namely
the three electric polarizabilities and the three cross-
polarizabilities (for ), with the effect of

cancelling out. Subtracting this pair cancels theeffect
and yields the effects, namely the magnetic polarizabil-
ities and the cross-polarizabilities . Similar
adding and subtracting for the other wave-pairs yields all the
36 polarizabilities. There are two wave-pairs which yield any
particular polarizability: both values are computed, and the
average taken. The polarizabilities are frequency dependent,
so the above procedure is carried out at each frequency of
interest.

Having obtained the tensor polarizabilities, we average the
diagonal components to obtain the (scalar) polarizabilities of
a randomly oriented collection of particles, and discard the
off-diagonal components, which will average to zero.

The version of the NEC program used allows the complex
dielectric constant of the host medium to be specified. Thus
we can incorporate loss in the host medium, rather than in the
helix wire as was done in the previous work [7]. The scaling
procedure previously used to account for a real host dielectric
constant is no longer necessary.

We now proceed from the particle polarizabilities , ,
, and , to the effective permittivity, permeability, and

chirality of the composite medium. The treatment is adapted
from that given in [15] for spherical chiral particles, which
is a generalization of the usual Clausius–Mossotti derivation
for the dielectric constant of composite media. The local
fields at any helix are assumed to differ from the applied
fields by one-third of the polarization, as in the standard
Clausius–Mossotti theory. With this assumption we arrive at
the following formulas for the properties of the composite
medium

(8)
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Fig. 3. Measurement of sample containing 50 right-hand helixes.

The same formulas have also been given by Sauviacet al.
[19] and by Gúerin [20]. This Clausius–Mossotti treatment is
an approximation, and its success is an open question. There
exist several more sophisticated approximate homogenization
methods, or the much more computationally intensive but
physically complete method of Whites [24]. These proper-
ties are frequency-dependent, through the underlying helix
polarizabilities.

V. COMPARISONS OFMEASURED

AND PREDICTED PARAMETERS

Samples have been fabricated with varying concentrations
of helixes, both left and right handed and a mixture and also
with different pitches. The first set of helixes had an outside
cylinder diameter of 1 mm and a cylinder length of 1.5 mm,
with three right-hand turns. Other dimensions are given in
Section II. The first sample to be discussed had 50 right-
handed helixes in a disk 2.83 mm thick, which corresponds
to 0.60% of metal in the sample, so that it is a fairly low
concentration. We can easily compute the rotation of the plane
of polarization , and the axial ratio of the elliptically polarized
transmitted wave , by the formulas [25]

(9)

where , , and .
Fig. 3 shows the angle of rotation and the axial ratio for

this sample. The angle of rotation is small at low frequencies,
and goes negative to about15 at 10.8 GHz. It then passes
through zero, to 15 at 11.5 GHz. This sign reversal is related
to the resonant behavior of the current in the helix wire, which
is a half-wavelength long at 10.8 GHz. Similar variations have
been observed by other workers, e.g., [26], going back to the
early work of Lindman [27], [28] and of Tinocoet al. [20]. The
axial ratio stays near zero (linearly polarized) at low frequency
and rises to about 0.25 at a frequency near the zero-crossing
of the rotation angle. At this frequency the chirality is pure

Fig. 4. Constitutive parameters for 50 right-handed helixes. Measured val-
ues: real part (circles) and imaginary part (crosses). Computed: with interac-
tions (solid), without interactions (broken).

imaginary, so that there is differential absorption between the
left- and right-hand circular waves, leading to the observed
departure from linear polarization.

Fig. 4 shows the relative permittivity, permeability, and
chirality obtained from the process described in Section III,
for this same sample. Each of the permittivity, permeability,
and chirality show a resonant behavior, though the effect on
permeability is small. The real parts rise slowly to 10.8 GHz,
then fall to 11.8 GHz, with chirality passing through zero and
permittivity passing lower than the host medium at 11.3 GHz.
The imaginary parts show maximum negative excursion in
the same frequency range.

The solid lines on the graphs show the predictions made by
the method of Section IV. It was found that a prediction using
the observed host dielectric constant of gave
resonances that were at the right frequency, but too large in
magnitude. The predictions shown were obtained by increasing
the imaginary (loss) part from 0.07 to 0.15 . A fairly
good fit is then obtained. Apart from this adjustment of the
loss, the prediction proceeds from measurable geometric and
other basic quantities, with no other adjustable parameters. It
is then pleasing to see that the prediction gives the correct low-
frequency dielectric constant, the correct resonant frequency,
and the correct relative magnitudes of the three constitutive
parameters, including their real and imaginary parts. This
provides confidence that the prediction method is basically
sound. Future work could include an error analysis of the
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Fig. 5. Constitutive parameters for 150 right-handed helixes. Measured
values: real part (circles) and imaginary part (crosses). Computed: with
interactions (solid), without interactions (broken).

measurements, on the lines of Smithet al. [30], so that error
bars could be provided on the comparison graphs.

Moving to higher concentration, Fig. 5 shows the consti-
tutive parameters for a sample containing 150 helixes in a
2.71-mm-thick disk, giving a metal fraction of 1.87%. The
chirality is nearly three times as large in this sample, with
maximum relative magnitude of 1.4 at 10.8 GHz. This is
roughly proportional to the helix concentration, as might
be expected. For this sample a prediction using Im

gives much too large a resonance, and to get the fit
shown it was necessary to increase the host medium loss to
Im . This adjustment is much more than required
for the previous low concentration sample. Thus, this error
becomes more important as the concentration is increased,
which suggests that it is due to an inaccurate treatment of
mutual interactions between the helixes. In the figure, the solid
lines show the prediction including the interaction treatment
after Clausius–Mossotti, described above. The broken lines
show the prediction without this correction, i.e., equating the
local field at each helix with the applied field. The correction
has little effect at low concentration (Fig. 4), but has a
significant effect at this higher concentration. In particular the
Clausius–Mossotti correction gives a better resonant frequency
fit, and so does improve the prediction.

Next we change the handedness of the helixes: Fig. 6
shows the constitutive parameters for a sample containing
150 left-hand helixes in a disk of 2.82 mm thickness, giving
a metal concentration of 1.80%. The prediction is the same

Fig. 6. Constitutive parameters for 150 left-handed helixes. Measured val-
ues: real part (circles) and imaginary part (crosses). Computed: with interac-
tions (solid line).

as for the previous sample (Fig. 5), except that the sign of
chirality is reversed. This reversal of sign is indeed seen in
the measured parameters. The magnitude of the measured
parameters is similar to the right-handed helixes, but the
measured resonant frequency is somewhat lower, for reasons
that are not understood at present.

Fig. 7 shows the constitutive parameters for a mixture of 75
left-handed and 75 right-handed helixes in a disk of 2.77 mm
thickness, giving a metal fraction of 1.83%. The prediction has
the same permittivity and permeability as before, but with zero
chirality. The measured results show similar magnitudes of
permittivity and permeability and randomly varying chirality.

We have also fabricated some samples with varying helix
pitch. As an example, Fig. 8 shows the constitutive param-
eters for a sample containing 100 right-hand helixes with
a cylinder length of 0.75 mm, i.e., half the pitch of the
previous samples. The disk is 3.04 mm thick, giving a metal
fraction of 1.11%. This effect on permittivity and chiral-
ity is comparatively small for this sample. The helix shape
is much more compressed than that for maximum chiral-
ity: the ratio of pitch to wire length is only about 0.1 in-
stead of the optimum value of 0.55 [7], [31]. The pre-
dicted results agree with this and they also correctly give
the downwards shift of resonant frequency, which is pre-
sumably due to mutual coupling between the turns of the
helixes.

Finally, Fig. 9 shows the results for a sample containing
100 long-pitch helixes, which have a cylinder length of 3 mm,
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Fig. 7. Constitutive parameters for 150 mixed helixes. Measured values: real
part (circles) and imaginary part (crosses). Computed: with interactions (solid
line).

and so twice the pitch of the first samples. We see that the
permittivity and chirality effects are indeed larger than the
short-pitch samples of Fig. 8. It is also noticeable that in this
case the prediction without Clausius–Mossotti correction gives
a better fit than that with the correction. The Clausius–Mossotti
correction field correction of 1/3 of the polarization assumes a
spherical hole around the particle, whereas the present helixes
have an aspect ratio of 3 : 1. The correction may be inaccurate
for such elongated particles.

VI. CONCLUSIONS

In this paper we have reported results from the measurement
of a number of helix-loaded chiral samples using a circular
waveguide apparatus. This is a generalization of the standard
waveguide method for nonchiral materials. The reflection co-
efficient, and copolar and cross-polar transmission coefficients
are measured, and from these we can extract the complex
permittivity, permeability, and chirality of the samples. The
computation required for the parameter extraction is con-
siderable, but quite practicable for modern computers. The
constitutive parameters show resonant behavior when the wire
length is half a wavelength in the host medium. Chirality
values up to have been observed, in samples whose
dielectric constant varies from the host medium value of 2.9
to a maximum of about 7.

We have also reported comparisons of these measurements
with predictions starting from the geometry of the helixes and
other basic information. The predictions give the correct low-

Fig. 8. Constitutive parameters for 100 0.25-mm-pitch helixes. Measured
values: real part (circles) and imaginary part (crosses). Computed: with
interactions (solid), without interactions (broken).

Fig. 9. Constitutive parameters for 100 1.0-mm-pitch helixes. Measured
values: real part (circles) and imaginary part (crosses). Computed: with
interactions (solid), without interactions (broken).
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frequency dielectric constant, the correct resonant frequency,
and the correct relative magnitude of the permittivity, perme-
ability, and chirality, and of their real and imaginary parts.
But it was found necessary to increase the imaginary part
of the host medium dielectric constant to give the correct
absolute magnitudes of the constitutive parameters. The cause
of this discrepancy is not understood, but the fact that it gets
worse with increasing helix concentration suggests that it is
an effect of mutual coupling between the helixes. Further
attention to this point in needed in future work, exploring the
available more sophisticated homogenization techniques. We
have discussed samples with varying helix concentration; left-
handed and right-handed and mixed helixes; and varying pitch.
Apart from the adjustment of host medium loss, the prediction
proceeds from known basic information, and its success in the
various cases considered confirms that it is generally sound.

Together, the prediction and measurement method provide
a firm foundation for exploration of possible applications of
chiral media.
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