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Design and Analysis of a 2-D
Eigenspace-Based Interference Canceller

Cheng-Chou Lee and Ju-Hong Lee,Member, IEEE

Abstract—This paper deals with the problem of eigenspace-
based interference cancellation using a two-dimensional (2-D)
rectangular array. An efficient 2-D signal blocking technique is
presented to remove the desired signal from the received array
data. In conjunction with the 2-D signal blocking technique,
a positive definite matrix is further constructed and used to
compensate the effect of the signal blocking operation on the
sensor noise received by a 2-D eigenspace-based interference
canceller (EIC). Therefore, the interference subspace required
for computing the optimal weight vector of the designed 2-D
EIC can be obtained by simply using conventional eigenvalue
decomposition methods instead of any complicated generalized
eigenvalue decomposition methods. The performances of the de-
signed 2-D EIC under finite samples and steering angle error are
also evaluated. The developed theoretical results are confirmed
by several simulation examples.

Index Terms—Electromagnetic radiative interference, interfer-
ence concellation.

I. INTRODUCTION

A DAPTIVE interference cancellation can be used for
maximizing the rejection of interference regardless of the

interference-to-noise ratio (INR) when processing array data.
This goal can be efficiently achieved by utilizing eigenspace-
based interference cancellers (EIC’s) as presented in the lit-
erature [1]–[6]. A common feature for these EIC’s is that the
interference subspace (IS) spanned by the interferers must be
first computed. Then, the optimal weight vector is computed
by maximizing the output signal-to-noise power ratio (SNR)
subject to a constraint of orthogonality to the IS.

Notable among these EIC’s is the one presented by [4]
due to its several advantages over the others. Using a one-
dimensional (1-D) uniformly linear array (ULA) and an ap-
propriately designed signal blocking processor which blocks
the desired signal from the received array data, it finds the IS
through the generalized eigenvalue decomposition (GEVD) of
the correlation matrix of the data vector at the output of the
signal blocking processor. However, the noise component left
in the blocked data vector is no longer spatially white because
of using the signal blocking matrix. Hence, finding the required
IS for computing the optimal weight vector inevitably resorts
to a complicated GEVD. As a result, it is very difficult to
evaluate the statistical performance under finite samples and
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the robust capability against steering angle error for the EIC.
Moreover, the technique presented in [4] cannot be extended
to process two-dimensional (2-D) array data since its 1-D
blocking scheme can not be directly applied to the 2-D case.
In the literature, there are practically no papers dealing with
eigenspace-based interference cancellation using 2-D adaptive
arrays.

In this paper, we present the theoretical results for designing
and analyzing an EIC using a 2-D adaptive array. Two 1-D
blocking matrices are first designed for both row and column
subarrays, respectively. Using the blocked data vectors at the
output of these 1-D blocking matrices and the properties of
Kronecker product for matrices, a 2-D blocking technique
is developed to construct a blocked data correlation matrix

that does not contain the desired signal component for
computing the IS. However, the noise component inis no
longer spatially white, which introduces more complexity in
computing the IS. To eliminate this effect, a positive definite
matrix is created from the designed blocking scheme and

is then added to , where is the background noise
power. The resulting data correlation matrix then
possesses a noise component which is spatially white. As
a result, we can find an orthogonal basis matrix of the IS
by performing the conventional EVD and then construct the
optimal weight vector using this orthogonal basis matrix. This
technique facilitates the analyses of the statistical performance
under finite samples and the robust capability against steering
angle error for the 2-D EIC. Theoretical results on the expecta-
tion of the output signal-to-interference plus noise ratio (SINR)
are presented for showing the statistical performance of the
2-D EIC. As to the robust capability against steering angle
error, it is shown that the performance of the 2-D EIC may be
significantly degraded even if there is a small steering angle
error. However, using the proposed 2-D blocking technique
with higher order can alleviate the difficulty. The breakdown
threshold for the 2-D EIC’s performance due to steering angle
error is also derived.

This paper is organized as follows. Section II presents the
design of an eigenspace-based interference canceller using a
2-D rectangular array. A 2-D blocking technique is developed
and the construction of a positive definite matrix for eliminat-
ing the effect of the 2-D blocking operation on the spatially
white noise received by the 2-D array is proposed. Section III
analyzes the statistical performance under finite snapshots for
the designed 2-D EIC. The performance of the designed 2-D
EIC in the presence of steering angle error is evaluated
in Section IV. Several simulation examples for illustration
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and confirmation of the theoretical works are provided in
Section V. Finally, Section VI gives a conclusion for this
paper.

II. DESIGN OF A 2-D EIGENSPACE-BASED

INTERFERENCECANCELLER

A. The 2-D Array Data Model

Consider a 2-D uniform rectangular array (URA)
with sensors located on the - plane at the positions

for and
, where represents the signal wavelength. Let the

signal impinging on the array from the elevation angleand
azimuth angle yield a unit magnitude response and a phase
response given by at the array
sensor located at , where
and . narrow-band
signals are impinging on the URA from distinct angles

for . Thus, the data received by the
sensor located at can be expressed
as

(1)

where denotes the complex waveform of the signal
emitted by theth source and the spatially white sensor
noise independent of . Without loss of generality, assume
that is the desired signal with direction angle
and the other signals are interferers. From (1), the data
matrix received by the URA is given by

(2)

where
, and

is the received noise matrix. Rewriting (2) in vector form, we
have

(3)

Using the following property of Kronecker product [7]:

KP.1

where are matrices with appropriate sizes, we can rewrite
(3) as

(4)

where the response vector of theth signal source
, the response matrix of the signal sources

, and the signal source vec-
tor . The correlation matrix of

is then given by

(5)

where denotes the full rank corre-
lation matrix of the signal sources, the noise power, and

the identity matrix.

B. The 2-D Blocking Technique

In the follwoing, we present a technique for the design of
a 2-D EIC with a steering angle . Utilizing the results
presented in [4] and letting the steering angle be accordant
with the direction angle of the desired signal, we can
construct a blocking matrix for the column subarrays of
the 2-D URA such that

with

and

(6)

where is the order of . is the row
selection matrix which selects the first rows of

, where is an zero matrix. Similar results
can be obtained for the row subarrays as

with

and

(7)

where is the order of . is the row
selection matrix which selects the first rows of

. Based on the above results, we present a 2-D blocking
technique as follows.

Theorem 1: Let the matrix be given by

with

and

(8)

Then is an autocorrelation matrix of the blocked 2-D array
data which contain all the interferers except the desired signal.

Proof: Based on the fact that
, and the property of Kronecker product [7]

KP.2

it can be shown that

(9)

where is given by (6) and .
Based on (5) and (9), then we have

(10)

where and
. Based on the fact of and the

property of KP.2, (10) can be further written as

(11)
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where
, and

. Similar to (11), we have the following
result for the row subarrays:

(12)

where . Summing (11) and (12)
yields

(13)

where

(14)

and

(15)

Clearly, is a positive definite matrix if
for all . From (13) to (15), we note that is the
autocorrelation matrix of a data vector which does not contain
the desired signal component.

C. The 2-D EIC Formulation

Based on the 1-D results of [4], the criterion in finding
the optimal weight vector for the 2-D EIC can be defined
as maximizing the output SNR subject to a constraint of
orthogonality to the IS. Accordingly, we have to solve the
following optimization problem:

Maximize subject to range

(16)

where serves as the steering vector. The optimal
solution of (16) is given by

(17)

Equation (17) reveals that the matrix
due to the interferers must be found in

order to compute . However, cannot be knowna priori.
Basically, one can resort to finding a basis matrix spanning
range to solve this problem. Unfortunately, the matrix

given by (15) is generally not an identity matrix. Hence,
we have to perform the GEVD of . Let the generalized
eigenvalues and the corresponding eigenvectors be designated
as and , respectively. Accordingly, we have the following
expression:

(18)

where .
Let , then it can be shown that
range range . Therefore, the optimal weight
vector of (17) can be rewritten as

(19)

From (19), we note that performing the complicated GEVD of
is inevitable for computing the optimal weight vector .

Moreover, evaluating the statistical performance under finite
data samples and the sensitivity to steering angle error for the
2-D EIC becomes very difficult because the GEVD ofis
necessary for designing the 2-D EIC.

To tackle the above two problems, in Appendix A, an
efficient method is presented to construct such a positive
definite matrix that the effect of the 2-D blocking operation
on the noise component of the received array data can be
eliminated, i.e., . Thus, we obtain

(20)

Equation (20) reveals that the corresponding noise component
in becomes spatially white. Performing the EVD of ,
we have the following expression:

(21)

where .
Let the matrix and the matrix

. It is easy to show that
and

range range range (22)

i.e., is an orthogonal basis matrix spanning range and
is an orthogonal basis matrix spanning the complement

of range . It follows from (22) that the optimal weight
vector for the 2-D EIC based on the criterion of (16) can be
rewritten as

(23)

III. STATISTICAL PERFORMANCE

UNDER FINITE DATA SAMPLES

In practice, the number of signal sources, the background
noise power , and the ensemble correlation matrix
required for implementing the 2-D EIC are not available and
usually estimated from the received data snapshots. Using
the first data snapshots, we obtain the estimatefor the
number of signal sources based on the AIC or MDL criterion
presented by [11]. Moreover, implementing the AIC or MDL
criterion requires performing the EVD of the corresponding
data correlation matrix. Therefore, can be estimated by
utilizing the eigenvalue method of [12] during the same
estimation process. Let the estimated value be denoted as

. Then, the next data snapshots are used to compute the
sample correlation matrix as follows:

(24)

to replace , where is the data matrix received at the
time instant . The correlation matrix of (20) is then
replaced by

(25)

where

(26)
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It is appropriate to assume that and are independent in
this case. Thus, (21) becomes

(27)

where . Since the number of
interferers is , the corresponding basis matrix of IS
and its complement are given by and

, respectively. Consequently, the optimal
weight vector for the 2-D EIC under finite snapshots is given
by

(28)

The statistical performance of the proposed 2-D EIC under
finite data samples is given by the following theorem.

Theorem 2: For the case of input INR high enough, the
expectation of the output SINR can be approximately given
by

SINR SINR FSP (29)

where SINR denotes the array output SINR without the
finite sample effect.FSP represents the factor of statistical
performance and is given by

FSP (30)

where

(31)

and

(32)

Proof: Please see Appendix B.
If the interferers are uncorrelated, (32) can be further

simplified as

(33)

Moreover, we have the following result.
Theorem 3: If the angle separations between the interferers

and the desired signal satisfy that or
for , it can be shown that

SINR SINR (34)

where and are given by (A-11).
Proof: Please see Appendix D.

Theorem 3 provides a lower bound of the convergence
rate for the proposed 2-D EIC under the situation considered.
For example, consider the situation where the direction angle
of the desired signal , the blocking orders

, and the direction angles of interferers
with or for . Then, we
have . A lower bound of the output SINR can be
obtained from (34) and is given by

SINR SINR (35)

Equation (35) shows that a satisfactory convergence speed for
the designed 2-D EIC can be guaranteed in this case.

To result in a simpler version of the above theoretical results
for providing an insight, we next consider a special situation
where all the uncorrelated interferers are located outside the
array mainlobe and the angle separations between the desired
signal and the interferers are large enough so that

(36)

Moreover, and are greater than and , respectively.
Based on these two conditions, the optimal weight vector given
by (17) can be reduced to an approximation of
and, hence, , the results in (31) can be simplified as
the following approximations:

for and for
(37)

Then, we can simply substitute (33) and (37) into (30) to obtain
the correspondingFSP.

IV. PERFORMANCE ANALYSIS

UNDER STEERING ANGLE ERROR

In this case, the steering angle is not accordant with the
direction angle of the desired signal, i.e., .
The blocking factors shown in (6) and (7) become

and

(38)

respectively. The mismatch between and
leads to a result that the blocked data correlation matrix
given by (8) contains a leakage due to the desired signal and
becomes

(39)

where
, and

, respectively. Since
for all is a positive definite matrix.
Hence the matrix has principal eigenvalues
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which are greater than and the corresponding eigen-
vectors spans the subspace range . The computed basis
matrix will contain more than principal eigenvectors
of if the number of interferers is overestimated. From
(23), the optimal weight vector corresponding to this case is
given by

(40)

This leads to the result that the 2-D EIC fails to work due
to that range contains the vector and the
constraint of .

Next, consider the situation where the number of interferers
is exactly known and the desired signal is uncorrelated with
the interferers. Based on (39), we have

(41)

where denotes the power of
the desired signal leakage in the output after the 2-D blocking
operation. , where is given by (14) except
that the entries of and are now given by (38). Let the

nonzero eigenvalues and the corresponding eigenvectors
of be given by and for

, respectively. For further simplicity, assume
that the interferers are located far away from the desired
signal so that for .
Then, the eigenvalues which are greater than and the
corresponding eigenvectors of can be approximated as

and for
and , respectively.

Note that consists of the first principal eigenvectors
of . As a result, consists of for
when . Hence, range range
and the 2-D EIC works normally. On the other hand,
contains the normalized response vector if

. From the optimal weight vector given by
(40), we note that the desired signal will be suppressed due to
the constraint of . As shown by (38) and the fact
that is proportional to , this difficulty could
be alleviated by increasing the ordersand if the steering
angle error is small. In general, the breakdown threshold

happens when is nearly rank-deficient.
To look into the effect of , we proceed to
consider the case of two uncorrelated and closely separated
interferers.

Let the two uncorrelated interferers be closely separated so
that . From [8, pp. 25–27], we
can easily show that

(42)

where for and .
and are given by

Hence, the condition causing the performance
failure becomes

(43)

When and are small enough, it is also
shown in [8] that

(44)

Substituting (44) into (43) and taking the first-order approxi-
mation yields the following performance breakdown threshold

(45)

V. COMPUTER SIMULATION EXAMPLES

In this section, several simulation examples for illustrating
and confirming the theoretical works are presented. The 2-D
array used for all simulations is a URA with and

. Moreover, the simulation results based on the direct
GEVD of given by (18) to obtain an IS basis matrix required
for computing the optimal weight vector are also presented
for comparison.

Example 1: This example is performed to illustrate the
theoretical results presented in Section III. We set

. The desired signal with input dB is impinging
on the array from . One interferer has input

dB. The first data snapshots are used
to estimate the source number and the noise power .
Fig. 1 plots the array output SINR in dB versus the number
of snapshots for two different interfering angles. Each
simulation result is obtained by averaging 100 independent
runs with independent noise samples for each run. The solid
curve represents the theoretical results computed by using (29)
based on (28) and (30)–(32). This confirms the validity of
(29) given by Theorem 2. On the other hand, the curve with
“x” represents the simulation results for the performance of
the 2-D EIC designed by using the proposed technique, while
the curve with “o” represents the simulation results of the 2-
D EIC designed by using the direct GEVD technique. The
coincidence between these two curves shows that the 2-D EIC
designed by using the proposed technique provides the same
performance as that directly using the complicated GEVD
technique.

Comparing the results of Fig. 1(a) and (b), we note that
the output SINR of Fig. 1(a) is smaller than that of Fig. 1(b)
for each number of snapshots as expected because the angle
separation between the desired signal and the interferer is
smaller for Fig. 1(a). This phenomenon is further demonstrated
in Fig. 2 by plotting theFSP of (30) versus the interfer-
ing angle . We note thatFSP increases and hence
the performance degradation increases as approaches

.



738 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999

(a)

(b)

Fig. 1. The results ofExample 1. Output SINR versus the number of
snapshots for the case of one interferer. Solid line: The theoretical result. “x”:
The 2-D EIC using the proposed technique. “o”: The 2-D EIC using the direct
GEVD technique. (a)(u2; v2) = (0:11;0:13). (b) (u2; v2) = (0:14; 0:12).

Example 2: This example considers the case of multiple
interferers. Again, we set . The desired signal

Fig. 2. The factor of statistical performance (FSP) versus the interfering
angle for Example 1.

with input dB is impinging on the array from
, while the uncorrelated interferers have the

same input dB. The first data snapshots
are used to estimate the source numberand the noise
power . Fig. 3 depicts the array output SINR in decibels
versus the number of snapshots for different interfering
situations. Each simulation result is obtained by averaging 100
independent runs with independent noise samples for each run.
The solid curve represents the theoretical results computed
by using (29) based on (28) and (30)–(32). In contrast, the
dash curve represents the theoretical results computed by using
(29) based on the approximations described by (37). The dash
curve almost coincides with the solid curve. This confirms the
validity of the approximations given by (37). Moreover, the
coincidence between the curves with “x” and “o” illustrates
that the 2-D EIC’s designed by using the proposed technique
and directly using the complicated GEVD technique have the
same performance.

Example 3: Here, we illustrate the performance of the
designed 2-D EIC in the presence of steering angle error.
The steering angle is . The desired signal
with input dB is impinging on the 2-D array
from . Two uncorrelated interferers
with input dB are impinging on the array from

and . To
evaluate the sensitivity to the angle separation , we
define a robustness index (RI) as follows in (46), shown at
the bottom of the page, for the designed 2-D EIC and (47),
shown at the bottom of the page, for the 2-D EIC directly

RI
The output SINR using of (40)

The output SINR using of (17) with replaced by
(46)

RI
The output SINR using of (19) with replaced by
The output SINR using of (17) with replaced by

(47)
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(a)

(b)

Fig. 3. The results ofExample 2. Output SINR versus the number of snap-
shots. Solid line and dash line: The theoretical results. “x”: The 2-D EIC using
the proposed technique. “o”: The 2-D EIC using the direct GEVD technique.
(a) Two interferers with(u2; v2) = (0; 0:6) and (u3; v3) = (0:55;0:45).
(b) Three interferers with(u2; v2) = (0;0:6), (u3; v3) = (0:55;0:45) and
(u4; v4) = (0:5;0).

using the complicated GEVD technique. Fig. 4(a) plots the
RI versus . The top curve represents theRI versus

, while the bottom curve represents theRI versus
. It shows that the proposed technique possesses the

advantage of robust capability against steering angle error
over the GEVD technique. Fig. 4(b) depicts the curves of
the breakdown threshold forRI . The dash curve
represents the breakdown threshold computed by (45), while
the solid curve represents the simulation results. This figure
also confirms the presented theoretical results.

(a)

(b)

Fig. 4. The performance comparison forExample 3. (a) Robustness index
versus the interfering angle separation(�u;�v). The top curve: The 2-D
EIC using the proposed technique. The bottom curve: The 2-D EIC using
the direct GEVD technique. (b) The breakdown threshold curves of the 2-D
EIC using the proposed technique. Solid curve: The simulation results. Dash
curve: The theoretical results.

VI. CONCLUSION

The theoretical works for the design and analysis of a 2-D
eigenspace-based interference canceller (EIC) have been pre-
sented. An effective 2-D signal blocking technique is first
presented to remove the desired signal from the received array
data. To compensate the effect of the signal blocking operation
on the sensor noise, a positive definite matrix has been
constructed. Therefore, the interference subspace required for
computing the optimal weight vector can be obtained by
using conventional eigenvalue decomposition methods. The
performances of the designed 2-D EIC under finite samples
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and steering angle error have been evaluated, respectively.
The developed theoretical results are confirmed by several
simulation examples. It has been shown that the performance
of the designed 2-D EIC is the same as that of a 2-D EIC
directly using a complicated GEVD technique in the situation
without steering angle error. However, the proposed 2-D EIC
possesses the advantage of more robust capability against
steering angle error over the 2-D EIC based on the GEVD
technique.

APPENDIX A

Let be an cyclic-shifting matrix defined as

(A.1)

where is the th column vector of the identity
matrix. Following the results presented in [4], the blocking
matrix which satisfies (6) can be constructed as follows:

(A.2)

where is an vector given by

(A.3)

and are the coefficients satisfying

(A.4)

The subscript “” denotes the complex conjugate. From (A.2)
and (A.3), it can be seen that is an Hermitian
and Toeplitz matrix. Furthermore, letHT
denote an Hermitian and Toeplitz matrix with its first
row given by . Then, we have

HT

with (A.5)

Next, we construct an vector as follows:

(A.6)

where and is an integer. From (A.6),
an matrix is constructed as follows:

(A.7)

Using (A.6) and (A.7), we have

HT (A.8)

From (A.8), we note that is positive definite, Hermi-
tian, and Toeplitz. Moreover, it is easy to show that

HT

(A.9)

for , where and denote
the real and imaginary parts of, respectively.
if , and , otherwise. We then construct a positive
definite matrix as follows:

(A.10)

Summing (A.5) and (A.10) thus yields a diagonal matrix as
follows:

(A.11)

where denotes the proportional constant. Following the
same procedure, we can find a positive definite matrix
such that for some positive . Finally,
we form the following matrix:

(A.12)

Based on (15) and the property of Kronecker product [7]

KP.3

for matrices and with appropriate sizes, we can easily
show that , where .

APPENDIX B

Here, we show the result given by (29) in Theorem 2. Per-
forming the EVD of , we obtain the following expression:

(B.1)

where and
. Similarly, we have the fol-

lowing expression:

(B.2)

from the EVD of , where
and . From (20) and (25),
the deviation between and due to finite sample effect
can be expressed as

(B.3)

where and . Using (8) and (26),
is given by

(B.4)

Following the first-order perturbation analysis presented in [9],
we can show that

(B.5)

where

(B.6)
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It follows from (B-6) that possesses the following prop-
erties:

and

(B.7)

Substituting (B.5) into (28) and preserving only the first-order
term, we obtain the following approximation for the optimal
weight vector under finite samples:

(B.8)

Using (B-8) and the property that , we can find
the powers of the desired signal, the noise, and the interferers
at the array output as follows:

the first-order terms

the first-order terms

the first-order terms

(B.9)

where , and
represent the output powers of the desired

signal, the noise, and the interferers without finite sample
effect, respectively. denotes the input power
of the desired signal. is negligible when the 2-D EIC works
normally. The other terms are the second-order perturbation
terms which are given by

(B.10)

(B.11)

and

(B.12)

respectively. Since is negligible, the output SINR of the
2-D EIC can be written as

SINR

(B.13)

Consider the situation where the number of data snapshots
is large enough. Utilizing the first-order approximation of

for a small , we can obtain an
approximation for (B-13) as follows:

SINR SINR

(B.14)

where SINR represents the output SINR without
finite sample effect. Since the expectation for each of the first-
order terms in (B-9) is zero, the expectation of the output SINR
can be approximated from (B-14) as follows:

SINR SINR

(B.15)

where and .
Next, we compute the individual terms in (B.15). As shown

in (B.3), the deviation is composed of two independent
terms, i.e., and . By using the eigenvalue method of
[12] to estimate the noise power, it has been shown that

(B.16)

if data snapshots are used. On the other hand, it has been
shown in [10] that the deviation due to finite sample effect
has zero mean and the second-order statistical property as

(B.17)

where are matrices with appropriate sizes. By substituting
(B.5) into (B.10)–(B.12) and using the properties of (B.7),
(B.16), and (B-17), the individual terms in (B.15) are com-
puted. The results are listed in Appendix C. It is also shown
in Appendix C that the termLE is dominant in
the case of input INR high enough since all the other terms
decrease as the input INR increases. Accordingly, (B-15) can
be approximately expressed as

SINR SINR FSP (B.18)

for input INR high enough, where the factor of statistical
performanceFSP LE is given by (30).

APPENDIX C

To ease the presentation, we employ the subscriptsand
to replace the subscripts “” and “ ”, respectively. For

example, and represent the notations and ,
respectively. Thus, (B-4) can be rewritten as

(C.1)

Using the above notations and performing some algebraic
manipulation provides

(C.2)
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(C.3)

(C.4)

(C.5)

and

(C.6)

respectively, where and

(C.7)

for , respectively.
Next, let the positive definite matrix be expressed as

for some positive number and positive definite
matrix . Then it can be easily shown from (B.7) that is

proportional to . From (C.2) to (C.7), it can also be shown
that each of the following terms:

and (C.8)

is proportional to and each of the following terms:

and

(C.9)

is proportional to , while only the term is
fixed and independent of. To get a further simplification,
consider the case that is large enough, i.e., the input INR
is high enough so that these terms in (C.8) and (C.9) are
negligible as compared to . Then, we have the
result as shown by (B-18).

APPENDIX D

By using the Cauchy–Schwarz inequality that

(D.1)

where and are matrices with appropriate sizes, it
follows from (31) and (32) that

(D.2)

Based on (30) and (D.2), it can be shown that

FSP (D.3)

Substituting (31) into (D.3), we obtain

FSP

(D.4)

where denotes the maximal eigenvalue of. Fur-
thermore, based on (A.11) and the property of Kronecker
product [7]

KP.4

where denotes the determinant of the matrix, it can
be shown that

(D.5)

Therefore, we have

FSP (D.6)

If the interferers are uncorrelated, (33) reveals that both
and are not greater than . Thus,
the inequality in (D.6) becomes

FSP (D.7)
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From (6), it can be shown that if .
Similarly, we have if . Thus, if

or , we have
for . Hence, (D.7) reduces to

FSP (D.8)

Finally, substituting (D.8) into (29) yields the result shown by
(34).
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