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Design and Analysis of a 2-D
Eigenspace-Based Interference Canceller

Cheng-Chou Lee and Ju-Hong Ledember, IEEE

Abstract—This paper deals with the problem of eigenspace- the robust capability against steering angle error for the EIC.
based interference cancellation using a two-dimensional (2-D) Moreover, the technique presented in [4] cannot be extended
rectangular array. An efficient 2-D signal blocking technique is to process two-dimensional (2-D) array data since its 1-D

presented to remove the desired signal from the received array . . .
data. In conjunction with the 2-D signal blocking technique, blocking scheme can not be directly applied to the 2-D case.

a positive definite matrix is further constructed and used to In the literature, there are practically no papers dealing with

compensate the effect of the signal blocking operation on the eigenspace-based interference cancellation using 2-D adaptive
sensor noise received by a 2-D eigenspace-based interferencgrrays.

canceller (EIC). Therefore, the interference subspace required In this paper, we present the theoretical results for designing

for computing the optimal weight vector of the designed 2-D A . .

EIC can be obtained by simply using conventional eigenvalue @nd analyzing an EIC using a 2-D adaptive array. Two 1-D

decomposition methods instead of any complicated generalized blocking matrices are first designed for both row and column

eigenvalue decomposition methods. The performances of the de-subarrays, respectively. Using the blocked data vectors at the

signed 2-D EIC under finite samples and steering angle error are output of these 1-D blocking matrices and the properties of
zlys% ;’Veargula;en‘ih Igt]ig nd:\;gﬁgleg&theoret'cal results are confirmed Kronecker product for matrices, a 2-D blocking technique
is developed to construct a blocked data correlation matrix
Index Terms_—EIectromagnetic radiative interference, interfer-  p that does not contain the desired signal component for
ence concellation. computing the IS. However, the noise componengis no
longer spatially white, which introduces more complexity in
computing the IS. To eliminate this effect, a positive definite
matrix 2 is created from the designed blocking scheme and
DAPTIVE interference cancellation can be used fof  is then added taR, wherer, is the background noise
maximizing the rejection of interference regardless of thgower. The resulting data correlation matdk+ =, then
interference-to-noise ratio (INR) when processing array dajgsssesses a noise component which is spatially white. As
This goal can be efficiently achieved by utilizing eigenspace:- result, we can find an orthogonal basis matrix of the 1S
based interference cancellers (EIC’s) as presented in the §j{r performing the conventional EVD and then construct the
erature [1]-[6]. A common feature for these EIC’s is that thgptimal weight vector using this orthogonal basis matrix. This
interference subspace (IS) spanned by the interferers musgd¥¢hnique facilitates the analyses of the statistical performance
first computed. Then, the optimal weight vector is computeghder finite samples and the robust capability against steering
by maximizing the output signal-to-noise power ratio (SNRjngle error for the 2-D EIC. Theoretical results on the expecta-
subject to a constraint of orthogonality to the IS. tion of the output signal-to-interference plus noise ratio (SINR)
Notable among these EIC’s is the one presented by [4le presented for showing the statistical performance of the
due to its several advantages over the others. Using a opgy EIC. As to the robust capability against steering angle
dimensional (1-D) uniformly linear array (ULA) and an apgrror, it is shown that the performance of the 2-D EIC may be
propriately designed signal blocking processor which bIOdi’;(gnificantly degraded even if there is a small steering angle
the desired signal from the received array data, it finds the §gor. However, using the proposed 2-D blocking technique
through the generalized eigenvalue decomposition (GEVD) @fih higher order can alleviate the difficulty. The breakdown

the correlation matrix of the data vector at the output of th@reshold for the 2-D EIC’s performance due to steering angle
signal blocking processor. However, the noise component lgfor is also derived.

in the blocked data vector is no longer spatially white becausery;g paper is organized as follows. Section Il presents the
of using the signal blocking matrix. Hence, finding the require[glesign of an eigenspace-based interference canceller using a
IS for computing the optimal weight vector inevitably resorts_p yectangular array. A 2-D blocking technigue is developed
to a complicated GEVD. As a result, it is very difficult 1044 the construction of a positive definite matrix for eliminat-
evaluate the statistical performance under finite samples qﬁa the effect of the 2-D blocking operation on the spatially
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and confirmation of the theoretical works are provided ids = [A(ui,v1)--- A(up,vp)], and the signal source vec-
Ss(t) =

Section V. Finally, Section VI gives a conclusion for thigor Ss(¢ [51(%),...,5p(t)]*. The correlation matrix of
paper. vec{X(t)} is then given by
R=E{vec{X(t)}vec{X(t)}} = AsUsAY + 7.1y N
[I. DESIGN OF A2-D EIGENSPACEBASED (5)
INTERFERENCE CANCELLER

where Us = E{Ss(t)Ss(t)} denotes the full rank corre-
A. The 2-D Array Data Model lation matrix of the signal sources,, the noise power, and

. . Iyy the MN x MN identity matrix.
Consider a 2-DM x N uniform rectangular array (URA) =M% % y

with sensors located on th&-Y plane at the positions i . .
((m — DA/2,(n — DA/2) for m = 1,2,. M andn — B. The 2-D Blocking Technique

1,2,..., N, where) represents the S|gnal Wavelength Let the In the follwoing, we present a technique for the design of
signal |mp|ng|ng on the array from the elevation angland @ 2-D EIC with a steering angl@:o, vo). Utilizing the results
azimuth anglep yield a unit magnitude response and a phagéesented in [4] and letting the steering angle be accordant
response given byxp{j[(m — 1)ru+ (n—1)xv]} at the array with the direction angl€«;,v;) of the desired signal, we can
sensor located at(m — 1)A/2, (n — 1)A/2), wherej = /—1 construct a blocking matrix3. for the column subarrays of
and (u,v) = (sin(f) cos(¢),sin(f)sin(¢)). P narrow-band the 2-D URA such that

signals are impinging on the URA fron® distin_ct angles B A (u;) = do;Ac(u;) With do; = (7™ — ™)

(u;,v;) for ¢ = 1,2,..., P. Thus, the data received by the

sensor located dtm — 1)A/2, (n — 1)A/2) can be expressed and B
as Ac(u;) = JeAc(wi) (6)
r where g is the order ofB.. J. = [Ins O] is the row
Tmn( Z 5,(t) exp{j[(m — D)mu; selection matrix which selects the fird&f = A — 3 rows of
i=1 A(u;), whereO,, ,, is anm x n zero matrix. Similar results
+ (n = D)mvi]} + Gmon(t) (1) can be obtained for the row subarrays as
where 3;(t) denotes the complex waveform of the signal B Au(v;) = driAr(vi) With dyy = (77 = /™)
emitted by theth source and,, ,,(t) the spatially white sensor and
noise independent cf;(¢). Without loss of generality, assume An(vi) = T A (v;) 7)
that 51(¢) is the desired signal with direction angle;,v)
and the othel” — 1 signals are interferers. From (1), the dat¥/here é is the order ofB,. J, = [Ix On,] is the row
matnx rece|ved by the URA |S g|ven by Sie|eCtI0n mat”x Wh|Ch Se|eCtS the f”‘M N — 6 rows Of
A.(v;). Based on the above results, we present a 2-D blocking
r

- - — _ technique as follows.
(1) = D [Au(ua)Ap(w) Isi(t) + Y (1) (2)  Theorem 1:Let the matrixR be given by

i=1 ~py o~ ~ oy o~ ~
R=BFRB.+ BFRB,, with B, =J' ® B.

where A, (u;) = [1,exp{jmu;},... exp{j(M — 1)mu;}]",
Ar(vi) = [Lexplymvi},. .. ,exp{J( — Lrui}]*, andY(t) - T
is the received noise matrix. Rewriting (2) in vector form, we B.=B.2J;. (8)
have Then R is an autocorrelation matrix of the blocked 2-D array
- _ _ _ _ data which contain all the interferers except the desired signal.
veed X} = [201(8), -, Bara (8), 1,2(8), -, T o) Proof: Based on the fact that. = J7 @B,, A(u;,v;) =
T13(t), ..., Ty (1), Tpy, +O1F. Q) A.(v;) ® A.(u;), and the property of Kronecker product [7]
Using the following property of Kronecker product [7]: (KP.2) (Q1 @ @Q2)(Q3® Q) =(Q1Q3) @ (Q2Q4)
(KP.1) veC{Q1Q2Q3 } =(Q3 ® Q1)vec{Qz} it can be show? thﬁat
B({{A(U,“ 117;) = dcyf,A(ui, 117) (9)
where; are matrices with appropriate sizes, we can rewrite
(3) as whered,. ; is given by (6) andA(u;,v;) = A.(v;) @ Ac(u,).
Based on (5) and (9), then we have
r - . R
veel X ()} = 3 Alui, v)5:(t) + vee Y (1)} BIRB, = AsD,YsD;' A§ +m, BB, (10)

i=1

=t _ where As = [A(uy,v1),..., A(up,vp)] and D, = diag
= AsSs(t) + vec{Y (8)} (4) {d.1,...,d. p}. Based on the fact ofl,; = 0 and the

where the response vector of tith signal sourced(u;,v;) = property of KP.2, (10) can be further written as

A, (v;) ® A.(w;), the response matrix of the signal sources ~ BYRB. = A;D.V;DFAY + n,(Iy ® (BXB.)) (11)
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where A; = [A(uz,v2),...,A(up,vp)], D. = diag Moreover, evaluating the statistical performance under finite
{dec2,...,dep}, W1 = E{S/(t)S;(t)%}, and S;(t) = data samples and the sensitivity to steering angle error for the
[52(8),...,sp(t)]*. Similar to (11), we have the following 2-D EIC becomes very difficult because the GEVD Bfis
result for the row subarrays: necessary for designing the 2-D EIC.

S B ool I To tackle the above two problems, in Appendix A, an
B'RB. = AiD: VD" A7 +ma((B)'Br) @ Inr)  (12) efficient method is presented to construct such a positive
where D, = diag{d,.»,...,d, p}. Summing (11) and (12) definite matrix(2 that the effect of the 2-D blocking operation
yields on the noise component of the received array data can be
. . eliminated, i.e.® + Q = ¢%Iy;ny. Thus, we obtain
R=BHYRB,+ BERB, = AU ;AY 4 7, @ (13)
Ry, =R+ 7m,Q =AU AY + o%n,Iyn. (20)

where
- - Equation (20) reveals that the corresponding noise component
_ H H
Vr =DV D" + DD, 14 i R,, becomes spatially white. Performing the EVD &f,,

and we have the following expression:

®=1Iy® (BYB.)+ (BIB,) ® In. (15) Ryei = Aie; (21)
Clearly, U; is a positive definite matrix ifu;, v;) # (u1,v) Whered; > XAy > --- > Ap_1 > Ap = -+ = Ayn = o2m,.
forall i =2,..., P. From (13) to (15), we note that is the Let the matrixE; = [e; - - ep_1] and the matrixEr =
autocorrelation matrix of a data vector which does not contdier --- epan]. It is easy to show thatE; Er|?[E; Eg] =
the desired signal component. O Iyn and
C. The 2-D EIC Formulation range £y} = range{ A} L range Fr} (22)

Based on the 1-D results of [4], the criterion in finding.€., 7 is an orthogonal basis matrix spanning rapge} and
the optimal weight vector for the 2-D EIC can be defined’r is an orthogonal basis matrix spanning the complement
as maximizing the output SNR subject to a constraint of rangg As}. It follows from (22) that the optimal weight
orthogonality to the IS. Accordingly, we have to solve theector for the 2-D EIC based on the criterion of (16) can be

following optimization problem: rewritten as
H 4 2 _ L H _ H
Maximize W Alu, v)[” W(I?II/I’/MN subject toW L rangg A} Wo = (Iun = By ) Alus, v1) = ErBiyg Alu, v1). - (23)
(16) [ll. STATISTICAL PERFORMANCE
where A(u;,v1) serves as the steering vector. The optimal UNDER FINITE DATA SAMPLES
solution of (16) is given by In practice, the number of signal sourcBsthe background

1 noise powers,, and the ensemble correlation matrik
Wo = (Inn = Ar(Af' Ar) AT Alur, o). (A7) required for implementing the 2-D EIC are not available and
Equation (17) reveals that the matrik; = [A(uz,v2), . .., usua_lly estimated from the receive_d data snapshots. Using
A(up,vp)] due to theP — 1 interferers must be found in the first K d_ata snapshots, we obtain the estim&téor the _
order to computdV,. However,A; cannot be knows priori. number of signal sources basgd on the AIC or MDL criterion
Basically, one can resort to finding a basis matrix spannifgesented by [11]. Moreover, implementing the AIC or MDL
rangg A;} to solve this problem. Unfortunately, the matrixCritérion requires performmg the EVD of the co'rrespondlng
& given by (15) is generally not an identity matrix. Hencedata correlation matrix. Thereforer,, can be estimated by
we have to perform the GEVD oR. Let the generalized Utilizing the eigenvalue method of [12] during the same
eigenvalues and the corresponding eigenvectors be design&@ination process. Let the estimated value be denoted as
asv; andg;, respectively. Accordingly, we have the fonowingfrn. Then, the next. data snapshots are used to compute the

expression: sample correlation matrixz as follows:
I
Rg; = v;®g; 18 -1 _ _
=g (18) R= 13 veel X(t)vec{ X (1)} (24)
Wherefyl >y > e > Yp_g > Yp = 0 = YMN = Tn. =1
Let Gy = [g1,92,-.-,9r-1], then it can be shown that

to replaceR, where X (¢;) is the data matrix received at the
time instant¢;. The correlation matrixk,, of (20) is then
replaced by

Wo = (IJWN — ((I)G[)(((I)G[)H((I)G[))_l(‘I)G[)H)A(U,l,Ul). ﬁf _ ]:?—i—fr Q (25)
(19) ’ '

rangg Ay} = rangg®Gr}. Therefore, the optimal weight
vector of (17) can be rewritten as

where
From (19), we note that performing the complicated GEVD of

R is inevitable for computing the optimal weight vectdr, . R=BYRB.+BHRB,. (26)
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It is appropriate to assume thaj, and 12 are independent in  Theorem 3 provides a lower bound of the convergence
this case. Thus, (21) becomes rate for the proposed 2-D EIC under the situation considered.

Boo = e 27) For example, consider the situation where the direction angle
e n of the desired signalu,,v1) = (0,0), the blocking orders
where \; > Xy > --- > Ay Since the number of (8,6) = (1,1), and the direction angles of interferefs;, v;)
interferers isP — 1, the corresponding basis matrix of ISwith |u;| > 1/3 or |v;| > 1/3 for ¢ = 2,3,..., P. Then, we
and its complement are given b§71 =[é1 --- ép_1] and haveo? = o2 = 4. A lower bound of the output SINR can be
Er = [ép --- énn], respectively. Consequently, the optimabbtained from (34) and is given by
weight vector for the 2-D EIC under finite snapshots is given

by E{SINR,} > SINR,(1 — 16(P — 1)/L). (35)

W, = (Inn — E1E¥) A(ur,v1) = ErEH A(ur,v1). (28) Equation (35) shows that a satisfactory convergence speed for
- the designed 2-D EIC can be guaranteed in this case.
The statistical performance of the proposed 2-D EIC underqq reqyit in a simpler version of the above theoretical results
finite data samples is given by Fhe f°”°W'”9 theorem. for providing an insight, we next consider a special situation
Theorem 2:For the case of input INR high enough, th§are 4 the uncorrelated interferers are located outside the
expectation of the output SINR can be approximately givel} .,y mainlobe and the angle separations between the desired

by signal and the interferers are large enough so that

H Ry
SRR} ~ SINR, <1 B % FSP) 29 Az_(AI Af) A A(ur, 1) < A(ug, o). (36)
Moreover,M and N are greater tha and 26, respectively.
Based on these two conditions, the optimal weight vector given
where SINR denotes the array output SINR without theyy (17) can be reduced to an approximatioiaf ~ Aluy,vy)
finite sample effectFSP represents the factor of statisticaland, hencew ~ M N, the results in (31) can be simplified as
performance and is given by the following approximations:

FSP= wil(gr,rwr,r + Sc,cwc,c + Sr,cwc,r + Sc,rwr,c) (30) ( -1 i /3 2
~ _\E
wherew = W/HW, We,e R 2NZ [Z( 2 <k>] ’

i=0 k=0

{wc:c = WOHBifBicwm Wrp = WOHBivHBi”WO (32) - [< k0
wep =WHBHBW,, w,.=WHBIBW, Wy R 2M§ kz_o(—l) <k>

Wer =Wh = el —mun)

for (3,6) =(1,1), and =0, for (f3,6)#(1,1).

and
oo = Te{ V7 0, V7 D, U, DH}
& = Te{ U7, U7 D, DY

\

- - (37)
o = Te{ W, 100 DU, DI} (32)
o= Tr{\I/;ILI/I\I/;IDT\I/IDf}_ Then, we can simply substitute (33) and (37) into (30) to obtain
Proof. Please see Appendix B. O the corresponding-SP.
If the interferers are uncorrelated, (32) can be further
simplified as IV. PERFORMANCE ANALYSIS
, s UNDER STEERING ANGLE ERROR
boo = Z |dei|2(|dei]? + |dri?) ™2 In this case, the steering angle is not accordant with the
i=2 direction angle of the desired signal, i.bug,vo) # (u1,v1).
_ The blocking factors shown in (6) and (7) become
Sr,r = Z |d1’,i|2(|dc,i|2 + |d7’,i|2) > R . . . <
i?Q . (33) dc,i = (e”“f — 6”“0)'8 and d,,yi = (e””f — 7 )O
£c,7‘ = Z dc,id:7i(|dc,i|2 + |d7*,i|2)72 (38)
2 respectively. The mismatch betweémng,vo) and (uy,v;)
o = Zd"fd* (di? + |des|2) 2 leads to a result that the blocked data correlation mafitix
= given by (8) contains a leakage due to the desired signal and
Moreover, we have the following result. becomes
Theorem '3: If the angle'separations between the interferers R=AsUsAY 1+ 7,0 (39)
and the desired signal satisfy that—u,| > 1/3 or |v;—v1| > ) )
1/3 for i = 2,3,..., P, it can be shown that where Ag = [A(uy, v1),. .., A(up,vp)], ¥s = D.UsDHF +
e b 2 D, VgDE D. = diag{d.1,...,dep}, and D, =
E{SINR} > SINR(1 — (P — 1)({oc + 02)"/L) (34) diag{d,1,...,d. p}, respectively. Sincéd. ;,d,;) # (0,0)
wheres? and o2 are given by (A-11). foralli =1,2,..., P, Vs is aP x P positive definite matrix.

Proof: Please see Appendix D. O Hence the matrixt,, = R+, hasP principal eigenvalues
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which are greater tham?#, and the corresponding eigen-Hence, the conditiod/N#; > x» causing the performance
vectors spans the subspace rangig}. The computed basis failure becomes
matrix £ will contain more than” — 1 principal eigenvectors

of R,, if the number of interferers is overestimated. From 1= 1gc 23923 <mi(myt +75h). (43)
(23), the optimal weight vector corresponding to this case is
given by When |us — us| and |va — v3| are small enough, it is also
= shown in [8] that
Wo = (IJWN - E[EI )A(U,o,vo). (40)
2
This leads to the result that the 2-D EIC fails to work due |ge,2,3)7 =1 — M 7 (ug — ugz)?
to that rang¢FE;} contains the vectorA(u;,v;) and the N212—1 (44)
constraint of WH E; = 0. |gr,2,8* = 1 — B 72 (vy — v3)?.

Next, consider the situation where the number of interferers _ _ _ _
is exactly known and the desired signal is uncorrelated witbstituting (44) into (43) and taking the first-order approxi-

the (P — 1) interferers. Based on (39), we have mation yields the following performance breakdown threshold
Ry=R+ m, Q=71 Aur,v1)A(ur,v1) ¥+ Rr+o?n,Lun M? 1 NZ_1
(41) g7 (2 — ) e (v — )
=m(nyt +m5t). (45)

wheremr; = (|d.1|2+]|d,-1]?)E{|51(¢)|?} denotes the power of
the desired signal leakage in the output after the 2-D blocking
operation.R; = Ar¥;Ar, where¥; is given by (14) except V. COMPUTER SIMULATION EXAMPLES
that the entries of). and D,. are now given by (38). Letthe | this section, several simulation examples for illustrating
P —1nonzero eigenvalues and the corresponding eigenvectgfgy confirming the theoretical works are presented. The 2-D
of B be given bys; > --- > kp1 > 0 andz for array used for all simulations is a URA with/ = 7 and
i =1,2,..., P—1,respectively. For further simplicity, assumey — . Moreover, the simulation results based on the direct
that the interferers are located far away from the desirggkyp of R given by (18) to obtain an IS basis matrix required
signal so thatd(us, vi)" A(u;,v;) ~ 0 for i = 2,3,....P.  for computing the optimal weight vector are also presented
Then, the eigenvaluek; which are greater tham?x,, and the for comparison.
corresponding eigenvectoes of ., can be approximated as  Example 1: This example is performed to illustrate the
A & ki +o’m, ande; & 7 fori = 1,2,...,P— 1, Ap & theoretical results presented in Section Ill. We §816) =
MNmy + o, and ep ~ A(u,v1)/VMN, respectively. (11). The desired signal with inp$INR = 0 dB is impinging
Note thatE'; consists of the firsP” — 1 principal eigenvectors o the array from(u1,v1) = (0,0). One interferer has input
of R,,. As aresult,E; consists ofz; for ¢ =1,2,...,P—1 NR = 20 dB. The firstK = 50 data snapshots are used
when MNm, < rp_y. Hence, ranggl;} ~ ranggA;} o estimate the source numbét and the noise powet,.
and the 2-D EIC works normally. On the other hards  Fig 1 plots the array output SINR in dB versus the number
contains the normalized response vectdu, v1)/VMN if  of snapshotss, for two different interfering angles. Each
MNmy > rp_y. From the optimal weight vector given bysimylation result is obtained by averaging 100 independent
(40), we note that the desired signal will be suppressed duey{fs with independent noise samples for each run. The solid
the constraint of#;” Er = 0. As shown by (38) and the fact cyrve represents the theoretical results computed by using (29)
thatr, is proportional td(|d..:|*+|d;.1|*), this difficulty could  pased on (28) and (30)=(32). This confirms the validity of
be alleviated by increasing the orde¥sand ¢ if the steering ﬁzg) given by Theorem 2. On the other hand, the curve with
angle error is small. In general, the breakdown thresholgh yepresents the simulation results for the performance of
MNm, > sp_y happens wherfi; is nearly rank-deficient. the 2-D EIC designed by using the proposed technique, while
To look into the effect of M Nm; > rp_;, we proceed 10 the curve with “0” represents the simulation results of the 2-
consider the case of two uncorrelated and closely separaggge|c designed by using the direct GEVD technique. The
interferers. coincidence between these two curves shows that the 2-D EIC
Let the two uncorrelated interferers be closely separated &signed by using the proposed technique provides the same
that A(uz, va)" A(us, v3) ~ MN. From [8, pp. 25-27], We performance as that directly using the complicated GEVD

can easily show that technique.
MN7ams 5 ) Comparing the results of Fig. 1(a) and (b), we note that
Ky =—— s - (1= 19e,2,31|gr2,31) - (42)  the output SINR of Fig. 1(a) is smaller than that of Fig. 1(b)

for each number of snapshots as expected because the angle
where m; = (|d.i|* + |d.:[*)E{|5:(t)]*} for i = 2 and 3. separation between the desired signal and the interferer is
ge2,3 and g, 2 3 are given by smaller for Fig. 1(a). This phenomenon is further demonstrated
_sin(rM (up — 43)/2) ir(M—1)(u0—ua)/2 in Fig. 2 by plotting theFSP of (30) versus the interfer-
9e23 = M sin(7 (us _ug)/g)e ing angle (uz,v2). We note thatFSP increases and hence
_ sin(mN(va —v3)/2) in(N—1)(vs—vs)/2 the performance degradation increase$wasv2) approaches
923 = Nsin(r(va — v3)/2)© ' (u1,v1) = (0,0).
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Fig. 2. The factor of statistical performance (FSP) versus the interfering
angle for Example 1

with input SNR = 0 dB is impinging on the array from
(u1,v1) = (0,0), while the uncorrelated interferers have the
same inputlNR = 20 dB. The first X = 50 data snapshots
are used to estimate the source numlierand the noise
power 7,,. Fig. 3 depicts the array output SINR in decibels
versus the number of snapshatsfor different interfering
situations. Each simulation result is obtained by averaging 100
independent runs with independent noise samples for each run.
The solid curve represents the theoretical results computed
by using (29) based on (28) and (30)—(32). In contrast, the
dash curve represents the theoretical results computed by using
(29) based on the approximations described by (37). The dash
curve almost coincides with the solid curve. This confirms the
validity of the approximations given by (37). Moreover, the
coincidence between the curves with “x” and “o” illustrates
that the 2-D EIC’s designed by using the proposed technique
and directly using the complicated GEVD technique have the
same performance.

Example 3: Here, we illustrate the performance of the
designed 2-D EIC in the presence of steering angle error.
The steering angle i$u,,v,) = (0,0). The desired signal
with input SNR = 3 dB is impinging on the 2-D array

Fig. 1. The results ofExample 1 Output SINR versus the number offrom (ul,vl) = (0-0370-03)- Two uncorrelated interferers
snapshots for the case of one interferer. Solid line: The theoretical result. “¥¥ith input INR = 3 dB are impinging on the array from

The 2-D EIC using the proposed technique. “0": The 2-D EIC using the dire%2 vg) — (0 50 6) and (ug Ug) — (u2 + Au,ve + Av) To
7 ) - 7 7 *

GEVD technique. (aJus2, v2) = (0.11,0.13). (b) (u2,v2) = (0.14,0.12).

evaluate the sensitivity to the angle separatign:, Av), we
define a robustness index (RI) as follows in (46), shown at

Example 2: This example considers the case of multipléhe bottom of the page, for the designed 2-D EIC and (47),
interferers. Again, we sgf3, ) = (1,1). The desired signal shown at the bottom of the page, for the 2-D EIC directly

Ry,

The output SINR usingV, of (40)

" The output SINR usingV, of (17) with A(ur, v1) replaced byA(uo, vo)

(46)

__ The output SINR usingV,, of (19) with A(u;,v;) replaced byA(uo,vo)

~ The output SINR usingV, of (17) with A(uy,v,) replaced byA(uo, vo)

(47)
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(b) Fig. 4. The performance comparison fEkample 3 (a) Robustness index

Fig. 3. The results oExample 2 Output SINR versus the number of snap-versus the interfering angle separafiphu, Av). The top curve: The 2-D

e L ] wm . EIC using the proposed technique. The bottom curve: The 2-D EIC using
shots. Solid line and dash line: The theoretical results. “x”: The 2-D EIC USiNBy direct GEVD technique. (b) The breakdown threshold curves of the 2-D

225 'chyé)?r?t(ee?f;?g?snl\?vlijtauo lT)he_Z(Ig Elg) u;r']gg(;held';eit ((BOEQ/E)D[;icg]h)quEIC using the proposed technique. Solid curve: The simulation results. Dash
5, v2) = (0,0. 3, ¥3) = V.99, 029)-  oyrve: The theoretical results.

(b) Three interferers witljus, v2) = (0,0.6), (u3,v3) = (0.55,0.45) and
(u4.v4) = (0.5,0).

VI. CONCLUSION

using the complicated GEVD technique. Fig. 4(a) plots the The theoretical works for the design and analysis of a 2-D
RI versus(Au, Av). The top curve represents thd, versus eigenspace-based interference canceller (EIC) have been pre-
(Au, Av), while the bottom curve represents tRé, versus sented. An effective 2-D signal blocking technique is first
(Au, Av). It shows that the proposed technique possesses fhiesented to remove the desired signal from the received array
advantage of robust capability against steering angle erdata. To compensate the effect of the signal blocking operation
over the GEVD technique. Fig. 4(b) depicts the curves aoih the sensor noise, a positive definite matrix has been
the breakdown threshold foRl, = 0.5. The dash curve constructed. Therefore, the interference subspace required for
represents the breakdown threshold computed by (45), whilemputing the optimal weight vector can be obtained by
the solid curve represents the simulation results. This figunsing conventional eigenvalue decomposition methods. The
also confirms the presented theoretical results. performances of the designed 2-D EIC under finite samples
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and steering angle error have been evaluated, respectivlly.: = 1,2,...,M — 1, where Re{z} and Iin{z} denote
The developed theoretical results are confirmed by sevetia® real and imaginary parts af, respectively.sgn(z) = 1
simulation examples. It has been shown that the performanter > 0, and =0, otherwise. We then construct a positive
of the designed 2-D EIC is the same as that of a 2-D El@=finite matrix as follows:

directly using a complicated GEVD technique in the situation M—1
without steering angle error. However, the proposed 2-D EIC Q. = Z (|Re{eciHT-(2sgn(Refe.;}),4)
possesses the advantage of more robust capability against i1
steering angle error over the 2-D EIC based on the GEVD + |Im{e.; Ho(2sgn(Im{e.; }) — 1,4)). (A.10)
technique.
Summing (A.5) and (A.10) thus yields a diagonal matrix as
APPENDIX A follows:
Let I,, be anm x m cyclic-shifting matrix defined as

M-1
) BIB.+Q. = <6c,o +2 ) ([Refec i} + IIm{fc,z‘}l)> Iy
Irn = [Irn,Q Irn,?) T Irn,rn Irn,l] (Al) i=1

2
where I,,, ; is theith column vector of then x m identity =0oclm (A-11)

matrix. Followmg the results presented in [4], the blockmgmere o2 denotes the proport|onal constant. FoIIowmg the
Be=1[be Iybe - Iy 1] (A.2) such thatB/’ B,. +Q = O’,,I]Y for some positives2. Finally,
we form the following matrix:

whereb, is an M x 1 vector given by
Q=Iny2Q.+Q,. 1. (A12)

be = [De.ose e 3,0,...,0F (A.3)

Based 15 d th ty of K k duct [7
andb. x are the coefficients satisfying ased on (15) an e property of Kronecker product [7]

R I o 03 (Ta)o(Tn)-Trecn

ior matrices; and 7} with appropriate sizes, we can easily

The subscript #” denotes the complex conjugate. From (A.2 how thatd + © = 021y, whereo? = o2 + o2.

and (A.3), it can be seen th&! B, is an M x M Hermitian
and Toeplitz matrix. Furthermore, l8tT{z1,z2,...,2m}
denote anm x m Hermitian and Toeplitz matrix with its first
row given by[zi,z2,...,2,]. Then, we have Here, we show the result given by (29) in Theorem 2. Per-
BB, = HT{ewo, oty s ot 1} forming the EVD ofR,,, we obtain the following expression:

APPENDIX B

B—i Rw = EIAIEIH —+ ERAREEI (Bl)
With e.; = > b5y ibex. (A5) . .
k=0 ’ where Ay = dlag{)\l, A2y, )\p_l} and Ag = dlag{)\p,
. _ Apit,-- AN}t = o?m, Iy . Similarly, we have the fol-
Next, we construct aM + ¢) x 1 vector as follows: lowing expression:
LY — . ik T - P A A oa
felk, ) =1 O1—1 §° O1 m-a) (A.6) Ry = EvA BV + BrhpEl (B.2)
where: = 1,2,...,M — 1 and & is an integer. From (A.6), “
an (M + 1) x M matrix is constructed as follows: from the EVD of &, where Ay = diag{A1, Ao, Ap_1}
. . - ) - ) and AR = dlag{)\p,)\p+1, .. )\J\IN} From (20) and (25),
Fu(k,i) = [fe(k,t)  Invgifelkot) ipgife(kid) - the deviation betweer,, ande due to finite sample effect
Lo ek, ). can be expressed as
(A7) AR, = Ry — Ry = AR + A, Q2 (B.3)
Using (A.6) and (A.7), we have whereAr,, = #, —m, and AR = R — R. Using (8) and (26),
Uo(kyi) = Fo(k,i)" F.(k,4) AR is given by
=HT{2,01, 1, (=", On-1-:}.  (A8) AR = BYARB, + BIARB,. (B.4)

From (A.8), we note thal'.(k,) is positive definite, Hermi-

) ) o Following the first-order perturbation analysis presented in [9],
tian, and Toeplitz. Moreover, it is easy to show that

we can show that

|RE{6c,i}|Fc(2 Sgn(Re{ec,i})v [’) AER — ER e —R}—ARwER (BS)
+ [Im{ec ; HIo(2sgn (Im{e.;}) — 1,4)
= HT{2(|Re{eo}| + [Tmfec.i}), where

0177‘,_1, —€ci 017]\4_1_7‘,} (Ag) R}i— = E[(A[ — OQWH,Ip_l)_lE;{. (BG)
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It follows from (B-6) thatRj,r possesses the following prop-where SINR, = p,/p, represents the output SINR without
erties: finite sample effect. Since the expectation for each of the first-
N Ho -l 1/ Ha—H g order terms in (B-9) is zero, the expectation of the output SINR
Rf = Ef(A{'Er) V[ (A7 Er) "Ef, and can be approximated from (B-14) as follows:

RYR;Rf = Rf B.7
Substituting (B.5) into (28) and preserving only the first-order Ds Pn Pn
term, we obtain the following approximation for the optimal (B.15)
weight vector under finite samples: where Ap, = Ei:l Ap,x and Ap,, = Ei:l Ap, k.

Next, we compute the individual terms in (B.15). As shown
in (B.3), the deviatiomAR,, is composed of two independent
Using (B-8) and the property that ¥ E = 0, we can find terms, |.e.,4wn ar;]d AR'. By using t'hi agsnvalus methkc:d of
the powers of the desired signal, the noise, and the interfer[s]rg] to estimate the noise power, it has been shown that
at the array output as follows:

W, ~ W, + (ERAEH + AERER) A(ui,v1).  (B.8)

7T2

21 n
. ) E{lamal™ = goun —py (B.16)
~ _ % 2
Ps = 7r1|W<f{A(ul,vl)| ~ps + Z Aps k if K data snapshots are used. On the other hand, it has been
k=1 shown in [10] that the deviatio i due to finite sample effect

+ the first-order terl;ns

has zero mean and the second-order statistical property as
P = TaWEW, mpp+ > Aps (B.9)

_ _ 1 _ _
= E{QY' ARQ:Qi' ARQ.} = T Tr{Qf RQ2}(Q1 RQ)
+ the first-order terms

i = W(FAT\I/TATWO ~pi + Ap; 817

L + the first-order terms where@); are matrices with appropriate sizes. By substituting
(B.5) into (B.10)—(B.12) and using the properties of (B.7),

wherep, = 71 |WJ A(ug,v1)|?, pn = mW/'W,, andp; = (B.16), and (B-17), the individual terms in (B.15) are com-

W Ar@ AJ'W, represent the output powers of the desiregyted. The results are listed in Appendix C. It is also shown

signal, the noise, and the interferers without finite sampjg Appendix C that the term.E{Ap; ,}/p, is dominant in

effect, respectivelys; = E{|5.(¢)|*} denotes the input power the case of input INR high enough since all the other terms

of the desired signap; is negligible when the 2-D EIC works decrease as the input INR increases. Accordingly, (B-15) can

normally. The other terms are the second-order perturbatigd approximately expressed as

terms which are given by

— 1
. _ E{SINR, leNR0<1— —FSP) B.18
{Ap&l =Ap;, =71 (A(ul,vl)HERAEgA(ul,vl))Q { ; L ( )

_ 2
Aps s = 27| A(ug, v1) T ERAER A(uy, v1))| for input INR high enough, where the factor of statistical
(B.10) performanceFSP= LE{Ap; .} /p. is given by (30).

App1 = mpAlur, v1) T AERAER Auy,vy),
{Apmg = WnA(ul, Ul)HERAEgAEREgA(U,l, Ul) APPENDIX C
(B.11) To ease the presentation, we employ the subscrifitsand
z(2) to replace the subscripts™ and “¢”, respectively. For

and example,B,1) and B, (») represent the notations,. and B,
_ respectively. Thus, (B-4) can be rewritten as
Api = A(U,l, Ul)HERAEgA[\I/[A?AEREgA(Ul, Ul) p y ( z
B.12 _ SH S 73
(B.12) AR=Y"BY ARB,q. (C.1)
=1

respectively. Since; is negligible, the output SINR of the ] . .
2-D EIC can be written as Using the above notations and performing some algebraic

manipulation provides

INIT ﬁs p9(1 + (ﬁ? - ps)/ps) , —~ . .
SR, = e ™ balL+ (e — 5o+ i3/ P on = B ol b+ £}
(B.13) i Pr
E{Apia}/pn = (Lw) Z (Eetk),e()@Wati) o))

Consider the situation where the number of data snapshots bk _
is large enough. Utilizing the first-order approximation of 3 E{Apis}/pn = (Lw) ' > (Tr{m, R} AT,
(1+ )™ = 1 -z for a small z, we can obtain an ok
approximation for (B-13) as follows: x AIILIR?Bﬁk)Bw(i)}ww(i),w(k))
- ) X . E{Api.c}/pn = (K(MN - P)w)
SINR, ~ SINR (1 + (ps — ps)/Ps = (Pn — Pn)/Pr — Pi/Pn); { x (m , WHQRY AU AT RFQW,)

(B.14) (C.2)
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(E{Apn,l}/pn ~ E{Apn,la}/pn
+ E{Apn,lb}/pn + E{Apn,lc}/pn
E{Apn1a}/pn = (Lw) 2> (Tr{EREY
1,k
X Bl Bey tei.em)
E{Apn,lb}/pn = (LCU)_I Z (TI‘{EREg
i,k
XBﬁmBm(i)}Pw(i),w(k))
E{Apn1c}/pn = (K(MN — P)w)™" (72 A(ug,v1) "
x RFQERERFQRT A(uy,v1))

\

(C.3)
(E{Apn,Q}/pn ~ E{Apn,Qa}/pn + E{Apn,Qb}/pn
+ E{Apn,Qc}/pn
E{Apn,Qa}/pn = (Lw)_l Z (Tr{WnR}—A[
ik

X Doy U rDE G AT B Yty wr))
E{Apaan}/pn = (Lw) Y (Te{x} R} Bl
1,k
X B R Yoy (1)
E{Apn2c}/pn = (K(MN — P)w)~*
\ x(r2WHQRT RFQW,)
(C.4)

(E{Aps,l}/ps ~ E{Aps,la}/ps + E{Aps,lb}/ps

E{Ap,1a}/ps = (Lw?)™" Z [(mn WH

x B, )Bw(k)R A(Ulﬂfl))
x (W, w(k)Bw(z)R T A(ur,v1)) ]
E{Aps,lb}/ps = (K(MN P) )

x (m, WEQRT A(uy, Ul))2

\

(C.5)

and

'E{Ap573}/p5 ~ E{Aps,?)a}/ps + E{Aps,?)b}/ps
+E{Aps,3c}/ps
E{Ap, 30}/ps = 2(Lw®) Z (M2(3) 2 (1)@ () ,2())

E{Apean}/pe = 2Le”) ™) (P2).00wet.e))
E{Aps,?)c}/ps = 2(K(MN — P)wQ)_l )
\ X |WH,W(£{QR}|—A(U1,U1)|

(C.6)

respectively, wherew = WH*W,, and
Waliar) = W' Bw<z>Bw<k>W
Eary o0y = Te{ U 10,0 Dw(k)\PIDq;(Z)}
N (3),2(k) = WNA(U/MUI) R AIDw(Z)\IjTDT(k)
x Al R}'A(ul, vl)
pac(z),ac(k) = W,?LA(U17 Ul) R B )Bm(k)R}—A(U,l, Ul)
(C.7)

z(i

for ¢,k = 1,2, respectively.

~ Next, let the positive definite matri¥y; be expressed as
Wy = aWy for some positive numbet and positive definite

matrix ¥y. Then it can be easily shown from (B.7) th['a};L is
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proportional toz—t. From (C.2) to (C.7), it can also be shown
that each of the following terms:

E{Api,b}/pnv E{Api,c}/pnv E{Apn,la}/pnv
E{Apn,2a}/pnv and E{Aps;%a}/ps

is proportional toz—* and each of the following terms:

E{Apn,lb}/pnv E{Apn,lc}/pn E{Apn,Qb}/pn
E{Apn,Qc}/pn E{Aps,la}/ps
E{Aps1}/ps  E{Apsa}/ps,

(C.8)

and E{Aps,?)c}/ps
(C.9)

is proportional toa=2, while only the termE{Ap; .}/p, is
fixed and independent oi. To get a further simplification,
consider the case thatis large enough, i.e., the input INR

is high enough so that these terms in (C.8) and (C.9) are
negligible as compared t&{Ap; ,}/p,. Then, we have the
result as shown by (B-18).

APPENDIX D
By using the Cauchy—Schwarz inequality that

ITe{QQF Y < Tr{ Q. QI Tr{ Q204 }

where @; and Q» are matrices with appropriate sizes, it
follows from (31) and (32) that

(D.1)

|wc 1‘|2 = |wrc|2 S We,cWr
7 7 st D.2
{|£c,7*|2 = |£7*,c|2 S Sc,cgr,r- ( )
Based on (30) and (D.2), it can be shown that
Wy \1/2 we o\ 1/2]7
< : . .
FSP< [(5 )T () } (D.3)

Substituting (31) into (D.3), we obtain

FSPS [(51‘,1‘)\1113,)({-37{{31‘})1/2 + (gc,c)\max{Bch})l/Q] 2
(D.4)
where Ap.x{@} denotes the maximal eigenvalue @f Fur-
thermore, based on (A.11) and the property of Kronecker
product [7]
(KP.4) det{Q; —q11} =0,
= det{Q1 ® Q2 — q1q21} =0

wheredet{@Q} denotes the determinant of the matédx it can
be shown that

det{QQ — (_ZQI} = 0,

)\max{BfBC} = )‘maX{Bf{BC} < ‘73 (D 5)
Mnax{ BEB,} = Mnax{BE B, } < 02~ '
Therefore, we have
FSP< (%0, + €20, (D.6)

If the interferers are uncorrelated, (33) reveals that Both
andé,. .. are not greater thaEf;Q(|dcyi|2 +|d,:|*)"t. Thus,
the inequality in (D.6) becomes

r
FSP< > (ldei* + |dvi|*) ™ (00 + 02)*.

=2

(D.7)
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From (6), it can be shown thad, ;|2 > 1if |u; — u1| > 1/3. [12] P. Stoica, “On estimating the noise power in array processighal
Similarly, we have|d,;|? > 1 if |v; — v1| > 1/3. Thus, if Processing vol. 26, pp. 205-220, Feb. 1992.

|u;—u1| > 1/3 or jv; —v1| > 1/3, we haveld,. ;|*+|d.;]* > 1

for i =2,3,..., P. Hence, (D.7) reduces to

FSP< (P —1)(0. + 0,)%. (D.8)
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Finally, substituting (D.8) into (29) yields the result shown b
(34).
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