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Using Adaptive Wavelet Packet Transform

Hai Deng,Student Member, IEEE,and Hao Ling,Fellow, IEEE

Abstract—The adaptive wavelet packet transform is applied to
sparsify moment matrices for the fast solution of electromagnetic
integral equations. In the algorithm, a cost function is employed
to adaptively select the optimal wavelet packet expansion/testing
functions to achieve the maximum sparsity possible in the result-
ing transformed system. The search for the best wavelet packet
basis and the moment matrix transformation are implemented
by the repeated two-channel filtering of the original moment
matrix with a pair of quadrature filters. It is found that the
sparsified matrix has above-threshold elements that grow only
as O(N1:4) for typical scatterers. Consequently the operations
to solve the transformed moment equation using the conjugate
gradient method scales asO(N1:4): The additional computational
cost for carrying out the adaptive wavelet packet transform is
evaluated and discussed.

Index Terms—Electromagnetic scattering, fast solution meth-
ods, wavelet transform.

I. INTRODUCTION

I N solving electromagnetic integral equations, the applica-
tion of the method of moments procedure with conventional

expansion and testing functions always results in a dense
moment matrix. For a problem of size, the direct solution
of the moment equations requires operations, which
is prohibitively expensive for large-scale scattering problems.
Recently there has been much interest in using wavelet basis to
sparsify the dense moment matrix, leading to reduced solution
time for the resulting sparse matrix equation [1]–[8]. It has
been found that the application of wavelet basis functions
in electrodynamic problems can result in a very sparse mo-
ment matrix after a thresholding operation. Unfortunately,
the number of nonzero elements still grows on the order of

when the problem size is increased [5]. As a result, the
computational complexity of solving electromagnetic integral
equations using the wavelet basis transform is not reduced
significantly.

The above drawback of the conventional wavelet trans-
form (CWT) method for electrodynamic problems has been
explained by us earlier in terms of the oscillatory nature of
the electrodynamic kernel [7], [8]. The CWT implemented
with multiresolution analysis is essentially a constant-de-
composition of the signal in the frequency domain. (In this
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paper, the term frequency refers to spectral frequency since our
signal space is defined in the spatial dimension.) For the signals
with energy content centered around zero frequency, CWT can
achieve a very efficient compression [9]. For electrodynamic
problems, however, the Green’s function is oscillatory around
the spectral frequency Hence the more efficient way to
compress the Green’s function is to employ modulated bases
which can zoom in on the center frequencyautomatically.

In this work, we apply the recently introduced adaptive
wavelet packet transform (AWPT) [8], [10]–[12] to the sparsi-
fication of moment matrix. In this approach, the transformation
bases in the AWPT are adaptively selected based on a cost
function such that the transformed moment matrix has the
maximum sparsity. Consequently, the AWPT transformed ma-
trix is more efficiently represented than that using the CWT,
as we abandon the rigid constant-decomposition structure of
the CWT. We find that the resulting sparsified moment matrix
from the AWPT can have nonzero grow only as
for a number of test structures. Independent work on using
wavelet packet basis for electromagnetic computation has been
reported by Golik [13], [14], who generated a wavelet packet
basis by decomposing the excitation vector.

This paper is organized as follows. In Section II, we first
give a brief introduction of the moment equation transform
with wavelet packet basis. We then introduce the search algo-
rithm for the best wavelet packet basis and the implementation
of the AWPT with repeated filtering of input data by a pair of
quadrature filters. In Section III, we present numerical results
of the moment matrix sparsification with the AWPT for several
two-dimensional (2-D) scatterers. The results obtained with the
CWT are also given for comparison. Finally the computation
time of the AWPT procedure and the solution time for the
sparsified system using an iterative conjugate gradient solver
are provided. The conclusions are given in Section IV.

II. M OMENT MATRIX SPARSIFICATION USING AWPT

Let us consider a moment matrix equation

(1)

where , , and denote the moment matrix, the induced
current vector, and the excitation vector, respectively. If the
moment matrix is transformed with two orthonormal
matrices and , the equation can be changed into

(2)
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or

(3)

where

(4)

(5)

and

(6)

The transformation matrices and change the orig-
inal expansion/testing functions into a new set of expan-
sion/testing functions. Note that and are in general
different, since the expansion and testing functions can be
different. The objective is to find the best expansion/testing
functions (therefore the two matrices and such
that the transformed matrix has the maximum sparsity
possible. Such a best basis for a given moment matrix
will be selected from all possible wavelet packet bases. Once
the transformation is completed, the resulting sparse system
can be solved using an iterative solver to take advantage of
the sparsity. The original induced current can be obtained from
the solution of the transformed induced currentvia

(7)

In the following sections, we shall first introduce the wavelet
packet concept and show that it can be considered as a gen-
eralization of the conventional wavelet basis. Next we outline
the implementation of the moment matrix transformation using
wavelet packet basis. Finally, we describe the search procedure
for the best wavelet packet basis to arrive at a system with
maximum sparsity.

A. Wavelet Packet Basis

Wavelet packet basis is a generalization of the commonly
used wavelet basis [15]–[17]. It has all the major features
of the conventional wavelet basis and can be defined from
basic wavelet concepts. Let and be the scaling
function and the corresponding wavelet mother function in the
conventional wavelet transform and define , and

Using the well-known “two-scale equations,”
we can construct the wavelet packet basis in the signal
space as [15]–[17]

(8)

where and are the impulse responses of two
quadrature filters, (low-pass) and (high-pass), respec-
tively. The wavelet packet subspace with modulation fre-
quency index and bandwidth index is then defined as

(9)

Fig. 1. Wavelet packet decomposition tree.

The wavelet packet space can be decomposed into two sub-
spaces

(10)

From the scaling function space and the wavelet function
space in multiresolution analysis, we define the initial
wavelet packet spaces as and Therefore, the
signal space can be decomposed into the following wavelet
packet subspaces:

(11)

Note that the wavelet packet space is the further decomposition
of both the scaling function space and the wavelet space, and
the frequency bands corresponding toand are partitioned
into “subbands” in the wavelet packet transform. Fig. 1
shows the wavelet packet decomposition tree. For the wavelet
packet basis function in (9), we define its dyadic interval

in the frequency domain as [11]

(12)

If the basis of the wavelet packet transform is chosen
from the decomposition tree, their dyadic intervals should be
disjoint and cover the entire signal bandwidth, i.e.,

(13)

and

(14)

Therefore, the wavelet packet basis is a modulated
wavelet with a center frequency of and a
bandwidth of which are normalized with respect to
the bandwidth of the input signal. At different stages of
the decomposition tree, the projections of the original data



676 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999

(a) (b)

Fig. 2. The decomposition tree structure of (a) the conventional wavelet
transform (CWT) and (b) the adaptive wavelet packet transform (AWPT).

onto the wavelet packet basis spaces have different spatial
and spectral resolution. The original input data sequence
discretized in the space domain has the best spatial resolution,
but the worst spectral resolution. If the signal is decomposed
with the wavelet packet basis, as we go deeper into the
decomposition tree from the top stage to the bottom stage,
the decomposed data have better spectral resolution but worse
spatial resolution. The full wavelet packet decomposition is
equivalent to an FFT with the basic wavelet as the filter
bank function. The wavelet packet decomposition at any stage
between the top stage and the bottom stage in the decom-
position tree is equivalent to a short-time Fourier transform
(STFT) with different space windows. Finally, as shown
in Fig. 2(a), the conventional wavelet basis is a wavelet
packet basis that consistently decomposes along the lower
frequency band until it reaches the bottom stage. Thus the
FFT, STFT, and CWT can all be considered as special
cases of the wavelet packet transform with a prescribed
tree structure. In general, a wavelet packet basis consists of
functions with different scales, corresponding to the different
depths along the decomposition tree, as shown in Fig. 2(b).
Yet they should satisfy the orthogonality and completeness
requirements in (13) and (14). Of all the eligible wavelet
packet bases (which include the CWT, FFT, and STFT bases),
not all of them are good for accomplishing the goal of moment
matrix sparsification. We shall search and find such a wavelet
packet basis from all possible cases to create the maximum
sparsity in the resulting transformed matrix.

B. Implementation of Moment Matrix Transform
with Wavelet Packet Basis

The transformation of the moment matrix from a standard
pulse basis to a general wavelet packet basis can be imple-
mented via a two-channel filter bank structure. Let us consider
a discretized data sequence in the space domain to be
transformed from a standard basis to a wavelet packet basis.
The original sequence can be considered approximately as the
projection of the original analog signal onto the signal space
constructed from the wavelet packet basis with the highest
spatial resolution

(15)

where is the scaling function corresponding to the
wavelets chosen for the application, andis the wavelet
packet basis defined in (9). Since the wavelet packet basis
satisfies the two-scale equations [15], [16], the first stage of
the wavelet packet decomposition tree is

(16)

Similarly

(17)

The sequences and are then decomposed further
in the second stage of the wavelet packet decomposition tree

(18)

Following the same procedure, the outputs of the full wavelet
packet decomposition are

(19)

The decompositions from the sequence at stage into
the sequences and at stage using the
two decomposition quadrature filters are given by

(20)

This decomposition is equivalent to first passing the input
sequence through the two decomposition quadrature filters and
then down-sampling the outputs by two (discarding every other
data sample). Conversely, the sequence at stage can
be perfectly reconstructed from the two sequences
and at stage using two reconstruction quadrature
filters, and

(21)
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where and are the impulse responses ofand
, respectively. For orthogonal wavelet basis, the reconstruc-

tion filters and and the decomposition filters and
are exactly the same except that their impulse responses are
the space-reversed versions of each other. The reconstruction
is equivalent to first up-sampling the two sequences by two
(inserting a zero between two data samples), passing the
resulting sequences through the two reconstruction quadrature
filters, and then summing the two outputs.

From the above discussion, we can now implement the
transformations of the moment equation in (2)–(7) efficiently
with repeated two-channel filtering and down (or up)-sampling
rather than direct matrix multiplication. If a vector is right
multiplied with the transformation matrix, it can be realized
with the repeated filtering and down-sampling of the vector
with filters and in (20). If a vector is left multiplied with
the transformation matrix, it can be realized with the repeated
up-sampling and filtering (reconstruction) of the vector with
filters and in (21).

To implement the moment equation transformations, we first
rewrite (4) and (6) into the following forms:

(22)

(23)

In this manner, all the rows of the original moment matrix
are first decomposed from their original basis functions to the
wavelet packet basis, and then all the columns are decomposed
from the original testing functions to the wavelet packet testing
basis. Similarly the original excitation vector is decomposed
to be represented with the wavelet packet testing basis. All
the decomposition can be implemented by filtering and down-
sampling with filters and Finally, to reconstruct the
original induced current vector once the transformed induced
current is found, we implement (7) via up-sampling and
filtering with filters and

C. Best Wavelet Packet Basis Search for AWPT
Moment Matrix Transform

To search for the best wavelet packet bases to achieve the
maximum sparsity in the transformed moment matrix, a cost
function is defined to evaluate the sparsity of the transformed
matrix for a specific basis. The sparser the transformed mo-
ment matrix, the smaller the value of the cost function should
be. A commonly used cost function is the additive energy
concentration function defined as [11], [12]

(24)

In our application we choose and use the approximation
to speed up the computation time

of the cost function

(25)

When the rows and columns of the moment matrix are being
decomposed from the top stage to the bottom stage in the
decomposition tree, the cost function is calculated at every

(a) (b) (c)

Fig. 3. The geometry of the three test scatterers (a) a circular cylinder; (b)
an L-shaped structure; and (c) a duct.

stage to evaluate the sparsity of the transformed matrix. It is
then compared against that of the next stage to decide whether
the matrix should be further decomposed. If the total cost
of the decomposed matrix is reduced, the decomposition is
accepted and further decomposition is applied. Otherwise the
decomposed matrix is rejected and the decomposition stops.
The maximum number of decomposition stages is
When the decomposition in the wavelet packet decomposition
tree stops at some nodes according to the algorithm mentioned
above, these nodes consist of the best wavelet packet basis,
based on which the transformed moment matrix has the least
cost. Obviously the transformation to the best basis is finished
when the best basis is found. The same algorithm is applied to
the columns of moment matrix to implement the best testing
basis search and transformation.

III. N UMERICAL RESULTS

The performance of the AWPT in the sparsification of
the moment matrix is tested using several two-dimensional
conducting structures. The scatterers considered include a
circular cylinder, an L-shaped structure and a duct (Fig. 3).
The first two structures are taken from [5]. To avoid the inter-
nal resonance problem, the combined-field integral equation
(CFIE) is employed to generate the moment matrices with
pulse bases and point matching under-polarized
incidence. By changing the physical size of the scatterers
proportionally, we obtain moment matrices with sizes ranging
from to . Both the CWT and the AWPT
are applied to the sparsification of the matrices. To sparsify
the transformed matrices, the elements of the matrices are
thresheld with a level that is based on a matrix norm criterion
as follows:

(26)

The advantage of choosing the threshold level based on the
matrix norm is that the relative error of the solution caused
by the thresholding is under a predicable limit [18]. Our
experiments show that when is between 1/5 and 1/10,
the calculated induced current has a rms error of around
2%. Daubechies filters with the order of 16 (i.e., seven
vanishing moments) are used as the quadrature filters through
all transformations [19]. Similar results are obtained with other
well-defined orthogonal filters such as the Battle–Lemarie
filter.
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Fig. 4. The AWPT frequency decomposition trees for the duct of various sizes.

The AWPT algorithm described above is applied to the
moment matrices from the three scatterers of varying sizes.
We find in our examples that the best wavelet packet transform
trees after running the algorithm are the same for the expansion
basis and the testing basis. This is due to the symmetrical
nature of the original moment matrix. Fig. 4 shows the re-
sulting optimal spectral decomposition trees for the duct. It
is most interesting to observe that in the best AWPT tree
after the adaptive selection procedure, the branch that zooms
in the deepest is right around the spectral frequency
(Since the spatial discretization used is , the maximum
spectral content of the matrix is , which corresponds to
a normalized frequency of , therefore, is equivalent to
a normalized frequency of The frequency decomposition
trees in Fig. 4 display the normalized frequencies from zero

to , and thus the frequency corresponds to the branch
that is about 1/5 of the way from the lowest branch of the
tree.) This means that the wavelet packet basis with the largest
spatial extent has a spectral content around k0. Therefore, the
AWPT tree has automatically adapted itself to this well-known
spatial-spectral characteristic of the electrodynamic kernel [7].
Shown in Fig. 5 are the APWT trees for the circular cylinder
and the L-shaped structure with We observe that
the overall structures of the AWPT trees are quite similar for
different scatterer shapes. That suggests that the best APWT
basis may not be very sensitive to the physical shape of the
scatterer.

The transformed moment matrices using the CWT and the
AWPT with for the duct are shown in Fig. 6
with a threshold level parameter of 0.1. It is clearly seen
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(a)

(b)

Fig. 5. The AWPT decomposition trees for (a) the circular cylinder and (b)
the L-shaped structure withN = 4096:

that with the AWPT basis the interactions in the upper left
corner area of the matrix are reduced. This region corresponds
to the interaction of the wavelet functions with the largest
spatial extent. As a consequence, the AWPT moment matrices
are sparser that the CWT ones. The numbers of nonzero
elements in the transformed matrices after thresholding are
plotted as a function of problem size for the duct in Fig. 7. It
illustrates how the sparsity of the matrices scales according
to the problem size. Although not shown, similar results
were also obtained for the circular cylinder and the L-shaped
structure. For the CWT, the number of nonzero elements
grows as for the L-shaped structure and the duct,
and as for the circular cylinder, showing only a small
reduction from the original The nonzero elements in
the AWPT matrices, on the other hand, are found to grow
as This is comparable to the theoretical limit of

obtainable by the multilevel fast multipole method
[20]. Actually when the problem size is small ,

(a)

(b)

Fig. 6. The transformed moment matrices for the duct withN = 512 using
(a) the CWT and (b) AWPT.

Fig. 7. The number of nonzero elements in the transformed moment matrix
after thresholding as a function of problem sizeN using the CWT and the
AWPT for the duct.
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(a)

(b)

Fig. 8. The induced current distribution on the L-shaped scatterer withN = 512 using AWPT algorithm with the threshold parameter (a)� = 1=10
and (a)� = 1=20: Also plotted is the reference solution obtained by solving the original dense moment equation. The excitation is incident from an
angle of 45� degrees with respect to the c-face of the scatterer.

there is not much difference between the sparsity of the CWT
matrices and that of the AWPT matrices. However, when the
problem size is increased, the number of the nonzero elements
in the thresheld matrix is close to for the CWT,
and approaches for AWPT. Therefore, the reduced
computation complexity in the AWPT clearly becomes an
important advantage for solving large-scale electromagnetic
scattering problems. We have also investigated whether the
sparsity found above is affected by the threshold level. For
the three scatterers considered, we find that when the threshold
level parameter in (26) is changed between 1/5 and 1/40, the
sparsity curve is shifted up slightly with a smallerHowever,
the nonzero elements in the AWPT matrices still grow at a
rate around

Fig. 8(a) shows the induced current distribution of the
L-shaped scatterer solved using the AWPT basis from the
thresheld matrix with 512 unknowns and a threshold level
of 1/10. The current solved from the original dense moment

matrix with pulse basis and point matching is also displayed
in the same figure for reference. The rms error for the
current solution using the AWPT basis is found to be 1.98%
when compared to the reference solution. Fig. 8(b) shows the
resulting current solution when the threshold levelis 1/20.
The rms error is found to be 0.99%. The results prove that the
solutions using the AWPT algorithm are in good agreement
with the reference solution when an appropriate threshold level
is chosen.

Next, we consider the computation cost for carrying out
the AWPT procedure. For a problem with size of, the
maximum number of AWPT decomposition stages is
Theoretically the computation complexity for a full decompo-
sition of a moment matrix using APWT is
The additional computation cost for the evaluation of the cost
function is bounded by addition operations. However,
as we have observed, the AWPT decomposition of the moment
matrix tends to zoom in only along the frequency The
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Fig. 9. CPU run time required to implement the AWPT algorithm as a
function of problem sizeN: The moment matrices of L-shaped scatterer are
used for the experiment.

actually observed operations needed to implement the AWPT
is much less than the estimated limit. Fig. 9 shows the actual
CPU run time to implement the AWPT as a function of
problem size. The theoretical upper bound of based
on the first data point is shown as the dotted line in the same
figure. It is observed that the actual CPU run time for the
AWPT procedure is less than

Finally, we apply the conjugate gradient (CG) algorithm
to solve the AWPT matrix equation [21]. The complexity of
the CG solver depends on the iteration number in addition
to the complexity of the matrix-vector multiplication. The
iteration number is directly related to the condition number of
the matrix. Fig. 10 shows the iteration number of the AWPT
sparsified system in a CG solver as a function of problem size
for the L-shaped scatterer. The CG convergence criterion is
based on the relative residual, i.e.,

(27)

It can be seen that there is only a slight increase in the iteration
number in the CG solver as the problem size grows. Conse-
quently, the total complexity of solving the AWPT moment
equation is mainly determined by the complexity of the matrix-
vector multiplication, i.e., the number of nonzero elements
in the matrix. Therefore, the complexity for computing the
induced current on a scatterer using the AWPT is around

operations with an additional upper-bound of
operations for the transformation from the original basis to the
AWPT basis. Note that although the cost for implementing the
AWPT algorithm is around , this is only a one-time
overhead. When solving multiple right-hand-side problems,
this cost is incurred only once while the reduced cost
of solving the transformed equations is repeated for each right-
hand side. This should be compared to the direct solution of
the dense moment matrix using the CG method which requires

operations for each right-hand side. Fig. 11 shows
the total CPU run time required to solve the moment equations
for the L-shaped scatterer with a single right-hand side using

Fig. 10. The iteration number of solving the AWPT basis moment equations
using the conjugate gradient (CG) method as a function of problem sizeN:

Fig. 11. The total CPU run time required to solve the moment equations
using the AWPT together with the CG algorithm versus that of solving the
original moment equations using the CG method only, plotted as a function
of problem sizeN:

the AWPT method, which includes both the transformation
time and the CG solution time. It is compared against the time
required to solve the original dense matrix equation using the
CG algorithm only. It can be seen that when the problem
size is sufficiently large, the time required to solve the
electromagnetic integral equation is greatly reduced by using
the AWPT method.

IV. CONCLUSIONS

The adaptive wavelet packet transform is applied to the
sparsification of moment matrices for the fast solution of
electromagnetic integral equations. The AWPT algorithm can
adaptively track the oscillatory frequency of the Green’s
function and generate an efficient decomposition of the original
moment matrix. It is found that the sparsified moment matrix
after thresholding has only significant elements for
typical scatterers. Accordingly the complexity to solve the
transformed moment equation using the conjugate gradient
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method is around operations. Although there is an
additional upper bound cost of required to imple-
ment the AWPT algorithm, the overall complexity to solve
electromagnetic integral equations is significantly reduced.

In the AWPT algorithm described, the best basis is searched
in a progressive fashion from the root to the branches in the
wavelet packet tree. The basis found in this manner is only
a local optimum basis. The global best basis can be found
using a pruning algorithm proposed in [22]. However, such
algorithm would require significantly more computation time
and memory.

The cost function in our AWPT algorithm is the energy con-
centration function with power of one rather than the popular
entropy-based cost function. We have chosen this intentionally
to avoid the multiplication operation in the evaluation of the
cost function, and make its complexity negligible compared
with that of the AWPT itself.

A key drawback of the present algorithm is that the total
CPU run time for the solution of electromagnetic equations
must include the AWPT implementation time. In addition,
the approach still requires the original moment matrix be
generated and stored prior to the AWPT procedure. Therefore
there exists an memory bottleneck in this procedure. A
way to overcome both the time and memory bottleneck is to fill
the moment matrix elements using the AWPT basis directly.
Future work should be devoted to finding an efficient way to
estimate the best AWPT basis, and to achieve the transform
with less computation.

Finally, the application of the AWPT to the moment matrix
basis transformation is implemented in this paper as a sep-
arable tensor product of two one-dimensional (1-D) wavelet
packet transforms, which are separately applied to all rows
and all columns of the matrix. This kind of transformation
is easier to implement and interpret with basis transformation
concept than the 2-D quadtree decomposition methodology of-
ten used in image compression. However, we have found from
our preliminary tests that the latter approach can potentially
sparsify moment matrix to only significant elements.
Unfortunately, this sparsity is difficult to be utilized because
there is no efficient way to project the excitation vector and
the induced current vector to the 2-D quadtree basis.
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