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Fast Solution of Electromagnetic Integral Equations
Using Adaptive Wavelet Packet Transform

Hai Deng, Student Member, IEEEand Hao Ling,Fellow, IEEE

Abstract—The adaptive wavelet packet transform is applied to paper, the term frequency refers to spectral frequency since our
sparsify moment matrices for the fast solution of electromagnetic signal space is defined in the spatial dimension.) For the signals
integral equations. In the algorithm, a cost function is employed with energy content centered around zero frequency, CWT can

to adaptively select the optimal wavelet packet expansion/testing hi fficient . 91 F lectrod .
functions to achieve the maximum sparsity possible in the result- 2chieve a very efficient compression [9]. For electrodynamic

ing transformed system. The search for the best wavelet packet Problems, however, the Green’s function is oscillatory around
basis and the moment matrix transformation are implemented the spectral frequenc¥,. Hence the more efficient way to

by the repeated two-channel filtering of the original moment compress the Green’s function is to employ modulated bases
matrix with a pair of quadrature filters. It is found that the which can zoom in on the center frequenigyautomatically.

sparsified matrix has above-threshold elements that grow only In thi K v th tlv introd d adapti
as O(N'*) for typical scatterers. Consequently the operations n this work, we apply the recently introduced adaptive

to solve the transformed moment equation using the conjugate Wavelet packet transform (AWPT) [8], [10]-[12] to the sparsi-
gradient method scales a®)( N'*). The additional computational ~ fication of moment matrix. In this approach, the transformation

cost for carrying out the adaptive wavelet packet transform is pases in the AWPT are adaptively selected based on a cost

evaluated and discussed. function such that the transformed moment matrix has the
Index Terms—Electromagnetic scattering, fast solution meth- maximum sparsity. Consequently, the AWPT transformed ma-

ods, wavelet transform. trix is more efficiently represented than that using the CWT,

as we abandon the rigid constaptdecomposition structure of

the CWT. We find that the resulting sparsified moment matrix

) o ) _from the AWPT can have nonzero grow only eXN'4)

N solving electromagnetic integral equations, the applicgs; 3 number of test structures. Independent work on using

tion of the method of moments procedure with conventiongl,ejet packet basis for electromagnetic computation has been

expansion and testing functions always results in a denggried by Golik [13], [14], who generated a wavelet packet
moment matrix. For a problem of siz¥, the direct solution paqig by decomposing the excitation vector.

of the moment equations requir€yN*) operations, which ;g paper is organized as follows. In Section II, we first
is prohibitively expensive for large-scale scattering problem&-rve a brief introduction of the moment equation transform
Receljtly there has been much in.terest ip using wavelet basi%% wavelet packet basis. We then introduce the search algo-
sparsify the dense moment matrix, leading to reduced solutigihm for the best wavelet packet basis and the implementation
time for the resulting sparse matrix equation [1]-[8]. It hagt the AWPT with repeated filtering of input data by a pair of
been found that the application of wavelet basis function,aqrature filters. In Section Ill, we present numerical results
in electrodynamic problems can result in a very sparse Mgrhe moment matrix sparsification with the AWPT for several
ment matrix after a thresholding operation. Unfortunately,_gimensional (2-D) scatterers. The results obtained with the
the number of nonzero elements still grows on the order iy gre also given for comparison. Finally the computation
O(N?) when the problem size is increased [5]. As a result, thene of the AWPT procedure and the solution time for the
computational complexity of solving electromagnetic integraly, ified system using an iterative conjugate gradient solver

equations using the wavelet basis transform is not reducgd provided. The conclusions are given in Section IV.
significantly.

The above drawback of the conventional wavelet trans-
form (CWT) method for electrodynamic problems has been |I. MOMENT MATRIX SPARSIFICATION USING AWPT
explained by us earlier in terms of the oscillatory nature of
the electrodynamic kernel [7], [8]. The CWT implemented
with multiresolution analysis is essentially a consténtle-
composition of the signal in the frequency domain. (In this

I. INTRODUCTION

Let us consider a moment matrix equation
(2} = E ()

_ _ _ where[Z], J, and E denote the moment matrix, the induced
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or
[Z)J = E (3)
where
[Zj = [M]"[Z][M] (4)
J =M (5)
and
E = [M,]"E. (6)

The transformation matricgd/,] and [M] change the orig-
inal expansion/testing functions into a new set of expan-
sion/testing functions. Note thfM ;] and[M>] are in general
different, since the expansion and testing functions can be
different. The objective is to find the best expansion/testi
functions (therefore the two matricédd;] and [M,]) such
that the transformed matrifZ] has the maximum sparsity

possible. Such a best basis for a given moment mg#ix The wavelet packet space can be decomposed into two sub-
will be selected from all possible wavelet packet bases. Onggaces
the transformation is completed, the resulting sparse system
can be solved using an iterative solver to take advantage of

the sparsity. The original induced current can be obtained fr
the solution of the transformed induced curréhvia

I'Il-g']g. 1. Wavelet packet decomposition tree.

Up=U eUR, ez (10)
FPom the scaling function spadé and the wavelet function
space W in multiresolution analysis, we define the initial
J= [Ml]j @) wavelet packet spaces 8§ = V andl/} = W. Therefore, the

’ signal spaces can be decomposed into the following wavelet

In the following sections, we shall first introduce the waveldtacket subspaces:

packet concept and show that it can be considered as a gen- g — U@ U}

eralization of the conventional wavelet basis. Next we outline 150 1 2 3
. i . : . =U7qeU; Ui ¢ U;

the implementation of the moment matrix transformation using 0 1 5 3 4 5 6 ;

wavelet packet basis. Finally, we describe the search procedure =2 @2 @U; @U; @ U; @ Uy @ Uy @ Uy

for the best wavelet packet basis to arrive at a system with

maximum sparsity. —NelUlelie  -aU —L (11)

) Note that the wavelet packet space is the further decomposition

A. Wavelet Packet Basis of both the scaling function space and the wavelet space, and

Wavelet packet basis is a generalization of the commortlye frequency bands correspondingt@and¥V are partitioned
used wavelet basis [15]-[17]. It has all the major featurésto 2* “subbands” in the wavelet packet transform. Fig. 1
of the conventional wavelet basis and can be defined frashows the wavelet packet decomposition tree. For the wavelet
basic wavelet concepts. Let(z) and ¢/(x) be the scaling packet basis functiop?, in (9), we define its dyadic interval
function and the corresponding wavelet mother function in tife,, ¢ R in the frequency domain as [11]
conventional wavglet transform and d‘(‘efquA@(a:) = ¢(x), gnd ) Lin=[270,27(n +1)). (12)
P1(x) = ¢¥(z). Using the well-known “two-scale equations, ) i
we can construct the wavelet packet basis in2R&R) signal If the basis{y’} of the wavelet packet transform is chosen

space as [15][17] from the decomposition tree, their dyadic intervals should be
disjoint and cover the entire signal bandwidth, i.e.,
pu(r) =Y h(k)p(2x — k) L = (0. (13)
k .
7

Yo (w) =Y glk)yu(2e —k)  1=0,1,2--- (8) and
k
Ufm =[0,1). (14)

where{i(k)} and {¢(%k)} are the impulse responses of two
quadrature filters, H (low-pass) andG (high-pass), respec-
tively. The wavelet packet subspace with modulation fr@-herefore, the wavelet packet basfg}} is a modulated
quency index: and bandwidth indey is then defined as ~ wavelet with a center frequency df7(n + 1/2) and a
. . bandwidth of 277, which are normalized with respect to
Up =Closrzm {@fa(z) = 27729 (2772 —k): k€ Z}  the bandwidth of the input signal. At different stages of
jEeEZneZy. (9) the decomposition tree, the projections of the original data
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where ¢(x) is the scaling function corresponding to the
wavelets chosen for the application, andis the wavelet
packet basis defined in (9). Since the wavelet packet basis
satisfies the two-scale equations [15], [16], the first stage of
the wavelet packet decomposition tree is

so(n) ={s(x). 1 ()

k
s(k)Yh(2n — k). (16)

(@) (b) k

Fig. 2. The decomposition tree structure of (a) the conventional wavef@imilarly
transform (CWT) and (b) the adaptive wavelet packet transform (AWPT).

si(n) = s(k)g(2n — k). (17)
onto the wavelet packet basis spaces have different spatial k

and spectral resolution. The original input data sequengge sequencesi(n) and s}(n) are then decomposed further

discretized in the space domain has the best spatial resolutigine second stage of the wavelet packet decomposition tree
but the worst spectral resolution. If the signal is decomposed

with the wavelet packet basis, as we go deeper into the soo(n) = Zh(2n—k)sé(k)

decomposition tree from the top stage to the bottom stage, k

the Qecomposgd data have better spectral resolution bp_t worse 2, (n) = 29(2” — k)sb(k)

spatial resolution. The full wavelet packet decomposition is ’

equivalent to an FFT with the basic wavelet as the filter 2 _ 1

bank function. The wavelet packet decomposition at any stage sio(n) = Z h(2n — k)s1(k)

between the top stage and the bottom stage in the decom- ) r L

position tree is equivalent to a short-time Fourier transform s11(n) = 29(2” — k)si(k). (18)
k

(STFT) with different space windows. Finally, as shown

in Fig. 2(a), the conventional wavelet basis is a wavelgpllowing the same procedure, the outputs of the full wavelet

packet basis that consistently decomposes along the loygeket decomposition are

frequency band until it reaches the bottom stage. Thus the

FFT, STFT, and CWT can all be considered as special {s(n)}

cases of the wavelet packet transform with a prescribed {sj(n),si(n)}

]Eree tstructu.re. Ip general, a wavelet pack_et basis copssts of {s2,(n), s2,(n), s2y(n), 2, (n)}

unctions with different scales, corresponding to the different 3 3 3 3 3 3

depths along the decomposition tree, as shown in Fig. 2(b). {5000(11)> 5001 (1), 5010(12); 5011.(); $100(7), 5101(7)

Yet they should satisfy the orthogonality and completeness s310(n), st11(n)}

requirements in (13) and (14). Of all the eligible wavelet .... (29)

packet bases (which include the CWT, FFT, and STFT bases), ‘

not all of them are good for accomplishing the goal of momente decompositions from the sequenggn) at stagei into

matrix sparsification. We shall search and find such a wavelBe sequences;fj(n) and s;¥!(n) at stagei + 1 using the

packet basis from all possible cases to create the maximt® decomposition quadrature filters are given by

sparsity in the resulting transformed matrix. si,f(}(n) _ Z h(2n — k)sin(k)

B. Implementation of Moment Matrix Transform - r ‘

with Wavelet Packet Basis sitl(n) =Y g(2n — k)s), (k). (20)
The transformation of the moment matrix from a standard *

pulse basis to a general wavelet packet basis can be impigis decomposition is equivalent to first passing the input

mented via a two-channel filter bank structure. Let us considgg@quence through the two decomposition quadrature filters and

a discretized data sequence in the space doiim)} to be then down-sampling the outputs by two (discarding every other

transformed from a standard basis to a wavelet packet bagigta sample). Conversely, the sequesigén) at stage: can

The original sequence can be considered approximately as Bgeperfectly reconstructed from the two sequensfs (n)

projection of the original analog signal onto the signal spa&®ds;,;'(n) at stagei +1 using two reconstruction quadrature

constructed from the wavelet packet basis with the highdsters, P and Q.

spatial resolution 0 dn) = 3 pln — 20)sH () + 3 gl — 2Ry (k)
s(n) = / S(&)d( — n) de = (s(2), Qn(x)  (15) on
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where{p(k)} and{q(k)} are the impulse responses Bfand
Q, respectively. For orthogonal wavelet basis, the reconstruc-
tion filters P and @ and the decomposition filter& and GG
are exactly the same except that their impulse responses
the space-reversed versions of each other. The reconstruct
is equivalent to first up-sampling the two sequences by tw
(inserting a zero between two data samples), passing the
resulting sequences through the two reconstruction quadrature
filters, and then summing the two outputs. @ () ©

From the above discussion, we can now implement tir@. 3. The geometry of the three test scatterers (a) a circular cylinder; (b)
transformations of the moment equation in (2)—(7) efficientfy" L-Shaped structure; and (c) a duct.
with repeated two-channel filtering and down (or up)-sampling
rather than direct matrix multiplication. If a vector is rightstage to evaluate the sparsity of the transformed matrix. It is
multiplied with the transformation matrix, it can be realizeghen compared against that of the next stage to decide whether
with the repeated filtering and down-sampling of the vect@ke matrix should be further decomposed. If the total cost
with filters H and & in (20). If a vector is left multiplied with of the decomposed matrix is reduced, the decomposition is
the transformation matrix, it can be realized with the repeatgdcepted and further decomposition is applied. Otherwise the
up-sampling and filtering (reconstruction) of the vector witdecomposed matrix is rejected and the decomposition stops.

filters £ and @ in (21). _ _ “The maximum number of decomposition stageflig;, (V).
To implement the moment equation transformations, we figthen the decomposition in the wavelet packet decomposition
rewrite (4) and (6) into the following forms: tree stops at some nodes according to the algorithm mentioned

o T _ T T above, these nodes consist of the best wavelet packet basis,
[?] o [MQ]T[Z][Ml]T_ {{[Z]T[Ml]} [M]} (22) based on which the transformed moment matrix has the least
[E] =[M:]" E = {E" [M]}". (23)  cost. Obviously the transformation to the best basis is finished

. - -when the best basis is found. The same algorithm is applied to
In this manner, all the rows of the original moment matrlxh . . .

: L . : the columns of moment matrix to implement the best testing
are first decomposed from their original basis functions to t%% is search and transformation
wavelet packet basis, and then all the columns are decomposea ’
from the original testing functions to the wavelet packet testing

basis. Similarly the original excitation vector is decomposed [1l. NUMERICAL RESULTS

to be represented with the wavelet packet testing basis. AllThe performance of the AWPT in the sparsification of
the decomposition can be implemented by filtering and dowfle moment matrix is tested using several two-dimensional
sampling with filtersH and G. Finally, to reconstruct the conducting structures. The scatterers considered include a
original induced current vectok once the transformed inducedgjrcylar cylinder, an L-shaped structure and a duct (Fig. 3).

currentJ is found, we implement (7) via up-sampling andrpe first two structures are taken from [5]. To avoid the inter-

filtering with filters P and . nal resonance problem, the combined-field integral equation
(CFIE) is employed to generate the moment matrices with

C. Best Wavelet Packet Basis Search for AWPT pulse base6A = 0.1)) and point matching undeE-polarized

Moment Matrix Transform incidence. By changing the physical size of the scatterers

To search for the best wavelet packet bases to achieve Bigportionally, we obtain moment matrices with sizes ranging
maximum sparsity in the transformed moment matrix, a co§pm N = 128 to 4096. Both the CWT and the AWPT
function is defined to evaluate the sparsity of the transform@ie applied to the sparsification of the matrices. To sparsify
matrix for a specific basis. The sparser the transformed nipe transformed matrices, the elements of the matrices are
ment matrix, the smaller the value of the cost function shoutiresheld with a level that is based on a matrix norm criterion
be. A commonly used cost function is the additive energgs follows:
concentration function defined as [11], [12] T = o Norm (Z)/N = a - maxz \Z(n,m)|/N. (26)

O(Z)=3 > 1Zmn), p<2 (24 T
men The advantage of choosing the threshold level based on the
In our application we choosE = 1 and use the approximationmatrix norm is that the relative error of the solution caused
|Z] =~ |Re(Z)| + |Im (Z)| to speed up the computation timeby the thresholding is under a predicable limit [18]. Our
of the cost function experiments show that whea is between 1/5 and 1/10,
the calculated induced current has a rms error of around
(z) :ZZGRE(Z(T”’””+|Im(Z(m’”)|)' (25) 296, Daubechies filters with the order of 16 (i.e., seven
men vanishing moments) are used as the quadrature filters through
When the rows and columns of the moment matrix are beiadl transformations [19]. Similar results are obtained with other
decomposed from the top stage to the bottom stage in thell-defined orthogonal filters such as the Battle—Lemarie
decomposition tree, the cost function is calculated at evéiiter.
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N=128 N=256
N=512 N=1024
N=2048 N=4096

Fig. 4. The AWPT frequency decomposition trees for the duct of various sizes.

The AWPT algorithm described above is applied to th =, and thus the frequencl, corresponds to the branch
moment matrices from the three scatterers of varying sizélsat is about 1/5 of the way from the lowest branch of the
We find in our examples that the best wavelet packet transfotrae.) This means that the wavelet packet basis with the largest
trees after running the algorithm are the same for the expansgpatial extent has a spectral content around kO. Therefore, the
basis and the testing basis. This is due to the symmetriégd/PT tree has automatically adapted itself to this well-known
nature of the original moment matrix. Fig. 4 shows the respatial-spectral characteristic of the electrodynamic kernel [7].
sulting optimal spectral decomposition trees for the duct. 8hown in Fig. 5 are the APWT trees for the circular cylinder
is most interesting to observe that in the best AWPT tremd the L-shaped structure witi = 4096. We observe that
after the adaptive selection procedure, the branch that zootms overall structures of the AWPT trees are quite similar for
in the deepest is right around the spectral frequehgy different scatterer shapes. That suggests that the best APWT
(Since the spatial discretization used)g10, the maximum basis may not be very sensitive to the physical shape of the
spectral content of the matrix iBko, which corresponds to scatterer.

a normalized frequency dfr. kg, therefore, is equivalent to The transformed moment matrices using the CWT and the
a normalized frequency of /5. The frequency decompositionAWPT with N = 512 for the duct are shown in Fig. 6
trees in Fig. 4 display the normalized frequencies from zewith a threshold level parameter of 0.1. It is clearly seen
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Fig. 5. The AWPT decomposition trees for (a) the circular cylinder and (#)ig. 6. The transformed moment matrices for the duct k= 512 using
the L-shaped structure withV = 4096. (@) the CWT and (b) AWPT.

that with the AWPT basis the interactions in the upper Iefthms
corner area of the matrix are reduced. This region corresponds
to the interaction of the wavelet functions with the largest'ér
spatial extent. As a consequence, the AWPT moment matrice§_
are sparser that the CWT ones. The numbers of nonz@o
elements in the transformed matrices after thresholding d‘éz'
plotted as a function of problem size for the duct in Fig. 7. I!; 10
illustrates how the sparsity of the matrices scales accordlﬁg
to the problem size. Although not shown, similar resultg
were also obtained for the circular cylinder and the L- shap@j6
structure. For the CWT, the number of nonzero elemerﬁs |
grows asO(N'®) for the L-shaped structure and the duct,
and asO(V*-?) for the circular cylinder, showing only a smalll : _ : : ,
reduction from the originaD(N?). The nonzero elements in oL 5(')0 wioo 15ioo 20500 Zsioo 30;00 3;00 o
the AWPT matrices, on the other hand, are found to grow The number of unknowns
as O(N**). This is comparable to the theoretical limit of

7. The number of nonzero elements in the transformed moment matrix

O(N4/3) obtainable by the multilevel fast mU|t'p0|e memod:fter thresholding as a function of problem sixeusing the CWT and the
[20]. Actually when the problem size is smdllV < 1024), AWPT for the duct.

T

2
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Fig. 8. The induced current distribution on the L-shaped scatterer Wite= 512 using AWPT algorithm with the threshold parameter {a)= 1/10
and (a)a = 1/20. Also plotted is the reference solution obtained by solving the original dense moment equation. The excitation is incident from an
angle of 48 degrees with respect to the c-face of the scatterer.

there is not much difference between the sparsity of the CWilatrix with pulse basis and point matching is also displayed
matrices and that of the AWPT matrices. However, when tle the same figure for reference. The rms error for the
problem size is increased, the number of the nonzero elemetusrent solution using the AWPT basis is found to be 1.98%
in the thresheld matrix is close t®(N?) for the CWT, when compared to the reference solution. Fig. 8(b) shows the
and approache®(N!-3) for AWPT. Therefore, the reducedresulting current solution when the threshold leweis 1/20.
computation complexity in the AWPT clearly becomes afhe rms error is found to be 0.99%. The results prove that the
important advantage for solving large-scale electromagnesiclutions using the AWPT algorithm are in good agreement
scattering problems. We have also investigated whether thigh the reference solution when an appropriate threshold level
sparsity found above is affected by the threshold level. Fr chosen.

the three scatterers considered, we find that when the thresholtext, we consider the computation cost for carrying out
level parametew in (26) is changed between 1/5 and 1/40, thtne AWPT procedure. For a problem with size Bf, the
sparsity curve is shifted up slightly with a smallerHowever, maximum number of AWPT decomposition stagelis, (V).

the nonzero elements in the AWPT matrices still grow at Bheoretically the computation complexity for a full decompo-
rate aroundO(N14). sition of a moment matrix using APWT i©(N?log, (N)).

Fig. 8(a) shows the induced current distribution of th&he additional computation cost for the evaluation of the cost
L-shaped scatterer solved using the AWPT basis from thenction is bounded by)(N?) addition operations. However,
thresheld matrix with 512 unknowns and a threshold level as we have observed, the AWPT decomposition of the moment
of 1/10. The current solved from the original dense momentatrix tends to zoom in only along the frequenky. The
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Fig. 10. The iteration number of solving the AWPT basis moment equations
Fig. 9. CPU run time required to implement the AWPT algorithm as @&sing the conjugate gradient (CG) method as a function of problemMsize
function of problem sizeV. The moment matrices of L-shaped scatterer are

used for the experiment.

10°

— AWPT Basis

actually observed operations needed to implement the AWPT |- Puise Basis
is much less than the estimated limit. Fig. 9 shows the actual® Fg i
CPU run time to implement the AWPT as a function of
problem size. The theoretical upper bound@fN?) based
on the first data point is shown as the dotted line in the sa
figure. It is observed that the actual CPU run time for the
AWPT procedure is less thafi(NV?).

Finally, we apply the conjugate gradient (CG) algonthm) o
to solve the AWPT matrix equation [21]. The complexity of 1" g
the CG solver depends on the iteration number in addition }.:
to the complexity of the matrix-vector multiplication. The
iteration number is directly related to the condition number of
the matrix. Fig. 10 shows the iteration number of the AWPT : R R SIRER T
sparsified system in a CG solver as a function of problem size®,¢ ' e T T
for the L-shaped scatterer. The CG convergence criterion is Problem Size
based on the relative residual, i.e., Fig. 11. The total CPU run time required to solve the moment equations

R us_in_g the AWPT together With_ the CG algorithm versus that of solving the
Norm (E i ZJ)/Norm (E) <10 8 (27) g?%poegkrenn?n;?;gﬁquatlons using the CG method only, plotted as a function

It can be seen that there is only a slight increase in the iteration

number in the CG solver as the problem size grows. Congbe AWPT method, which includes both the transformation
quently, the total complexity of solving the AWPT momentime and the CG solution time. It is compared against the time
equation is mainly determined by the complexity of the matrixequired to solve the original dense matrix equation using the
vector multiplication, i.e., the number of nonzero elementSG algorithm only. It can be seen that when the problem
in the matrix. Therefore, the complexity for computing theize N is sufficiently large, the time required to solve the
induced current on a scatterer using the AWPT is aroumtbctromagnetic integral equation is greatly reduced by using
O(N*-*) operations with an additional upper-bound@f~N?) the AWPT method.
operations for the transformation from the original basis to the

AWPT basis. Note that although the cost for implementing the

AWPT algorithm is aroundD(N?), this is only a one-time The adaptive wavelet packet transform is applied to the
overhead. When solving multiple right-hand-side problemsparsification of moment matrices for the fast solution of
this cost is incurred only once while the redue@@V'-*) cost electromagnetic integral equations. The AWPT algorithm can
of solving the transformed equations is repeated for each rightiaptively track the oscillatory frequency of the Green's
hand side. This should be compared to the direct solution foihction and generate an efficient decomposition of the original
the dense moment matrix using the CG method which requir@®@ment matrix. It is found that the sparsified moment matrix
O(P - N?) operations for each right-hand side. Fig. 11 showater thresholding has onlg(N'4) significant elements for
the total CPU run time required to solve the moment equatiotypical scatterers. Accordingly the complexity to solve the
for the L-shaped scatterer with a single right-hand side usitrgnsformed moment equation using the conjugate gradient

IV. CONCLUSIONS
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method is around)(N!) operations. Although there is an [4]

additional upper bound cost aP(~N?) required to imple-

ment the AWPT algorithm, the overall complexity to solve s

electromagnetic integral equations is significantly reduced.

In the AWPT algorithm described, the best basis is search%gl]
in a progressive fashion from the root to the branches in the
wavelet packet tree. The basis found in this manner is onl

a local optimum basis. The global best basis can be fou

using a pruning algorithm proposed in [22]. However, such
algorithm would require significantly more computation timel€l

and memory.

The cost function in our AWPT algorithm is the energy con-[9]
centration function with power of one rather than the popular
entropy-based cost function. We have chosen this intentionajly;
to avoid the multiplication operation in the evaluation of the
cost function, and make its complexity negligible compare[ql]

with that of the AWPT itself.

A key drawback of the present algorithm is that the totdl2]
CPU run time for the solution of electromagnetic equations
must include the AWPT implementation time. In additionf13]
the approach still requires the original moment matrix be
generated and stored prior to the AWPT procedure. Therefq{g]

there exists a®(/N?) memory bottleneck in this procedure. A

way to overcome both the time and memory bottleneck is to fjl
the moment matrix elements using the AWPT basis directljig)
Future work should be devoted to finding an efficient way to
estimate the best AWPT basis, and to achieve the transfoH);]

with less computation.

Finally, the application of the AWPT to the moment matrix
basis transformation is implemented in this paper as a s B
arable tensor product of two one-dimensional (1-D) wavelet
packet transforms, which are separately applied to all rows
and all columns of the matrix. This kind of transformatiorglg]
is easier to implement and interpret with basis transformati@®]
concept than the 2-D quadtree decomposition methodology of-
ten used in image compression. However, we have found frgpj,
our preliminary tests that the latter approach can potentially

sparsify moment matrix to only)(N) significant elements.

Unfortunately, this sparsity is difficult to be utilized because
there is no efficient way to project the excitation vector and

the induced current vector to the 2-D quadtree basis.
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