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Wide-Band Electromagnetic Scattering from a
Dielectric BOR Buried in a Layered

Lossy Dispersive Medium
Norbert Geng,Member, IEEE,and Lawrence Carin,Senior Member, IEEE

Abstract—A method of moments (MoM) analysis is developed
for electromagnetic scattering from a dielectric body of revolution
(BOR) embedded in a layered medium (the half-space problem
constituting a special case). The layered-medium parameters can
be lossy and dispersive, of interest for simulating soil. To make
such an analysis tractable for the wide-band (short-pulse) appli-
cations of interest here, we have employed the method of complex
images to evaluate the Sommerfeld integrals characteristic of
the dyadic layered-medium Green’s function. Example wide-
band scattering results are presented, wherein fundamental wave
phenomenology is elucidated. Of particular interest, we consider
wide-band scattering from a model plastic mine, buried in soil,
with the soil covered by a layer of snow.

Index Terms—Method of moments, subserfice sensing, time-
domain scattering.

I. INTRODUCTION

ELECTROMAGNETIC scattering from bodies of revolu-
tion has been a subject of interest for more than three

decades [1]–[9]. This research has been motivated by the fact
that a body of revolution (BOR) can be used to simulate many
man-made targets (e.g., missiles). Moreover, while a BOR is
three-dimensional (3-D), the scattering of waves from such a
target can be solved by using what is often a 2.5-dimensional
analysis, wherein the target’s azimuthal symmetry is exploited.
In particular, azimuthal Fourier modes are used to represent the
target’s rotational variation, thereby reducing the problem to
finding the unknown fields or currents along a two-dimensional
(2-D) “generating arc” [1]–[9]. Such unknowns are usually
solved for in the frequency domain using a method of moments
(MoM) analysis [1]–[9].

Most previous such research has focused on targets in free
space, representative of scattering from airborne BOR’s. In
such work one exploits the free-space Green’s function, which
can be computed in closed form and is itself rotationally
symmetric; these two properties are of particular importance
in simplifying the MoM numerical analysis. However, there
has recently been significant interest in using electromagnetic
scattering (radar) for the detection of underground targets
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[10]–[14]. Examples of such include buried mines, unexploded
ordnance, and buried pipes [13], [14]. Each of these man-
made targets has particular properties that can be exploited in
the context of the scattering analysis. In the work presented
here, we are interested in buried mines. It is well known
that such targets often closely resemble BOR’s [15]. This
property has been exploited in a recent series of papers
[16]–[19], in which MoM was used to analyze wide-band
scattering from buried conducting BOR’s, which simulated
metallic mines.

The previous research on buried metal mines demonstrated
the close agreement that can be obtained between theory and
experiment [19], for real mines, and shed light on the under-
lying wave phenomenology. However, a principal challenge
in mine detection involves plastic mines, with such targets
generally composed of only trace metallic content (usually the
tiny firing pin, often representing only a few grams of metal).
In the work presented here, we therefore consider dielectric
BOR’s buried in a layered medium, with the lossy, dispersive
layers representing the typical layered character of many soils
(and/or a snow layer).

While scattering from a plastic mine can be solved via
a 3-D finite-difference time-domain (FDTD) algorithm, such
requires solution of the fields at all points in the compu-
tational domain [20]. Though ceding some generality, the
MoM formulation only requires solution of the fields along
the BOR generating arc, from which the scattered fields can
be determined at any point. Moreover, a modified version
of the BOR-MoM code can be used to study the prop-
erties of dielectric-mine resonances [21], something that is
difficult to perform via FDTD, since mines are generally
characterized by low- resonances. Finally, the exploitation
of the mine’s symmetry yields important phenomenologi-
cal insight. In particular, for the case of buried-BOR tar-
gets, one can readily demonstrate [22] that there are no
cross-polarized fields in the case of
backscattering, a property that can be exploited for target
discrimination.

The analysis presented here is not the first to model buried
dielectric discontinuities as BOR’s. Chang and Mei [23] used a
hybrid algorithm that combined finite-element method (FEM)
modeling of the BOR with an integral equation, the latter
accounting for the surrounding half-space medium. Although
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that work did not consider buried mines (it focused on geolog-
ical discontinuities), the general framework could be applied
to the case of dielectric mines. However, the FEM requires
solution of the fields at all points within the BOR, while,
again, the MoM analysis only requires solution for the fields
on the surface of the generating arc. This of course results in
some loss of generality, but yields significant computational
savings, which are beneficial for the wide-band (short-pulse)
applications of interest.

The BOR-MoM analysis developed here uses the mixed-
potential integral-equation formulation of Michalski and
Zheng [24] (what they termed “formulation C”). To effect
such, one requires the space-domain dyadic Green’s func-
tion for a general layered medium, here considering loss
and dispersion as well. As is well known, closed-form
representation of the dyadic Green’s function components
is only possible in the spectral domain [24], while the
Sommerfeld integrals required for conversion to the space
domain must be evaluated approximately [25]–[29]. Over
the years various numerical and asymptotic techniques have
been developed for evaluating these ubiquitous integrals
[25]–[29]. Most electromagnetic mine-detection systems are
of an ultra-wide-band nature [11], [14], [19] and, therefore, it
is essential that the Green’s function components (which are
frequency dependent) be computed as efficiently as possible.
To this end, we exploit here the method of complex images
[27]–[29].

The method of complex images utilizes a parametric algo-
rithm, for example Prony’s method [30], [31] or the matrix-
pencil method [32], [33], to express the components of the
spectral-domain dyadic Green’s function in terms of a sum
of exponentials with complex arguments (a different such
representation for each component of the dyadic). Utiliz-
ing the Weyl or Sommerfeld identity [27]–[29], each term
in the summation can then be converted to the space do-
main (in closed form), interpreted physically as an image
in complex space. Therefore, the problem of determining
the space-domain Green’s function for a layered medium is
reduced from the laborious and computationally expensive task
of evaluating Sommerfeld integrals numerically [34], to the
relatively efficient task of parametric estimation [30]–[33]. As
noted, the method of complex images has been used previ-
ously, primarily for conducting targets or radiators [16]–[19],
[27]–[29], [35], while here we are interested in dielectric
targets, thereby necessitating additional Green’s function com-
ponents [36].

In addition to describing the above formulation, with a focus
on computational efficiency for wide-band applications, we
examine the phenomenology associated with scattering from
buried dielectric and conducting targets. Of particular interest
are the effects of target and soil properties on the subsequent
target signature, as a function of operating frequency. More-
over, the use of a layered-media Green’s function, rather than
the simplified half-space Green’s function [16]–[19], allows us
to examine several important and realistic scattering problems
of interest. For example, one may be interested in detecting
small mines buried in soil, with the soil covered by a snow
layer. This is a problem well suited to the numerical paradigm

Fig. 1. Plane-wave scattering from body of revolution in planar multilayered
environment.

utilized here, and the phenomenology of such is examined
in detail, as a function of snow type (wetness) and snow
depth.

The remainder of the text is organized as follows. The
numerical formulation is discussed in Section II, wherein
we detail the general MoM formulation and use of com-
plex images. In Section III are presented several wide-band
(short-pulse time-domain) numerical results, wherein basic
phenomenology is examined for realistic model parameters
(including lossy and dispersive soil and snow). Conclusions
are addressed in Section IV.

II. THEORY

We consider scattering from a (lossy) dielectric BOR situ-
ated in a planar layered environment, assuming the BOR’s axis
of rotation is normal to the interfaces (Fig. 1). We are interested
in the scattered time domain fields for an incident ultrawide-
band short-pulse plane wave. The problem is analyzed in
the frequency domain using a MoM solution of the coupled
surface integral equations, with the time-domain response
calculated via a fast Fourier transform (FFT). For the wide-
band problem of interest here, the frequency-domain analysis
must be as efficient as possible. Therefore, the dyadic and
scalar spatial domain Green’s functions are calculated using
the complex image technique introduced in [27]–[29], avoiding
numerical integration of Sommerfeld type integrals.

A. Surface Integral Equation Formulation

By enforcing boundary conditions for the tangential electric
and magnetic field components on the BOR surface, one
obtains coupled integral equations for the electric and mag-
netic surface currents, and , respectively. These integral
equations can be put in a mixed potential form (MPIE, mixed
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potential integral equation)

(1a)

(1b)

similar to those given in [17] and [24] for PEC scatterers.
These integral equations have the same form as those typically
used for scattering from dielectric scatterers in free space
[3]–[9], for which well established numerical procedures are
available [3]–[9]. The source and observation point are de-
scribed by and , respectively, and and are
the known incident electric and magnetic fields. The layered
medium (complex) total permittivity and permeability are
represented by and , respectively,
where is the real part of the permittivity and
is the conductivity; and represent
these same properties for the homogeneous, lossy BOR target.
Surface charge densities have been replaced by derivatives of
the electric and magnetic surface current densities and

, respectively, using the continuity relation.
Explicit expressions for the spectral domain representation

of the layered-medium dyadic kernel the dyadic

Green’s function (representing the magnetic vector
potential produced by an infinitesimal electric dipole at

and the electric scalar potential of a point charge
associated with a horizontal electric dipole have been given by
Michalski and Zheng [24], where we use their “formulation
C.” Generalizing the formulation in [24] to (lossy) dielectric

scatterers, we introduce the additional dyadics and

as well as a scalar kernel function
associated with equivalent magnetic surface currents and sur-
face charges, respectively; these Green’s function components

Fig. 2. Geometry for method of moments analysis of scattering from body
of revolution.

can be determined from the aforementioned electric-current
Green’s function, via duality. For calculating the field inside
the homogeneous BOR, produced by surface currents and
surface charges on its surface, we utilize the homogeneous-
medium Green’s function
where represents the distance between source
and observation point and denotes the (complex) wave
number inside the BOR.

According to “formulation C” in [24], the dyadic ker-

nel functions and dyadic Green’s functions

are written as

(2a)

(2b)

The coupled integral equations in (1) are valid for an arbitrarily
shaped homogeneous scatterer, for which a 3-D MoM solution
could be applied. However, to make an application to ultra-
wide-band scattering tractable, we consider the special case
of a BOR (Fig. 1), which is formed by rotating a generating
arc about the -axis. For numerical simulations, the generating
arc is approximated by a sequence of linear segments (Fig. 2).
Coordinates are introduced, where the angleis as used
in cylindrical coordinates and is a length variable
along the arc. In addition, is defined as the angle between
the vector along the arc and the-direction (Fig. 2).

If the Green’s function components in the spatial domain
can be computed efficiently from their corresponding closed-
form spectral domain representation [24], the coupled system
of integral equations given by (1) can be solved using a
modified free-space MoM code for scattering from a BOR
[3]–[9].

B. Discrete Complex Image Technique

In [17], [18], [27]–[29], [35], and [36], it was shown that
the discrete complex image technique is well suited for fast
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numerical calculation of the spatial domain Green’s functions,
whereby laborious and computationally expensive integration
of Sommerfeld type integrals is avoided. Here we summarize
the basic steps.

Assuming the Green’s function in the spectral domain is
represented by , its spatial domain counterpart

is defined by the (shifted) Fourier
transform

(3)

Introducing polar coordinates in the spectral domain
and polar coordinates to represent
and taking into account that is independent
of the angle , the spatial domain form (3) can be written
alternatively as

(4)

To avoid direct numerical integration of this highly oscillatory
Sommerfeld type integral, we represent in a form
suitable for use of the Sommerfeld identity [27]–[29], [37]

(5a)

with

and

(5b)

For the source and observation point both in theth layer, this
is accomplished by performing an exponential parameter fit
to the spectral domain representation of the Green’s function
along a proper path in the -plane or -plane [27]–[29], [36]

(6)

Here we use a least-square Prony’s method [30], [31] to
determine the complex coefficients and , although any
such algorithm (e.g., the Matrix Pencil method [32], [33])
can be utilized. According to (6), we perform a parameter fit
using a finite number of complex exponentials for the function

(a different such for each Greens function com-
ponent). Typically between and exponentials
are sufficient to achieve an agreement between the approximate
and the original spectral domain Green’s function within 1%
in the root mean square sense. For a detailed discussion,
including the proper choice of the integration path, we refer
the reader to [27]–[29] and [36].

C. MoM Solution

The coupled integral equations given by (1) are solved
numerically via the well-known MoM solution for axially
symmetric objects [1]–[9], [17], [18]. To take advantage of
the rotational symmetry, the incident field, surface currents,
and Green’s functions are expanded into discrete Fourier
series along the azimuthal (or ) direction. The currents
are represented using a subsectional pulse basis along the
generating arc (coordinate and Fourier series expansion for
the periodic azimuthal variation [5], [7]. The discretization of
the generating arc and all geometrical parameters are defined in
Fig. 2. Since the discrete complex image technique represents
the layered-medium Green’s functions as a sum of terms
similar to the free-space Green’s function, generalizing a free-
space BOR MoM code [1]–[9] to the layered case considered
here is straightforward, though somewhat laborious. Therefore,
we do not repeat all the details.

Testing the integral equations corresponding to- and -
components of the incident field decouples the azimuthal
Fourier modes [1]–[9] and leads to
a set of simultaneous equations where each of them may be
represented in matrix form as

(7)

is the moment matrix, is a column vector containing
the unknown surface current coefficients, and is the driv-
ing vector depending on the Fourier series coefficientsth
mode) of the incident electric and magnetic fields tangential
to the BOR.

D. Time Domain Far-Field Plane-Wave Scattering

The MoM impedance matrices are independent of the
incident field (driving vector) as well as the observation point.
Therefore once the impedance matrices have been calculated,
the scattering for an arbitrary number of incident fields (near-
or far-field source) and/or observations points (in thenear or
far field) can be analyzed.

Here we are only interested in the scattered field at a point
in medium 1 far from the target, produced by

an incident plane wave (propagating in medium 1, e.g., air) of
arbitrary polarization and direction of propagation described
by where for the case of a BOR we set
without any loss of generality, due to the rotational symmetry
(Fig. 1). This is best described using the polarimetric scattering
matrix (in BSA, backscatter alignment
convention) defined by

(8)
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from which the polarimetric radar cross section (RCS)

with (9)

can be easily determined. Similar to the scattering matrix, we
define a normalized time domain response matrix (independent
of the distance and, therefore, only characterizing the target
itself)

(10)

which only depends on the incident pulses or the
corresponding spectra in the two orthogonal incident
polarizations and The scattered time domain far
field can then be found at an arbitrary point as

for (11)

assuming that medium 1 is nondispersive and lossless (e.g.,
air), where time domain variables are written as small letters
and here represents time.

For a calculation of the scattering matrix(for one incident
angle) we solve (7) for two different driving vectors ,
corresponding to two orthogonal polarizations. Explicit expres-
sions for the elements of the driving vectors are given in the
literature [1]–[9] for an incident plane wave in free-space (e.g.,
air). For the problem considered here, these expressions have
to be modified, to take into account the direct (downward),
reflected (upward) and/or transmitted (downward) incident
field as well as the refraction at the interfaces, both depending
on the layer in which the BOR is located. The number of
azimuthal modes required in the Fourier series approximation
of the incident fields, , depends on

, using the maximum radius
of the BOR. In our MoM implementation is determined
adaptively to guarantee errors less than 0.1% compared to the
overall incident field. If medium 1 is lossless (e.g., ),
this could be simplified by using the approximation

valid for (12)

which was found to provide a close fit to for the range
indicated.

After having solved for the unknown current coefficients
in (7), the dyadic Green’s functions needed in the calculation
of the scattered far field are evaluated asymptotically
using only the saddle point contribution, neglecting surface and
leaky waves [37]. Explicit equations for the far field scattered
by a BOR, taking into account the Fourier series expansion in

the azimuth direction and therefore calculating the-integral
in the 2-D surface current integration analytically, can be
easily derived by generalizing the solution given for free space
[1]–[4].

III. W IDE-BAND SCATTERING RESULTS

The layered-medium BOR algorithm is applicable to many
problems of interest in radar based land mine detection. For
example, one can account for the layered manner in which
soil is often distributed. Moreover, the overturned soil in
which a mine is buried often has electrical properties different
from those of the surrounding, undisturbed soil; the disturbed
soil can be modeled approximately via a lossy dielectric
BOR, in which a separate BOR (representing the model
mine) is placed. Such applications are the subjects of future
papers. Here we demonstrate a few examples, which show
the potential and utility of the algorithm. In particular, we
first examine scattering from a plastic BOR (model plastic
mine) buried in a lossy, dispersive half-space (Section III-A),
with half-space electrical parameters representative of data
measured from real soil [38]. As a comparison, we also
consider scattering from a buried perfectly conducting BOR of
the same shape as the model plastic mine, with the perfectly
conducting BOR modeled by use of a subset of the terms
in (7) [17]. A comparison between the weak energy scattered
from dielectric mines, relative to conducting mines of the same
shape, underscores the difficulty of radar-based plastic mine
detection. Finally, to demonstrate an example for which the
layered-medium Green’s function is applicable, we consider
scattering from a plastic BOR buried just under the soil, with
the soil covered by a layer of snow (Section III-B). In this
context we examine the scattered signal as a function of snow
type (snow wetness) and snow depth.

In the context of radar-based detection of buried targets,
there is always a tradeoff between resolution and signal
strength. To achieve good penetration in typical lossy soils,
ground-penetrating radar systems are typically designed to
operate at frequencies less than approximately 1.5 GHz [11],
[14], [19], [20]. However, such a restriction in bandwidth
reduces resolution, thereby minimizing the information content
in the scattered fields. To enhance the information in the
scattered fields, one must increase the system bandwidth
(resolution), although this implies increased signal attenua-
tion in lossy soils. This issue is examined by considering
several incident waveforms of differing bandwidth and center
frequency.

Finally, before proceeding to the results, we note that there
is very little work we are aware of published on short-pulse
scattering from buried dielectric targets. The computer code
was checked extensively to verify its accuracy, and tests were
successfully performed for a dielectric sphere in free-space
and with the limited data available on short-pulse scattering
from buried targets [17].

A. Dielectric and Conducting BOR Buried in a Half Space

In our first set of examples, we consider perfectly conduct-
ing (PEC) and dielectric cylinders of the same shape, buried in
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Fig. 3. Incident pulsep(t) (Rayleigh pulse of ordern = 3; center frequencyfc = 410 MHz [39]) and corresponding amplitude spectrumjP (f)j
(used in Fig. 4).

a lossy dispersive half space. The PEC and plastic targets are
both cylinders of diameter 12.6 cm and height 5.3 cm, with the
dielectric target characterized by and
S/m (PVC). The top of the cylinders are placed 5 cm beneath
the air-ground interface, and the pulsed plane wave is incident
at deg (see Fig. 1). Finally, the half-space in which
these targets are buried is described by the characteristics of
Puerto Rico clay (10% water content), as reported in [38].

The first set of examples utilize the incident pulse in Fig. 3
(a Raleigh wavelet [39] of order and center frequency
at MHz). This incident waveform and bandwidth are
typical of many ground-penetrating systems [11], [14], [19],
[20]. The far-zone backscattered fields are normalized as in
(10)–(11), with results presented in Fig. 4. For a BOR target
there are no cross-polarized backscattered fields, and therefore
results are only plotted for (vertical incidence, vertical
receive) and (horizontal incidence, horizontal receive)
scattering. While there are slight differences in the and

scattered fields for a given target, the most dramatic
characteristic of the results in Fig. 4 is the large discrepancy in
the amplitudes of the waveforms scattered from the PEC and
PVC targets (despite the fact that the targets have exactly the
same shape) and the different polarity of the signals, the latter
resulting from a “negative” contrast in permittivity
for the PVC target compared to a soil permittivity ranging
from 5 to 6).

The relatively weak backscattered fields for the plastic target
are attributed to the modest contrast between the target and
the background soil. Over the bandwidth considered here, the
Puerto Rico clay [38] has a dielectric constant ranging from
5 to 6, as compared to for the target. It should
be pointed out, however, that many dry soils have dielectric
constants even closer to for which the fields scattered from
the plastic target will be even smaller.

Fig. 4. Comparison of the normalized time domain response for a perfectly
conducting (PEC) and a plastic (PVC:"0rB = 2:9; �B = 10�3 S/m) cylinder
of same dimensions (diameter= 12.6 cm, height= 5.3 cm). The top of the
cylinder is 5 cm below the ground-air interface atz1 = 0 cm (layer 1:
air, layer 2: Puerto Rico clay with 10% water [38]). Results are shown for
wV V (t) = w��(t) andwHH(t) = w  (t) in case of backscattering and
�inc = 50� (no cross-polarization for backscattering from BOR [22]). The
incident pulse is given in Fig. 3.

Another characteristic of the results in Fig. 4 is the fact that
the time-domain scattered fields have duration similar to the
incident waveform in Fig. 3 (although the wave shapes are
distorted due to dispersive target scattering and propagation
through the dispersive soil). Therefore, for the bandwidth in
Fig. 3, the targets (both PEC and PVC) are dispersive point
scatterers. Since there are many obstacles which will similarly
be point scatterers (rocks, roots, etc.), target discrimination is
difficult with this incident waveform. To address this issue,
one can utilize a wider bandwidth incident waveform such
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Fig. 5. Incident pulsep(t) (center frequencyfc = 3000 MHz) and
corresponding amplitude spectrumjP (f)j (used in Fig. 6).

that higher resolution is achieved. We therefore consider
the waveform in Fig. 5, which has a center frequency at

MHz and considerably wider bandwidth than Fig. 3.
To accommodate the increased bandwidth, however, the prin-
cipal energy components are at significantly higher frequency
than those in Fig. 3, resulting in increased attenuation as the
wave penetrates the soil. In Fig. 6 we consider the same targets
as in Fig. 4, but using the incident waveform in Fig. 5. As seen
from Fig. 6(a) and (b), the increased bandwidth results in a
noticeable difference in the and backscattered fields.
Moreover, the shapes of the waveforms scattered from the
PEC and PVC targets are different as well (note the different
polarity already mentioned above), although, as in Fig. 4, the
scattered fields from the PEC target are markedly stronger
than those of the plastic target.

The increased bandwidth of Fig. 6 has resulted in the
anticipated enhanced information content in the scattered fields
(relative to Fig. 4). For the PEC target we attributed much of
the additional waveforms (vis-à-vis, Fig. 4) to reverberations
between the top of the target and the air-ground interface,
which can be resolved using this larger bandwidth. For the
plastic target there are also such reverberations, as well as
energy that gets absorbed in and then reradiated from the
interior of the plastic (these two phenomena are difficult to
separate). The increased complexity in the scattered wave-
forms of Fig. 6 is accompanied by a significant reduction in
the amplitude of the scattered fields (due to the aforemen-
tioned enhanced soil attenuation); comparing Fig. 6(a) and
(b) with Fig. 4, we note that the higher bandwidth excitation
results in an order-of-magnitude reduction in the scattered-field
amplitudes.

B. Dielectric BOR Buried Under a Snow Layer

We consider a PVC cylinder of the same shape as above,
buried 1 cm under soil, with the soil covered by a 10-cm
snow layer. The winter conditions are likely to alter the soil
properties (due to freezing), but for simplicity, we consider the
soil as in Figs. 4 and 6. Dry snow is often easily penetrated

(a)

(b)

Fig. 6. Same as Fig. 4, but using pulse in Fig. 5. (a)wV V (t) = w��(t),
(b) wHH(t) = w  (t):

(relative to soil) and the shallow target necessitates minimal
soil penetration. Therefore, we consider the incident waveform
in Fig. 7 (center frequency MHz), characterized by
increased bandwidth relative to the pulse in Fig. 3. In Fig. 8 we
consider “dry snow,” “snow,” and “wet snow,” characterized,
respectively, by and S/m; and

S/m; and S/m [40]. For the
results in Fig. 8(a), the increase in dielectric constant with
snow wetness results in an expected temporal shift, but the
general shape of the scattered waveform is largely unchanged
with snow type. As a comparison, in Fig. 8(b), we consider

scattering for which the scattered fields are characterized
by a more substantial variation with snow type. Interestingly,
in Fig. 8(b), the 10-cm layer of “dry snow” results in a
stronger scattered field thatn when there is no snow at all;
this is attributed to the very low loss of the dry snow and
a snow-layer-induced enhanced impedance matching between
the soil and air. The difference between the and
cases is demonstrated even more dramatically in Fig. 9 for
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Fig. 7. Incident pulsep(t) (Rayleigh pulse of ordern = 4; center frequency
fc = 720 MHz [39]) and corresponding amplitude spectrumjP (f)j (used
in Figs. 8 and 9).

which the backscattered fields are examined as a function of
snow depth (0, 5, 10, 15, 20 cm) for the “snow” of Fig.
8. For polarization there is verly little reverberation in
the snow layer, while for polarization, there is a no-
ticeable late-time oscillation manifested with increased snow
depth. The minimal reverberation is attributed to the fact
that there is near-total transmission at the various interfaces
(particularly at the air–snow interface), due to near-Brewster-
angle excitation [41], while such Brewster effects are absent
for the case.

IV. CONCLUSIONS

A numerical algorithm has been developed for modeling
plastic mines buried in a lossy layered medium (e.g., soil
with or without a snow layer). To make such an analysis
tractable for the wide-band, short-pulse problems of inter-
est, we have assumed that the mine can be modeled as
a BOR, which is a good approximation for most mines.
Exploitation of this feature results in a significant savings
in required computational resources (vis-à-vis finite elements
[23] or the finite difference time domain [20]). While the
MoM BOR algorithm has been utilized for some time, it
is only through application of the method of complex im-
ages [27]–[29], for efficient evaluation of the layered-medium
Green’s function, that the wide-band computations of interest
here are tractable. The wide-band scattering results for the
PEC and PVC BOR’s presented above took typically on the
order of one and four hours of CPU time, respectively, on a
200-MHz Pentium Pro personal computer (with the code
written in Fortran 77).

As was demonstrated in the results of Section III, the
characteristics of the scattered waveform depend strongly
on the environment, mine type, and system bandwidth. To
deploy a radar system properly for a given application, it
is important that the expected scattered signal amplitude
and shape be known in advance (there are many plastic
mines and soil types for which radar-based detection isnot

(a)

(a)

Fig. 8. Normalized time domain response for a buried PVC-cylinder (diam-
eter= 12.6 cm, height= 5.3 cm,"0rB = 2:9; �B = 10�3 S/m) including
the effect of a 10-cm snow layer (layer 2: “dry snow” with"0r2 = 1:5 and
�2 = 2 � 10�4 S/m; “snow” with "0r2 = 3 and �2 = 10�3 S/m; “wet
snow” with "0r2 = 5 and �2 = 10�2 S/m) on top of the soil (layer 3:
Puerto Rico clay with 10% water content [38]). The top of the cylinder
is 1 cm below the ground–snow interface atz2 = 0 cm, the snow–air
interface is located atz1 = 10 cm. Results are shown for backscattering and
�inc = 60�: The incident pulse is given in Fig. 7. (a)wV V (t) = w��(t):
(b) wHH(t) = w  (t):

a viable option, especially when the contrast between the
dielectric target and soil is small). It is for such purposes
that the numerical analysis presented here is of particular
importance. Moreover, in the design of optimal detectors
[42], one requiresa priori knowledge of the target signature
as a function of soil type and target depth (the latter two
are not known exactly in practice and, therefore, must be
characterized statistically). For such applications, one must
have access to the target signature for a large range of
environmental conditions, necessitating the efficient algorithm
presented here.

While the layered-medium BOR algorithm is applicable to
many problems of interest in mine detection, here we have
chosen to present a few representative examples. As expected,
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(a)

Member, IEEE
(b)

Fig. 9. Same as in Fig. 8, but considering variable snow depths
(z1 = 0; 5; 10;15;20 cm) and “snow” with"0r2 = 3 and�2 = 10�3 S/m.
(a) wV V (t) = w��(t): (b) wHH(t) = w  (t):

plastic targets result in significantly reduced scattered energy
(relative to a conducting target of the same shape), with
the details of the plastic-target signature dependent on the
contrast between the electrical properties of the soil and
target. We also examined scattering from targets buried under
a snow layer. For dry snow, the attenuation introduced by
snow penetration is minimal at the frequencies of interest,
and radar provides an effective tool for subsurface sensing.
We also witnessed difference in the and scattered
fields in such environments due primarily to Brewster-angle
effects.

An advantage of the frequency-domain solution presented
here (relative to time-domain techniques, such as the finite
difference time domain [20]) is its applicability to the compu-
tation of target resonances [18], [21]. The late-time resonances
of buried plastic targets have been measured previously, with
particularly encouraging results presented in [14]. However,
as for the scattering problem addressed here, the details of the

buried-plastic-target resonances are strongly dependent on the
specifics of the target and background. To quantify the regimes
for which resonance-based discrimination is appropriate, it is
important to have an accurate model. The MoM analysis of
buried-plastic-target (mine) resonances will be the subject of
future research.
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