620 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999

A Novel Efficient Algorithm for Scattering from
a Complex BOR Using Mixed Finite
Elements and Cylindrical PML

Andrew D. GreenwoodMember, IEEE,and Jian-Ming JinSenior Member, IEEE

Abstract—An efficient finite-element method (FEM) is devel- sparse matrix and hence is computationally efficient. However,
oped to compute scattering from a complex body of revolu- it relies on rectangular, cylindrical, or spherical computational
tion (BOR). The BOR is composed of perfect conductor and iqg making it difficult to model arbitrarily shaped geometries
impedance surfaces and arbitrary inhomogeneous materials. The . .
method uses edge-based vector basis functions to expand the[4]' The f'n'te'elemejm method (F_EM) can effectively remove
transverse field components and node-based scalar basis func-all of the above difficulties associated with the MoM and the
tions to expand the angular component. The use of vector basis FDM. For example, the FEM is much more versatile than the
functions eliminates the problem of spurious solutions suffered MoM because the same formulation is used for conducting,
by other three component FEM formulations. The FEM mesh is homogeneous, and inhomogeneous targets. Also, the FEM

truncated with a perfectly matched layer (PML) in cylindrical . S
coordinates. The use of PML in cylindrical coordinates avoids always generates a sparse system of equations, which is solved

the wasted computation which results from a spherical mesh Using much less computer memory and CPU time than a
boundary with an elongated scatterer. The FEM equations are dense MoM matrix. Furthermore, the FEM conveniently and

solved by ordering the unknowns with a reverse Cuthill-McKee accurately models arbitrary shapes using triangular elements.
algorithm and applying a banded-matrix solution algorithm. The — Aq 4 yegult, the FEM has significant computational advantages

method is capable of handling large, realistic radar targets, and for th bl f ttering f bit inh
good agreement with measured results is achieved for benchmark ;(;Re problem of scatiering from an arprirary, Inhomogeneous

targets.
Past FEM formulations for scattering from a BOR employ

either the coupled azimuth potential (CAP) formulation [4]-[6]

or the three-component node-based formulation [7]. In the
CAP formulation, the problem is formulated in terms of #tig

. INTRODUCTION and H, field components. All other components are found in

novel efficient algorithm to compute scattering from &rms ofEy, H,, and their derivatives. In the three-component
Acomplex body of revolution (BOR) is developed. Théode-based formulation, the problem is formulated in terms
rotational symmetry of the scatterer allows the problem ®& E,, Eg, and E. or in terms of H,, Hy, and H.. Each
be efficiently solved using a two-dimensional (2-D) comcomponent off; or H is expanded in terms of node-based,
putational method. Due to its importance as a radar targégalar basis functions. The three-component formulation has
the problem of scattering from a BOR has been studiéde advantage of yielding all three components of either the
extensively. The primary method is the method of momengdectric field or the magnetic field directly. However, using
(MoM) based on integral equation formulations [1]-[3]. Thighis formulation it is difficult to enforce the proper boundary
method works well for perfectly conducting or homogeneow@onditions at material discontinuities and sharp conductor
bodies, but the computational complexity increases rapiddgges. This limits the kinds of material and scatterers that
for inhomogeneous bodies. The computational complexi@an be conveniently considered. Further, the three-component
increases because a volume formulation, rather than a surfaegde-based formulation gives rise to nonphysical solutions
formulation, is required for an inhomogeneous target. The vdinown as spurious modes [7]. The problem of spurious modes
ume formulation, coupled with the fact that an integral equg§an be overcome by the use of a penalty term, but it is difficult
tion generates a dense system of equations, greatly incred8eghoose the proper penalty factor.
the computational complexity. Another popular method is the The use of vector finite elements, also known as edge

finite-difference method (FDM). This method results in &lements, eliminates many of the disadvantages of the three
component, node-based formulation while retaining the advan-
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component. Thus, the proper, physical boundary condition is z
automatically satisfied at both electric and magnetic material )
interfaces, allowing l_:)oth material types in the same problem. Y oyl
Further, the expansion scheme satisfies the divergence con- j P
dition, eliminating the problem of spurious solutions without
the need for a penalty factor.

A major issue when using the FEM for open region scat-
tering problems is the problem of mesh truncation. In some
previous FEM formulations, the unimoment method is used ;
for mesh truncation [6]. Although this method satisfies the L #oseo
radiation condition exactly, it requires spherical mesh bound- 0 / = A
aries. Hence, it is not efficient for arbitrarily shaped scatterers. Sy or S,

Absorbing boundary conditions (ABC's) derived from the

Wilcox expansion theorem are also found in previous for-

mulations [4], [7]. These ABC’s approximate the radiation

condition, requiring the outer mesh boundary to be placed far

from the scatterer. While some of these ABC'’s also require a

spherical mesh boundary, others can be applied at a cylindrical PML

boundary. However, the ABC’s which can be applied at a 2= i |

cylindrical boundary require an increase in the FEM matrix :

bandwidth for accurate implementation [4]. Fig. 1. Slice of a typical target with the PML enclosure.
A more recent method of mesh truncation is to line the

inside of the FEM mesh with a lossy perfectly matcheqpe ensom contains information about the PML and, except

layer (PML). The characteristics of the PML are first, waves . = = = .
propagating through the PML are attenuated and second,ﬁ the PML itself, A = I where I denotes the unit dyad.

VSC(,U7 E)

P = Pm

|-t

reflection coefficient at the air to PML interface is zero. Gte also that in the PMLy;. = ¢, = 1. The FEM variational

PML that satisfies both of these conditions is available u%) rrr_1u|at|on with the_constltutlvg parameters of the formin (1)

A . : I, discussed next, with the details of the PML being deferred to
cylindrical coordinates [10}-[12]. Hence, the mesh is trunCatpéjection 1I-B. The solution of the FEM equations is discussed
with a cylindrical boundary, which is much more efficien% '

for arbitrarily shaped scatterers than is a spherical boundar ect_lon II-C, and the compqtaﬂon of the _far-flelq radar cross
. Lction (RCS) of the target is presented in Section II-D.
Further, because any reflection from the outer mesh boundary
is attenuated by the PML, any convenient boundary condition
can be applied there. There is no need for an increase in ﬁre

bandwidth of the FEM matrix, and the air to PML interface The vector wave equation, which follows from (1) is given

Variational Formulation

can be placed very near the scatterer. by

The novel efficient scattering algorithm in this paper em- 1 ——1 _
ploys the FEM, mixed vector/nodal basis functions, and cylin- Vx —A -VxE-kleA - E=0 (3)
drical PML. The remainder of the paper is organized into Hr

three sections. The formulation of the method is discuss@ghere 1, = wy/poco is the free space wavenumber. The
in Section II. Numerical examples showing the validity anBoundary conditions are
capability of the method are presented in Section lll. Finally,
Section IV gives a conclusion. AxE=0 on S (4)
1 —=—1
—haxA (VXE)+yaxaxE=0 on Sy (5)

Il. FORMULATION Hr

The computational domain for a typical problem is shown iWhereSJL denotes a perfect electric conductor (PEC) surface,

Fig. 1. Before discussing the derivation of the FEM equationsz deénotes a surface with an impedance boundary condition,
the form of the constitutive parameters of the media is consi@'d1 +52 makes up the surface of an impenetrable scatterer

ered. As shown in Fig. 1, the outer boundary of the mesh3$ shown in Fig. 1. Ac_cording to _the genera!ized_variational
lined with an absorbing PML. PML is conveniently interpreteﬂ)rInCIpIe [13], the functional for this problem is written

as an anisotropic medium [11], [12]. Using this interpretation, . 1 — 1
the constitutive parameters take the form F(E) =3 /// {;(V xE)-A - (VxE)
v

(1)

=l

= poprli €= coer — k2, E-R- E} dv

whered is a diagonal tensor which can be written as

- +§//%[E-E_(ﬁ.E)(ﬁ.E)] ds. (6)
A = ppA, + pdpAy + 22A.. ) Sa
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It is more convenient to work with the scattered electric field The problem defined by (3)—(5) is now solved by seeking the
than the total electric field. Thu# = E* + E? is substituted stationary point of (9) subject to (4). To accomplish this task,
into (6), and terms that do not depend & are dropped. an FEM expansion is substituted into (9), shown at the bottom

This yields of the page. An appropriate FEM expansion must consider the
1 _ conditions that the field must satisfy at points along the
F(E) =% /// [—(V xE*) A (VxE) axis. All field values must be continuous when thexis is
v Hr approached along any = constant line. The conditions along

_ the z-axis that ensure this are
— kje, E° AE} av
E,o=FE30=(VXE),o=(VxE)so=0 (11)

+%// Ve[E® - E° — (7 E®)(f - B*)] dS

form =20
Sa
1 =-1 ; Epx1 =FjEs 41, (VX E)p11=Fj(V X E)g 41,
+ — (VXE)-A (VXE' ’ ’ ' '
lz |:u7 ( ) ( ) Ez,:l:l = (v X E)z,:l:l =0 (12)
ke, E° XEZ} AV for m = +1 and
‘ ‘ Epm =Epm=E.m = (VX E)pm = (VX E)gpm
+// v [E® - E' — (i E*)(7- E)] dS —(VXE). =0 (13)
Sa
. ; for |m| > 1. FEM expansions which, together with a homo-
- // E* - (i x V X E') dS (7) " geneous Dirichlet condition oR, for m # +1, satisfy these
Sae z-axis conditions are [14]

whereV*¢ is the region of a penetrable scatterer with# 1 3 3
and/ore, # 1, andS*© is the boundary of this region, as shown ESo=Y_ ¢uNf, Ejg=> N (14)
in Fig. 1. Note thati on S*¢ points from the free space region i=1

into the penetrable scatterer region, and in the derivation f%fr m

i=1

(7), the fact thatV x V x E' — k3 E' = 0 is used. To take =0
advantage of the rotational symmetry of the problem, the fields . 3 e
are expanded in the Fourier modes as Bji =Y e,y
=1
o . ) 3
E= Ern %4 E m\fy < ]rnqb' 8 s cn e e e e
m;oo B (6,2) @B m{0: 2)]e ® Et,:l:l = Z[:FJPC@NZ’ + ¢f;pN] (15)
=1
The expansion in (8) is substituted into (7), and the integratioposr — 41 and
with respect top are then performed, yielding whefgis the m=
2-D slice of V, (s is the 2-D slice ofS,, and so forth, and 3 3
— — E;,rn = Z C;iNie7 E:,rn = Z C:ipNg (16)
A =ppA, +220M.; A, = ppAL + 22A,. (10) i=1 i=1
S - 1 p 1 S S S jm 5 p\ S :, -1
F(E ) =2r Z 5// {N_1 |:A_¢(Vt X Et,—rn) : (Vt X Et,rn) + <VtEq5,—rn + 7 Et,—rn + ;Eqb,—nl) 'At
m=—0ocG Q

r’m ~ _
. <VtE;ml B J? Ef’nl + %E;ml):| - k‘ge”p[Ef,frn . At . Ef,rn + A¢E;,WLE§5,WL]} df2
- 7 0 —=-1 .
 [[{ 2 @B = x (Vs o+ B TEs )| BT x B
QSC "

x o s 7 1 s s
- k‘gc”p[Ef:—"l : At : Et:m/ + A¢E¢:—"1E¢,m/]} ds + 5 / ryﬁp[Et,—m, : Et,m,
Cy

- (ﬁ . E'tg,frn)(ﬁ . E:,rn) + E;,frnE;,rn] dé + /C ryep[E:,frn . Ez,rn - (ﬁ . E'tg,frn)(ﬁ . Ez,rn)

+ E;S,—rnEéb,rn] dt — p[‘ES

t,—m
Cse

+E; ] [ x (V x EL)] df )
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for |m| > 1, where Nf is a standard 2-D nodal-element TABLE |
basis function, andV; is a standard 2-D edge-element basis RELATIVE ERROR IN DECIBELS AS A FUNCTION OF o
function. When the FEM expansions are substituted into (9), ol m=0! m=1] m=2] m=3
a system of the form
2.0 | —19.01 | —16.23 | —17.92 | —20.53
- W T am 4 5.0 | —44.79 | —42.67 | —34.73 | —44.21
—m m m m
F(E®) = Z <%{et_m} [Affl A},‘f} {Cin} 10.0 | —44.19 | —40.79 | —35.48 | —44.42
(& c
m=—oc0 ¢ o el L7e 15.0 | —41.67 | —37.22 | —35.50 | —44.40
e\ (B 20.0 | —39.40 | —34.80 | —35.31 | —40.58
T e, By 17 25.0 | —38.89 | —34.18 | —35.86 | —39.86

results whergA], [A7L], [AT], [Agu], {Bi"}, and{B]'} are in which
all assembled from the elemental matrices and vectors which

are obtained directly from the substitution of (14)—(16) into (9). 1 , 0<p< pm
Note that[A}}] and [A7,] are symmetric andA}}] = [Ag’t]T S, =5,(p) = 1— iaf P=Pm S (21)
so that the entire matrix in (17) is symmetric in addition to TN, P = Pm

being sparse. The stationary point of the functional is found
by differentiating (17) with respect to

2
. Zml — R
1 —ja< m ) 2 < Zmil
tzl

—mNT
{Ztnl } S :Sz(z) = 1 5 2l £ 2 £ Zma (22)
. ,a<l> .

ZU

and setting the result to zero, giving systems of the form

m m m m o< < m
{ﬁfﬁ ﬁﬁ?}{e%}z {gﬁn}; m=0,+1,%2,---. 5— g - (p—pm)® == (23)
gt ‘ol (G ¢ P=3p- jar——m P> pm
(18) P

wheret,, t.;, andt., are the PML thicknesseg = p,,
Z = zZml, and z = z,,, are the locations of the air to PML
interfaces (see Fig. 1); anrdis a real parameter to be selected.
While the PML to air interface is reflectionless in continuous
space, some spurious reflection results from the discretization
. _{@;m} V-pol incidence of thg FEM mgsh. Smaller values 'aflovyer the' contrast a't
{eg'}t = { {e;m} H-pol incidence (19) the_ air to PML interface, t_hus reducing this spurious reflection,
while larger values ofx increase the attenuation of waves
ropagating through the PML. Thus, there is a tradeoff in the
election of the PML loss parameter
The tradeoff in the selection ef is investigated by exciting
a current loop in a free-space FEM mesh and examining the
relative error in the fields computed by the FEM code. The
B. PML results of such an investigation are presented in Table |. The

To limit the number of unknowns in the FEM equationsv@|ués in Table | are computed with a mesh length 4f0 and
the mesh must be truncated. PML absorbers are usedBML thickness 06.25). The relative error values in the table

attenuate reflections from the artificial outer boundary, whef&hibit little change over a large range @fvalues, indicating
the conditioni x E* = 0 is applied. The diagonal tensorthat the discretization error in the mesh rather than spurious
=~ In order t(Seﬂection from the boundary is dominating the error values.

A in (1) contains the properties of the PML. he PML ' further i . d b .
effectively eliminate artificial reflections, the PML to air € parametery Is further investigated by computing

interface must be reflectionless in cylindrical coordinates, aHEF far field bistatic RCS of a conducting sphere of raditis

waves which propagate through the PML must be attenuat@ﬂ.d comparing to the exact Mie series result. In Flg.'2, the
. . = absolute value of the error between the FEM computation and
These conditions are satisfied when the elements aire

given by [11] and [12] the Mie result is averaged over 181 observation angles and
plotted as a function ofv. Both the values in Table | and the
. . plots in Fig. 2 show that for a mesh length 4f20 and a
A, = Szp; Ay = SZ?Pp; A = Spp (20) PML thickness 0f0.25), the optimum value ofy is around
p Szp 5.5-6.0.

It can be shown that

(e} = {e;™}  V-polincidence
' —{e,™} H-pol incidence

for all m # 0. Thus, the solution of the FEM equations i{
needed for positive numbered modes only.
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Fig. 2. Mean error in the bistatic RCS of a conducting spliere- 2\) as a function of the PML parameter (a) VV-polarization. (b) HH-polarization.

(@) (b)
Fig. 3. Sparsity pattern of an FEM matrix with 5000 unknowns. (a) Original ordering. (b) RCM ordering.

C. Solution of the Equations This storage scheme facilitates the second step of the solution,

The solution of a scattering problem by the FEM involvel1e efficient (Ijecompolsition of the matrix b¥ a band so]ver.
the assembly and solution of the system of equations of tp]'Qe band solver employed computes th&L" decomposi-

. . . . tion of the matrix using Crout decomposition techniques in
form of (18). As mentioned in Section II-A, the matrix of (18)O(NBQ) computationalgcomplexity whperef is the nur?1ber

is sparse and symmetric. Also, in (18), the excitation vecto¥ unknowns andB is the matrix half-bandwidth [13]. After

. . o .0
{B} s a function of the incidence angle and the pOlar'Z"j‘tloﬁctoring the matrix, the third solution step is to assemble
an excitation vector; then, the fourth step is the solution of

of the incident field, but the FEM matr{d] is not. Thus, if the
solution is computed by matrix decomposition techniques, tlﬂ’grangular systems using forward and back substitutions in
decomposition of the matrix is computed only once, even if t (N B) computational complexity. The contribution of mode
solution corresponding to multiple incidence angles and polgf: 1, the radar cross section (RCS) of the target is then
izations is required. Finally, when the unknowns are Order%mputed and the next step is to repeat the assembly of an
according to the reverse Cuthill-McKee (RCM) ordering, thgxcitation vector, the forward and back substitutions, and the
FEM matrix is highly banded. The RCM algorithm is discusseflcs calculation for each incidence angle and polarization. The
in [15] and a typical result for a case with 5000 unknowns inal step is the repetition of the whole process for each mode
shown in Fig. 3. number required. A rule of thumb for the number of modes

The steps in solving the FEM equations are first, using thequired iSM,,,.x = kopmax sin 6 + 6 [1]. This rule of thumb
RCM ordering, the FEM matrix for a given mode numbeis valid for kopaxsind > 3.

(m) is assembled. In each row of the matrix, the first nonzerolt is of note that a minimum degree ordering of the un-
element through the diagonal element are stored in an arrkgowns, which seeks to minimize the number of nonzeros
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on the factored matrix, may offer improved efficiency in the (R) = emiko R i m gim” ) ikos' cos 8
matrix solution. For example, some preliminary experiments™? 2R £ J o P
show that the matrix storage can be reduced to about half of mETee

the current banded storage.
(i x VxE)

D. RCS Calculation . {AmJ,]:(k/o;’ 5;1:9") — 5T (kop' sin 6")
. . . 111
The solution of the FEM equations yields the scattered 0P

electric field near the scatterer. Because the far-field RCS of +ko(i x E2)
the target is often of interest, the scattered electric field far m
from the scatterer is computed from near-field values. Consider

an infinitesimal dipole, located at the scattering observation . [— pcosJ. (kop'sin")
point, oriented in thei direction, and excited such that it S
produces a plane wave of unit amplitude at the coordinate +(;)COS 9,ﬁjme(/€op sin ")
origin. Denoting the far-field scattered electric field of the kop' sin 6"
target asE’(R) and the field radiated by the dipole &5, e o P y
by reciprocity + Zsin 6”5, (kop' sinf")| » df (27)
s . ¢ kR . : and whereJ,,,(x) denotes the Bessel function of orderand
BB i = ArR //[E (X VX ET) J!.(z) denotes the derivative of,,,(z) with respect to its
57 argument. The RCS of the scatterer is found from the definition
+(Vx E")-(nx E)]dS’ (24) - 5
E
o= lim 47TR2%. (28)
where S’ is any rotationally symmetric, closed surface which R—eo |E*(R)|
encloses the entire scatterer. The fields in (24) are expanded
according to (8), and the integration is performed, giving lll. NUMERICAL EXAMPLES
R oo A number of numerical results are presented to show the
E*(R) -4 = et Z jmeme” validity and capability of the FEM technigue. Unless otherwise
2R = stated, mesh length for each example\j20, and the air to

PML interface is placed.25\ from the target.
/ PIE",, - (A xV xE )+ (VxE" ) First, in Fig. 4 the bistatic RCS of a coated sphere is
’ computed and compared to the exact Mie series solution. The
incident elevation angle is 90and the conducting core of the
sphere has a radius ®h. The target is coated with ferrite 11

. . . . . . thick, and the ferrite coating is characterized §y= 2.5 —
where§” and ¢” denote the scattering observation dlrect|0r‘1j.1.25 andy, = 1.6 — j0.8. The mesh is truncted with a PML

The components off”(R) which are of interest, are the 55y thick with o = 5.0. The comparison in Fig. 4 shows
vertically polarized component’;(£2) and the horizontally 5 maximum error of 0.57 dB in the VV-polarized case and
polarized componenk; (R). For i, = 6 andi = ¢, expres- (.74 dB in the HH-polarized case, which is good agreement

sions forE”,, and(V x E,,) are found by expanding the considering the dynamic range of over 40 dB in the RCS.
dipole radiated fields according to (8) and these expressionfyext, a number of electromagnetic code consortium

(A x E)] d (25)

are substituted into (25), giving (EMCC) benchmark targets are considered, and the FEM
_ikR o results are compared to measurements first published in [16],
Ei(R) = € Z jmejmqr/ o ko’ cose” where detailed descriptions of the targets are also found. To
2R ol establish a reference on the capability of the code, information

about the memory and CPU time required to generate the
.{(ﬁ XV xE)- {_ peos 0 jJ" (kop' sin ") monostatic scattering results for two polarizations and 181

incidence angles on a 44 Mflop DEC Alpha workstation is
(ko sin 67) also presented in Table Il. For the EMCC benchmark targets,
' the mesh is truncated with a PML5) thick with o = 10.

The first EMCC benchmark target is a metallic ogive, shown
in Fig. 5. The ogive has a length of 10 in, a maximum diameter
of 2 in, and a half-angle of 22.82at each tip. Both the
monostatic VV-polarized and the monostatic HH-polarized
Ay.me(/%‘op' sin ") + T (ko Sin91’):| } g¢ RCS of the ogive at 9 GHz are computed and compared to

kop' sin @7 m measurements in Fig. 5. The agreement in Fig. 5 is generally
(26) good, however, some error is observed arount dlBvation

— ¢cos b
P cos kop' sin 6"

— 2sin 0" J, (kop' sin 97’)} + ko(n x E)




626 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999
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(@) (b)

Fig. 4. RCS of a coated sphere with an incident elevation angl@0df The radius of the conducting core 2\, and the coating i$.1A thick with
e = 2.5 —31.25 andu, = 1.6 — 70.8. (a) VV-polarization. (b) HH-polarization.

TABLE I is tangent to the sphere at the junction. The monostatic RCS
MEMORY AND CPU REQUIREMENTS TO COMPUTE MONOSTATIC at 9 GHz is computed and a comparison to measured values
SCATTERING FOR TWO POLARIZATIONS AND 181 INCIDENCE . . . . .
ANGLES ON A 44 MELOP DEC APHA WORKSTATION is shown in Fig. 7. In computing the result for this target,

portions of the mesh between the conesphere and the PML
interface are coarsened to a mesh length 0. This reduces

Number of | Matrix Half- | Memory | CPU Time

Target Unknowns | Bandwidth | (Mbytes) |  (min.) the number of unknowns in the problem, which becomes large
Ogive 18,429 197 13 25.5 because the target is ov@€b\ long. A good agreement is
Double Ogive 15,348 201 11 21.3 observed in Fig. 7.
Conesphere 42,960 386 33 1371 The final EMCC benchmark target is similar to the metallic
Conesphere with gap | 42, 848 379 33 1351 cpnespherg con5|der.ed in the previous example. The only
difference is a 0.25 in widex 0.25 in deep gap located at
Coated Conesphere 47,743 368 39 182.9 . . .
the junction between the cone and the sphere. The comparison
Missile 70, 604 319 40 233.6

of measured results to computed results at 9 GHz in Fig. 8

for both polarizations. This error must be caused by errors S|rr1]0WS good agreement, and comparing Figs. 7 and 8 shows

measurement as the target is symmetric about theldvation that the gap has a large influence on the RCS of the target

plane. There is also some error observed near the bottomag)fth's frequency. Similar to the previous example, the mesh

the dynamic range in the HH-polarized case. This error is alg% the compgted rgsults in this example is coarseneky i
caused by measurement errors. mesh length in regions between the target and the PML.

The second EMCC benchmark target is a metallic double 1 further show the utility of the method, two more com-
ogive, shown in Fig. 6. The double ogive is formed by joinin uted results are presented. _The first of these is the EM(_:C
two different half-ogives. The top piece has a half-length genchmark conesphere, again at 9 GHz, but coated with
5 in, a maximum radius of 1 in, and a half-angle of 22.620-131 in(0.14) thick ferrite (¢, = 2.5 —j1.25, y = 1.6 —
at the tip, and the bottom has a half-length of 2.5 in, 40.8). The RCS is shown in Fig. 9, and comparison between
maximum radius of 1 in, and a half-angle of 46.4t the Figs. 7 and 9 show that the coating has lowered the RCS
tip. The computed monostatic RCS of the double ogive 4P—15dB. The primary increase in CPU time from the metallic
9 GHz is compared to measurements in Fig. 6, and except f@nesphere case to this coated example (see Table Il) is due
some discrepancy near the bottom of the dynamic range, the slight increase ip.... for the target, which causes the rule
agreement is generally good. Similar to the ogive example, tagthumb of Part C of Section Il to predict an increase in the
error is caused by measurement error. number of modes required. However, the expected CPU time

A third EMCC benchmark is a metallic conesphere, showncrease from an integral equation method applied to the same
in Fig. 7. The sphere has a radius of 2.947 in, the cone tigo problems is much greater than the factor of 1.25 observed
has a half-angle of 7 the cone is 23.821 in tall, and the conédnere. The second example is a SCUD-like missile, shown in



GREENWOOD AND JIN: NOVEL EFFICIENT ALGORITHM FOR SCATTERING 627

-10 T T

-20
€ €
g g3
2 z
1] 1) L
a3 & -40
[ i
L .2
5 57°0
1723 1%
(o] Q
5-60 -—FEM 5-60
= - - Measured = !

70 1 =70 ol —rEM 1
' - - Measured
_8 . . . . _8 . . ; . .
-90 -60 -30 0 30 60 90 -80 -60 -30 0 30 60 90
Elevation Angle (degrees) Elevation Angle (degrees)
() (b)

Fig. 5. RCS of a metallic ogive at 9 GHz. The ogive has a height of 107i6i3\), a maximum diameter of 2 i1.53X), and a half-angle of 22.62
at the tip. (&) VV-polarization. (b) HH-polarization.

-10 : T . -10 T . : .
—~—20 1 20
£ £
1723 1]
jou} o
z =
n-30 1 n-30
Q Q
i T
£ °
T_40 1 ®-40}
[%23 1%
[=] (=]
j o c
b5 s

-501 -50

X —FEM
- - Measured - - Measured
_6 : . . . . —6% . : . . .
-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
Elevation Angle (degrees) Elevation Angie (degrees)
() (b)

Fig. 6. RCS of a metallic double ogive at 9 GHz. The top piece of the double ogive has a half-height @381n), a maximum radius of 1 in
(0.763X), and a half-angle of 22.62at the tip, and the bottom has a half-height of 2.5ir01\), a maximum radius of one if0.763X), and a half-angle
of 46.# at the tip. (a) VV-polarization. (b) HH-polarization.

10 : . : : 10 ; .
0 0

-10r E-10
723
o

-20f Z_o0t
1]
O

-30r T .30
L

-40 G40
o
=y

-50F y «r 250

_s0} — FEM -60} Y ~—FEM 1

- - Measured ‘: - - Measured
_7 . . _7 . . . .
—%O -60 -30 0 30 60 90 —%0 -60 -30 0 30 60 90
Elevation Angle (degrees) Elevation Angle (degrees)
() (b)

Fig. 7. RCS of a metallic conesphere at 9 GHz. The sphere has a radius of 2.@124#\); the cone has a half-angle of @&t the tip and a length of
23.821 in(18.164\), and the cone is tangent to the sphere at the junction point. (a) VV-polarization. (b) HH-polarization.

Fig. 10. The missile has a metallic core coated with 3(6rhA Finally, to show the application of the method to dielec-
at 1 GHz) thick ferrite(e,, = 2.5 — j1.25, u,. = 1.6 — j0.8).  tric scatterers, a spherical Luneburg lens is considered. The
The missile is 12.5 m tall, and, as shown in Fig. 10, there at@neburg lens is characterized by a relative permittivity of
several 3 cm wide by 3 cm deép.1\ x 0.1\ at 1 GHz) gaps ¢, = 2— (r/a)? wherer is the distance from the center of the
on its surface. Its RCS at 1 GHz is shown in Fig. 10. lens anda is the radius of the lens [17]. The scattering from a
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ducting core coated with 3 crf0.1)) thick ferrite (e, = 2.5 — j1.25, Fig. 11. Bistatic RCS of a spherical Luneburg lens. The lens has permitivity
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Luneburg lens of three different sizes is shown in Fig. 11. Foo]
the first two lenses, note the agreement with data given in [17].

The numerical results presented show the validity and utilityg
of the method. Good agreement is achieved in the comparison
with exact techniques and with measurements. Further, it is
seen that large radar targets with inhomogeneous materiglg
can be considered.

[12]
IV. CONCLUSION

- . . [13
A novel efficient FEM algorithm to compute the scattering
from an arbitrary BOR is developed. Because of its versatility*!

in modeling complex shapes and inhomogeneous materials, the
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D. J. Hoppe, L. Epp, and J. F. Lee, “A hybrid symmetric FEM/MOM for-
mulation applied to scattering by inhomogeneous bodies of revolution,”
IEEE Trans. Antennas Propgatol. 42, pp. 798-805, June 1994.

W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate
stretching as a generalized absorbing boundary conditiord,3ih Annu.
Rev. Progress Appl. Comput. Electromagonterey, CA, vol. Il, pp.
909-914, Mar. 1997.

F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic
PML absorbing media in cylindrical and spherical coordinatéSEE
Microwave Guided Wave Letwvol. 7, pp. 371-373, Nov. 1997.

J. Maloney, M. Kesler, and G. Smith, “Generalization of {PML} to
cylindrical geometries,” in13th Annu. Rev. Progress Appl. Computa.
Electromagn. Monterey, CA, vol. Il, pp. 900-908, Mar. 1997.

] J. M. Jin, The Finite Element Method in ElectromagneticiNew York:

Wiley, 1993.

M. F. Wong, M. Prak, and V. F. Hanna, “Axisymmetric edge-based finite
element formulation for bodies of revolution: Application to dielectric
resonators,” iINEEE MTT-S Dig, pp. 285-288, May 1995.

FEM possesses advantages over other computational methdglsA. George and J. W. LiuComputer Solution of Large Sparse Positive

in its ability to handle arbitrary BOR’s. For instance, b)clgm]
using triangular elements, the FEM can more accurately model
arbitrarily shaped geometries than can FDM’s, which rely on

rectangular, cylindrical, or spherical grids. Also, the FEM cap4
handle inhomogeneous materials without the large increase in
computational complexity found in integral equation methods.

By using mixed finite elements, the FEM can compute either
the electric field or the magnetic field directly, without the

problems posed to other three-component formulations
material discontinuities and spurious solutions. Cylindric;
PML efficiently and accurately truncates the FEM mesh, wit
out requiring a spherical boundary, a large distance betwe
the scatterer and the boundary, or an increase in the mal
bandwidth. The FEM algorithm using mixed finite element
and PML shows good agreement with exact techniques &
with measured data, and it effectively handles both pe

trable and impentrable targets as well as large targets With air Force Research

inhomogeneous materials.
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