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A Novel Efficient Algorithm for Scattering from
a Complex BOR Using Mixed Finite

Elements and Cylindrical PML
Andrew D. Greenwood,Member, IEEE,and Jian-Ming Jin,Senior Member, IEEE

Abstract—An efficient finite-element method (FEM) is devel-
oped to compute scattering from a complex body of revolu-
tion (BOR). The BOR is composed of perfect conductor and
impedance surfaces and arbitrary inhomogeneous materials. The
method uses edge-based vector basis functions to expand the
transverse field components and node-based scalar basis func-
tions to expand the angular component. The use of vector basis
functions eliminates the problem of spurious solutions suffered
by other three component FEM formulations. The FEM mesh is
truncated with a perfectly matched layer (PML) in cylindrical
coordinates. The use of PML in cylindrical coordinates avoids
the wasted computation which results from a spherical mesh
boundary with an elongated scatterer. The FEM equations are
solved by ordering the unknowns with a reverse Cuthill–McKee
algorithm and applying a banded-matrix solution algorithm. The
method is capable of handling large, realistic radar targets, and
good agreement with measured results is achieved for benchmark
targets.

Index Terms—Body of revolution, electromagnetic scattering,
finite-element method, perfectly matched layer.

I. INTRODUCTION

A novel efficient algorithm to compute scattering from a
complex body of revolution (BOR) is developed. The

rotational symmetry of the scatterer allows the problem to
be efficiently solved using a two-dimensional (2-D) com-
putational method. Due to its importance as a radar target,
the problem of scattering from a BOR has been studied
extensively. The primary method is the method of moments
(MoM) based on integral equation formulations [1]–[3]. This
method works well for perfectly conducting or homogeneous
bodies, but the computational complexity increases rapidly
for inhomogeneous bodies. The computational complexity
increases because a volume formulation, rather than a surface
formulation, is required for an inhomogeneous target. The vol-
ume formulation, coupled with the fact that an integral equa-
tion generates a dense system of equations, greatly increases
the computational complexity. Another popular method is the
finite-difference method (FDM). This method results in a
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sparse matrix and hence is computationally efficient. However,
it relies on rectangular, cylindrical, or spherical computational
grids, making it difficult to model arbitrarily shaped geometries
[4]. The finite-element method (FEM) can effectively remove
all of the above difficulties associated with the MoM and the
FDM. For example, the FEM is much more versatile than the
MoM because the same formulation is used for conducting,
homogeneous, and inhomogeneous targets. Also, the FEM
always generates a sparse system of equations, which is solved
using much less computer memory and CPU time than a
dense MoM matrix. Furthermore, the FEM conveniently and
accurately models arbitrary shapes using triangular elements.
As a result, the FEM has significant computational advantages
for the problem of scattering from an arbitrary, inhomogeneous
BOR.

Past FEM formulations for scattering from a BOR employ
either the coupled azimuth potential (CAP) formulation [4]–[6]
or the three-component node-based formulation [7]. In the
CAP formulation, the problem is formulated in terms of the
and field components. All other components are found in
terms of and their derivatives. In the three-component
node-based formulation, the problem is formulated in terms
of and or in terms of and Each
component of or is expanded in terms of node-based,
scalar basis functions. The three-component formulation has
the advantage of yielding all three components of either the
electric field or the magnetic field directly. However, using
this formulation it is difficult to enforce the proper boundary
conditions at material discontinuities and sharp conductor
edges. This limits the kinds of material and scatterers that
can be conveniently considered. Further, the three-component
node-based formulation gives rise to nonphysical solutions
known as spurious modes [7]. The problem of spurious modes
can be overcome by the use of a penalty term, but it is difficult
to choose the proper penalty factor.

The use of vector finite elements, also known as edge
elements, eliminates many of the disadvantages of the three
component, node-based formulation while retaining the advan-
tage of computing either the electric field or the magnetic field
directly. In the 2-D FEM, the transverse field components are
expanded using a 2-D edge (vector) basis, and the longitudinal

field component is expanded using a 2-D nodal (scalar) ba-
sis [8], [9]. At a material discontinuity, this expansion scheme
automatically constrains the tangential field components to
be continuous without similarly constraining the normal field
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component. Thus, the proper, physical boundary condition is
automatically satisfied at both electric and magnetic material
interfaces, allowing both material types in the same problem.
Further, the expansion scheme satisfies the divergence con-
dition, eliminating the problem of spurious solutions without
the need for a penalty factor.

A major issue when using the FEM for open region scat-
tering problems is the problem of mesh truncation. In some
previous FEM formulations, the unimoment method is used
for mesh truncation [6]. Although this method satisfies the
radiation condition exactly, it requires spherical mesh bound-
aries. Hence, it is not efficient for arbitrarily shaped scatterers.
Absorbing boundary conditions (ABC’s) derived from the
Wilcox expansion theorem are also found in previous for-
mulations [4], [7]. These ABC’s approximate the radiation
condition, requiring the outer mesh boundary to be placed far
from the scatterer. While some of these ABC’s also require a
spherical mesh boundary, others can be applied at a cylindrical
boundary. However, the ABC’s which can be applied at a
cylindrical boundary require an increase in the FEM matrix
bandwidth for accurate implementation [4].

A more recent method of mesh truncation is to line the
inside of the FEM mesh with a lossy perfectly matched
layer (PML). The characteristics of the PML are first, waves
propagating through the PML are attenuated and second, the
reflection coefficient at the air to PML interface is zero. A
PML that satisfies both of these conditions is available in
cylindrical coordinates [10]–[12]. Hence, the mesh is truncated
with a cylindrical boundary, which is much more efficient
for arbitrarily shaped scatterers than is a spherical boundary.
Further, because any reflection from the outer mesh boundary
is attenuated by the PML, any convenient boundary condition
can be applied there. There is no need for an increase in the
bandwidth of the FEM matrix, and the air to PML interface
can be placed very near the scatterer.

The novel efficient scattering algorithm in this paper em-
ploys the FEM, mixed vector/nodal basis functions, and cylin-
drical PML. The remainder of the paper is organized into
three sections. The formulation of the method is discussed
in Section II. Numerical examples showing the validity and
capability of the method are presented in Section III. Finally,
Section IV gives a conclusion.

II. FORMULATION

The computational domain for a typical problem is shown in
Fig. 1. Before discussing the derivation of the FEM equations,
the form of the constitutive parameters of the media is consid-
ered. As shown in Fig. 1, the outer boundary of the mesh is
lined with an absorbing PML. PML is conveniently interpreted
as an anisotropic medium [11], [12]. Using this interpretation,
the constitutive parameters take the form

(1)

where is a diagonal tensor which can be written as

(2)

Fig. 1. Slice of a typical target with the PML enclosure.

The tensor contains information about the PML and, except
in the PML itself, where denotes the unit dyad.
Note also that in the PML, The FEM variational
formulation with the constitutive parameters of the form in (1)
is discussed next, with the details of the PML being deferred to
Section II-B. The solution of the FEM equations is discussed
Section II-C, and the computation of the far-field radar cross
section (RCS) of the target is presented in Section II-D.

A. Variational Formulation

The vector wave equation, which follows from (1) is given
by

(3)

where is the free space wavenumber. The
boundary conditions are

on (4)

on (5)

where denotes a perfect electric conductor (PEC) surface,
denotes a surface with an impedance boundary condition,

and makes up the surface of an impenetrable scatterer
as shown in Fig. 1. According to the generalized variational
principle [13], the functional for this problem is written

(6)
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It is more convenient to work with the scattered electric field
than the total electric field. Thus, is substituted
into (6), and terms that do not depend on are dropped.
This yields

(7)

where is the region of a penetrable scatterer with
and/or , and is the boundary of this region, as shown
in Fig. 1. Note that on points from the free space region
into the penetrable scatterer region, and in the derivation of
(7), the fact that is used. To take
advantage of the rotational symmetry of the problem, the fields
are expanded in the Fourier modes as

(8)

The expansion in (8) is substituted into (7), and the integrations
with respect to are then performed, yielding whereis the
2-D slice of , is the 2-D slice of , and so forth, and

(10)

The problem defined by (3)–(5) is now solved by seeking the
stationary point of (9) subject to (4). To accomplish this task,
an FEM expansion is substituted into (9), shown at the bottom
of the page. An appropriate FEM expansion must consider the
conditions that the field must satisfy at points along the-
axis. All field values must be continuous when the-axis is
approached along any constant line. The conditions along
the -axis that ensure this are

(11)

for

(12)

for and

(13)

for FEM expansions which, together with a homo-
geneous Dirichlet condition on for , satisfy these
-axis conditions are [14]

(14)

for

(15)

for and

(16)

(9)
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for , where is a standard 2-D nodal-element
basis function, and is a standard 2-D edge-element basis
function. When the FEM expansions are substituted into (9),
a system of the form

(17)

results where and are
all assembled from the elemental matrices and vectors which
are obtained directly from the substitution of (14)–(16) into (9).
Note that and are symmetric and
so that the entire matrix in (17) is symmetric in addition to
being sparse. The stationary point of the functional is found
by differentiating (17) with respect to

and setting the result to zero, giving systems of the form

(18)

It can be shown that

-
-pol incidence

-pol incidence
-pol incidence

(19)

for all Thus, the solution of the FEM equations is
needed for positive numbered modes only.

B. PML

To limit the number of unknowns in the FEM equations,
the mesh must be truncated. PML absorbers are used to
attenuate reflections from the artificial outer boundary, where
the condition is applied. The diagonal tensor

in (1) contains the properties of the PML. In order to
effectively eliminate artificial reflections, the PML to air
interface must be reflectionless in cylindrical coordinates, and
waves which propagate through the PML must be attenuated.
These conditions are satisfied when the elements ofare
given by [11] and [12]

(20)

TABLE I
RELATIVE ERROR IN DECIBELS AS A FUNCTION OF �

in which

(21)

(22)

(23)

where , , and are the PML thicknesses; ,
, and are the locations of the air to PML

interfaces (see Fig. 1); andis a real parameter to be selected.
While the PML to air interface is reflectionless in continuous
space, some spurious reflection results from the discretization
of the FEM mesh. Smaller values of lower the contrast at
the air to PML interface, thus reducing this spurious reflection,
while larger values of increase the attenuation of waves
propagating through the PML. Thus, there is a tradeoff in the
selection of the PML loss parameter

The tradeoff in the selection of is investigated by exciting
a current loop in a free-space FEM mesh and examining the
relative error in the fields computed by the FEM code. The
results of such an investigation are presented in Table I. The
values in Table I are computed with a mesh length of and
a PML thickness of The relative error values in the table
exhibit little change over a large range ofvalues, indicating
that the discretization error in the mesh rather than spurious
reflection from the boundary is dominating the error values.
The PML parameter is further investigated by computing
the far field bistatic RCS of a conducting sphere of radius
and comparing to the exact Mie series result. In Fig. 2, the
absolute value of the error between the FEM computation and
the Mie result is averaged over 181 observation angles and
plotted as a function of Both the values in Table I and the
plots in Fig. 2 show that for a mesh length of and a
PML thickness of the optimum value of is around
5.5–6.0.
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(a) (b)

Fig. 2. Mean error in the bistatic RCS of a conducting sphere(r = 2�) as a function of the PML parameter�: (a) VV-polarization. (b) HH-polarization.

(a) (b)

Fig. 3. Sparsity pattern of an FEM matrix with 5000 unknowns. (a) Original ordering. (b) RCM ordering.

C. Solution of the Equations

The solution of a scattering problem by the FEM involves
the assembly and solution of the system of equations of the
form of (18). As mentioned in Section II-A, the matrix of (18)
is sparse and symmetric. Also, in (18), the excitation vector

is a function of the incidence angle and the polarization
of the incident field, but the FEM matrix is not. Thus, if the
solution is computed by matrix decomposition techniques, the
decomposition of the matrix is computed only once, even if the
solution corresponding to multiple incidence angles and polar-
izations is required. Finally, when the unknowns are ordered
according to the reverse Cuthill–McKee (RCM) ordering, the
FEM matrix is highly banded. The RCM algorithm is discussed
in [15] and a typical result for a case with 5000 unknowns is
shown in Fig. 3.

The steps in solving the FEM equations are first, using the
RCM ordering, the FEM matrix for a given mode number

is assembled. In each row of the matrix, the first nonzero
element through the diagonal element are stored in an array.

This storage scheme facilitates the second step of the solution,
the efficient decomposition of the matrix by a band solver.
The band solver employed computes the decomposi-
tion of the matrix using Crout decomposition techniques in

computational complexity where is the number
of unknowns and is the matrix half-bandwidth [13]. After
factoring the matrix, the third solution step is to assemble
an excitation vector; then, the fourth step is the solution of
triangular systems using forward and back substitutions in

computational complexity. The contribution of mode
to the radar cross section (RCS) of the target is then

computed and the next step is to repeat the assembly of an
excitation vector, the forward and back substitutions, and the
RCS calculation for each incidence angle and polarization. The
final step is the repetition of the whole process for each mode
number required. A rule of thumb for the number of modes
required is [1]. This rule of thumb
is valid for

It is of note that a minimum degree ordering of the un-
knowns, which seeks to minimize the number of nonzeros
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on the factored matrix, may offer improved efficiency in the
matrix solution. For example, some preliminary experiments
show that the matrix storage can be reduced to about half of
the current banded storage.

D. RCS Calculation

The solution of the FEM equations yields the scattered
electric field near the scatterer. Because the far-field RCS of
the target is often of interest, the scattered electric field far
from the scatterer is computed from near-field values. Consider
an infinitesimal dipole, located at the scattering observation
point, oriented in the direction, and excited such that it
produces a plane wave of unit amplitude at the coordinate
origin. Denoting the far-field scattered electric field of the
target as and the field radiated by the dipole as ,
by reciprocity

(24)

where is any rotationally symmetric, closed surface which
encloses the entire scatterer. The fields in (24) are expanded
according to (8), and the integration is performed, giving

(25)

where and denote the scattering observation direction.
The components of which are of interest, are the
vertically polarized component and the horizontally
polarized component For and , expres-
sions for and are found by expanding the
dipole radiated fields according to (8) and these expressions
are substituted into (25), giving

(26)

(27)

and where denotes the Bessel function of orderand
denotes the derivative of with respect to its

argument. The RCS of the scatterer is found from the definition

(28)

III. N UMERICAL EXAMPLES

A number of numerical results are presented to show the
validity and capability of the FEM technique. Unless otherwise
stated, mesh length for each example is , and the air to
PML interface is placed from the target.

First, in Fig. 4 the bistatic RCS of a coated sphere is
computed and compared to the exact Mie series solution. The
incident elevation angle is 90, and the conducting core of the
sphere has a radius of The target is coated with ferrite
thick, and the ferrite coating is characterized by

and The mesh is truncted with a PML
thick with The comparison in Fig. 4 shows

a maximum error of 0.57 dB in the VV-polarized case and
0.74 dB in the HH-polarized case, which is good agreement
considering the dynamic range of over 40 dB in the RCS.

Next, a number of electromagnetic code consortium
(EMCC) benchmark targets are considered, and the FEM
results are compared to measurements first published in [16],
where detailed descriptions of the targets are also found. To
establish a reference on the capability of the code, information
about the memory and CPU time required to generate the
monostatic scattering results for two polarizations and 181
incidence angles on a 44 Mflop DEC Alpha workstation is
also presented in Table II. For the EMCC benchmark targets,
the mesh is truncated with a PML thick with

The first EMCC benchmark target is a metallic ogive, shown
in Fig. 5. The ogive has a length of 10 in, a maximum diameter
of 2 in, and a half-angle of 22.62at each tip. Both the
monostatic VV-polarized and the monostatic HH-polarized
RCS of the ogive at 9 GHz are computed and compared to
measurements in Fig. 5. The agreement in Fig. 5 is generally
good, however, some error is observed around 15elevation
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(a) (b)

Fig. 4. RCS of a coated sphere with an incident elevation angle of90
�: The radius of the conducting core is2�, and the coating is0:1� thick with

�r = 2:5 � j1:25 and �r = 1:6 � j0:8: (a) VV-polarization. (b) HH-polarization.

TABLE II
MEMORY AND CPU REQUIREMENTS TOCOMPUTE MONOSTATIC

SCATTERING FOR TWO POLARIZATIONS AND 181 INCIDENCE

ANGLES ON A 44 MFLOP DEC ALPHA WORKSTATION

for both polarizations. This error must be caused by errors in
measurement as the target is symmetric about the 0elevation
plane. There is also some error observed near the bottom of
the dynamic range in the HH-polarized case. This error is also
caused by measurement errors.

The second EMCC benchmark target is a metallic double
ogive, shown in Fig. 6. The double ogive is formed by joining
two different half-ogives. The top piece has a half-length of
5 in, a maximum radius of 1 in, and a half-angle of 22.62
at the tip, and the bottom has a half-length of 2.5 in, a
maximum radius of 1 in, and a half-angle of 46.4at the
tip. The computed monostatic RCS of the double ogive at
9 GHz is compared to measurements in Fig. 6, and except for
some discrepancy near the bottom of the dynamic range, the
agreement is generally good. Similar to the ogive example, the
error is caused by measurement error.

A third EMCC benchmark is a metallic conesphere, shown
in Fig. 7. The sphere has a radius of 2.947 in, the cone tip
has a half-angle of 7, the cone is 23.821 in tall, and the cone

is tangent to the sphere at the junction. The monostatic RCS
at 9 GHz is computed and a comparison to measured values
is shown in Fig. 7. In computing the result for this target,
portions of the mesh between the conesphere and the PML
interface are coarsened to a mesh length of This reduces
the number of unknowns in the problem, which becomes large
because the target is over long. A good agreement is
observed in Fig. 7.

The final EMCC benchmark target is similar to the metallic
conesphere considered in the previous example. The only
difference is a 0.25 in wide 0.25 in deep gap located at
the junction between the cone and the sphere. The comparison
of measured results to computed results at 9 GHz in Fig. 8
shows good agreement, and comparing Figs. 7 and 8 shows
that the gap has a large influence on the RCS of the target
at this frequency. Similar to the previous example, the mesh
for the computed results in this example is coarsened to
mesh length in regions between the target and the PML.

To further show the utility of the method, two more com-
puted results are presented. The first of these is the EMCC
benchmark conesphere, again at 9 GHz, but coated with
0.131 in thick ferrite ,

The RCS is shown in Fig. 9, and comparison between
Figs. 7 and 9 show that the coating has lowered the RCS
10–15 dB. The primary increase in CPU time from the metallic
conesphere case to this coated example (see Table II) is due
the slight increase in for the target, which causes the rule
of thumb of Part C of Section II to predict an increase in the
number of modes required. However, the expected CPU time
increase from an integral equation method applied to the same
two problems is much greater than the factor of 1.25 observed
here. The second example is a SCUD-like missile, shown in
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(a) (b)

Fig. 5. RCS of a metallic ogive at 9 GHz. The ogive has a height of 10 in(7:63�), a maximum diameter of 2 in(1:53�), and a half-angle of 22.62�

at the tip. (a) VV-polarization. (b) HH-polarization.

(a) (b)

Fig. 6. RCS of a metallic double ogive at 9 GHz. The top piece of the double ogive has a half-height of 5 in(3:81�); a maximum radius of 1 in
(0:763�); and a half-angle of 22.62� at the tip, and the bottom has a half-height of 2.5 in(1:91�); a maximum radius of one in(0:763�), and a half-angle
of 46.4� at the tip. (a) VV-polarization. (b) HH-polarization.

(a) (b)

Fig. 7. RCS of a metallic conesphere at 9 GHz. The sphere has a radius of 2.947 in(2:247�); the cone has a half-angle of 7� at the tip and a length of
23.821 in(18:164�); and the cone is tangent to the sphere at the junction point. (a) VV-polarization. (b) HH-polarization.

Fig. 10. The missile has a metallic core coated with 3 cm
at 1 GHz) thick ferrite ,
The missile is 12.5 m tall, and, as shown in Fig. 10, there are
several 3 cm wide by 3 cm deep at 1 GHz) gaps
on its surface. Its RCS at 1 GHz is shown in Fig. 10.

Finally, to show the application of the method to dielec-
tric scatterers, a spherical Luneburg lens is considered. The
Luneburg lens is characterized by a relative permittivity of

where is the distance from the center of the
lens and is the radius of the lens [17]. The scattering from a
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(a) (b)

Fig. 8. RCS of a metallic conesphere with a gap at 9 GHz. The sphere has a radius of 2.947 in(2:247�); and the cone has a half-angle of 7� at the
tip and a length of 23.821 in(18:164�): At the junction between the cone and the sphere, there is a 0.25-in-wide by 0.25-in-deep(0:19� � 0:19�)
gap. (a) VV-polarization. (b) HH-polarization.

Fig. 9. RCS of a coated metallic conesphere at 9 GHz. The conesphere is
coated with 0.13 in(0:1�) thick ferrite(�r = 2:5�j1:25,�r = 1:6�j0:8):
The sphere has a radius of 2.947 in(2:247�); the cone has a half-angle of
7� at the tip and a length of 23.821 in(18:164�), and the cone is tangent
to the sphere at the junction point.

Fig. 10. RCS of a SCUD-like missile at 1 GHz. The missile is a con-
ducting core coated with 3 cm(0:1�) thick ferrite (�r = 2:5 � j1:25;
�r = 1:6 � j0:8); and it is 12.5 meters(41:7�) tall. As shown, there are
several 3 cm wide by 3 cm deep(0:1�� 0:1�) gaps on the missile surface.

(a)

(b)

(c)

Fig. 11. Bistatic RCS of a spherical Luneburg lens. The lens has permitivity
�r = 2� (r=a)2; and the circles reprsent data given in [17]. (a)koa = 5:
(b) koa = 10: (c) koa = 31:4
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Luneburg lens of three different sizes is shown in Fig. 11. For
the first two lenses, note the agreement with data given in [17].

The numerical results presented show the validity and utility
of the method. Good agreement is achieved in the comparison
with exact techniques and with measurements. Further, it is
seen that large radar targets with inhomogeneous materials
can be considered.

IV. CONCLUSION

A novel efficient FEM algorithm to compute the scattering
from an arbitrary BOR is developed. Because of its versatility
in modeling complex shapes and inhomogeneous materials, the
FEM possesses advantages over other computational methods
in its ability to handle arbitrary BOR’s. For instance, by
using triangular elements, the FEM can more accurately model
arbitrarily shaped geometries than can FDM’s, which rely on
rectangular, cylindrical, or spherical grids. Also, the FEM can
handle inhomogeneous materials without the large increase in
computational complexity found in integral equation methods.
By using mixed finite elements, the FEM can compute either
the electric field or the magnetic field directly, without the
problems posed to other three-component formulations by
material discontinuities and spurious solutions. Cylindrical
PML efficiently and accurately truncates the FEM mesh, with-
out requiring a spherical boundary, a large distance between
the scatterer and the boundary, or an increase in the matrix
bandwidth. The FEM algorithm using mixed finite elements
and PML shows good agreement with exact techniques and
with measured data, and it effectively handles both pene-
trable and impentrable targets as well as large targets with
inhomogeneous materials.
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