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Abstract—We demonstrate that a method of moments scatter-
ing code employing high-order methods can compute accurate
values for the scattering cross section of a smooth body more
efficiently than a scattering code employing standard low-order
methods. Use of a high-order code also makes it practical to
provide meaningful accuracy estimates for computed solutions.

Index Terms—Boundary integral equation, electromagnetic
scattering, high-order numerical method, method of moments.

I. INTRODUCTION

A common misconception about method of moments solu-
tions to scattering problems is that they cannot produce

results accurate to more than a few decimal places. Such a
limitation cannot be fundamental. The method of moments
technique results from discretizing an integral formulation of
the wave equation, which, in its continuous form, is exact. We
expect that the solution to the discretized integral equation will
converge to the solution of the continuous integral equation in
the limit as the discretization scale size is reduced to zero, if
finite precision effects are negligible.

The problem with achieving high accuracy is not a fun-
damental one but rather a practical one, and it stems from
the almost universal use of low-order numerical methods in
scattering codes. Low-order numerical methods, while simpler
to implement, suffer from the fact that the computer resources
(e.g., memory and CPU time) required to achieve a given
solution accuracy grow rapidly as the accuracy requirement
increases. Even for scatterers only a few wavelengths in size,
the computer resources required to compute cross sections
to more than a few digits of accuracy may be excessive.
High-order methods are specifically designed to overcome
such limitations by reducing the incremental cost of accuracy
improvements.

FastScatTM is a general purpose, method of moments scatter-
ing code [1] developed at Hughes Research Laboratories (now
HRL Laboratories) that employs high-order methods in its
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current basis functions, quadratures, and geometry description.
The focus of this paper is on the current basis functions and
how they influence the convergence rate of computed cross
sections for two dimensional (2-D) scattering problems. We
will demonstrate that high-order methods make it practical to
achieve solution accuracies limited only by machine precision.
Such a demonstration is not merely of academic interest.
High accuracies at intermediate stages of the calculation are
sometimes required to achieve even engineering accuracies in
the final result. Furthermore, the ability to obtain accuracy
improvements at relatively low cost has the added benefit
that it becomes possible to obtain meaningful estimates of the
accuracy of a computed solution [2]. Without some estimate
of its accuracy, a computed solution is of limited usefulness.

II. SCALAR INTEGRAL EQUATIONS

The electromagnetic scattering problem for a three-
dimensional (3-D) scatterer that is translationally invariant in
one direction can be decoupled into two independent problems,
each of which is isomorphic to a two dimensional scalar
scattering problem with a different boundary condition. In the
TM case, the incident electric field is polarized parallel to the
axis of symmetry; in the TE case, it is the incident magnetic
field. The boundary conditions for the 2-D scalar scattering
problem corresponding to a perfect electrical conductor (PEC)
in 3-D are Dirichlet for TM polarization and Neumann for
TE polarization.

For the TM polarization case on the electric
field integral equation for PEC boundary conditions is

(1)

where is the incident field and is the surface charge
density. It is defined as the normal derivative of the total field

on the surface, i.e.,

(2)

where is the outward normal to the scattering surface at
The integral is taken around the contour given by

the intersection of the 3-D scattering surface and a plane
perpendicular to the axis of symmetry. The kernelis the
Green function of the Helmholtz wave equation in 2-D, namely

(3)
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where is the zeroth-order Hankel function of the first
kind and is the wavenumber of the incident field. Similarly,
for the TE polarization case on , the electric
field integral equation is

(4)

The correspondence between the scalar quantitiesand
and the parallel (to the surface) components of the electric
and magnetic fields is given by

(5)

(6)

in the TM case and

(7)

(8)

in the TE case, where is the direction of translational invari-
ance, is the surface normal, is the angular frequency, and
and are the dielectric constant and magnetic susceptibility of
the external medium, respectively. All fields implicitly contain
the time dependence factor

A Galerkin method of moments solution [3] to the continu-
ous scalar field equation, (1), proceeds by first expanding the
unknown charge in terms of basis functions ,

(9)

and then testing the equation with each of the basis functions
by applying the operator to both sides. The
result is a matrix equation of the form

(10)

where

(11)

and

(12)

Similarly, we can discretize the scalar charge equation, (4), by
expanding the unknown field as

(13)

and applying the testing operators to arrive at the matrix
equation

(14)

where

(15)

and

(16a)

(16b)

(16c)

The second form for is like the first in that it requires
differentiating the kernel twice. In the first form they are
normal derivatives; in the second they have been converted to
tangential derivatives by use of the Helmholtz equation. Dif-
ferentiating the kernel exacerbates the singularity of the kernel
at , which is unattractive from a numerical standpoint
unless some smoothing operator is applied to the kernel before
differentiation. FastScat uses a high-order regulated kernel [4]
that is analytic everywhere to avoid this difficulty. The third
form is obtained from the second by twice integrating by
parts. This reduces the singularity of the kernel to that of the
Dirichlet case. It does, however, require basis functions that
are differentiable.

III. H IGH-ORDER METHODS

FastScat uses patch-based basis functions for both the TM
and TE polarization cases. That is to say the basis functions
are nonzero only on individual patches. The patches are
arbitrarily curved line segments parameterized by a function

The basis functions are defined in terms of
the surface parameterization according to

(17)

where is the th Legendre polynomial and

(18)

is the metric for the patch [5]. The normalization factors
are chosen to make the basis functions orthonormal when
integrated over a patch, i.e.,

(19)

The contribution to the overall solution error due to surface
misrepresentation can be eliminated by internally representing
the surface using its exact functional form [6]. Using the
combination of high-order basis functions and an exact surface
representation, FastScat can obtain a high-order approximation
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to the smoothly varying source distribution that is to be
expected on a smooth scattering surface.

By contrast, standard, low-order method of moments im-
plementations use flat segments to approximate the surface
geometry and basis functions that are constant (in the TM case)
or piecewise linear (in the TE case) on a patch to approximate
the sources. Representing a smoothly curved scatterer using
flat segments is an example of surface representation error.
Using flat segments further degrades the accuracy of the com-
putation by introducing artificial edges, which cause spurious
diffraction. Constant (or “pulse”) basis functions are equivalent
to the zeroth-order basis functions in FastScat; piecewise
linear (or “rooftop”) basis functions can be constructed from
FastScat’s zeroth-order and first-order basis functions. The
advantage of having higher order polynomial basis functions
is that they can provide accurate approximations to smooth
functions more efficiently than pulse or rooftop basis functions
alone can.

The third numerical method that must be high order to
achieve high-order convergence in the final result involves nu-
merical evaluation of integrals such as those in (12) and (16).
Gaussian quadrature is a well-known high-order method for
evaluating integrals of nonsingular integrands. The impedance
matrix elements of (12) and (16) fall into this category when
the regions of integration of and do not intersect.
Such integrals may be evaluated efficiently with Gaussian
quadrature and typically are, even in standard method of
moments codes. The trouble begins when the regions of
integrationdo intersect, as occurs when the patches involved
touch or are the same. In such cases, standard Gaussian
quadrature is reduced to the status of a low-order method
[7], [8]. So-called “singularity removal” (which is misnamed
because, although it removes the infinity in the kernel at

, it does not eliminate the singularity of the kernel at
in the strict mathematical sense) is often called upon to

handle such integrals, even though it does not actually restore
the high-order behavior of Gaussian quadrature.

Several schemes for high-order evaluation of singular inte-
grands have been devised for and implemented in FastScat.
One involves using quadrature rules that are specific to the
singularity. For 2-D, where the singularity of the kernel is
logarithmic, high-order “lin-log” rules [9] have been devel-
oped. They are designed to exactly integrate products of
polynomials and logarithms. An alternate approach that is
more easily extended to the 3-D scattering case, involves
tampering with the kernel to eliminate the singularity at

, but doing it in such a way that convolutions of the kernel
with polynomial functions are still computed exactly [4]. The
resulting function is regular (i.e., analytic)—hence, the name
“regulated kernel”. Convolutions of smooth functions with an
appropriate regulated kernel may be evaluated in a high-order
fashion by means of standard Gaussian quadrature. Both of
these methods lead to similar results. The calculations reported
in this paper were performed using a high-order regulated
kernel and Gaussian quadrature.

High-order methods have the potential to greatly improve
the efficiency of obtaining accurate numerical results. How-
ever, like a chain whose strength is limited by its weakest

link, the convergence rate of an algorithm whose final result
depends on several numerical methods, is limited by the
convergence rate of its lowest order method. For scattering
computations, this applies to the numerical methods used for
surface representation, basis functions, and quadratures. To
show how the method order of one of these components affects
the rate of convergence of the full solution, it is best to vary
that one while setting the method order for each of the other
two components high enough that they do not contribute any
noticeable error. With FastScat, the user can control the order
of each of these three numerical methods.

The focus of this paper is on high-order basis functions and
how they can be employed to efficiently compute accurate
results. Therefore, the calculations summarized here show the
effect of varying the basis function order while using exact
surface representations and quadrature orders high enough that
numerical integration error was negligible. In normal usage,
one generally uses exact surfaces and sets the orders of the
basis functions and the quadratures to be no higher than
necessary to achieve the desired accuracy in the final result.

IV. RESULTS

Measuring the order of convergence of a numerical method
requires observing how the error in the final result responds to
changes in the discretization. For small enough discretization
scales , we expect the error to scale as for an

th-order numerical method.
In this next two sections, we present results of FastScat

calculations on canonical 2-D geometries (a circle and an
ellipse) that demonstrate how the rate of convergence varies
with discretization scale size and basis function order. The
third subsection is devoted to a large 2-D scattering geometry
we call the “bat.” The bat is prototypical of scatterers whose
cross section has a large dynamic range as a function of angle.
For such scatterers, the utility of a high-order scattering code
becomes evident even at “practical” accuracies. Sun SPARC
10’s were used for the circle calculations; the ellipse and bat
calculations were performed on IBM RS/6000 computers.

A. Circle

The circle is one of the best geometries to use for investigat-
ing the convergence properties of a scattering code because it
has no geometrical singularities (e.g., edges and corners) and
the answer can be computed to arbitrary accuracy by summing
the Mie series. This means that we can determine exactly and
unambiguously what the errors are in our computed solutions,
which eliminates one of the sources of disagreement about
how to quantify solution accuracy.

We used FastScat to compute the bistatic cross section
of -radius circles for Dirichlet and Neumann boundary
conditions, corresponding to TM and TE polarizations, re-
spectively. The circles were divided into equal segments,
each segment being represented internally as a circular arc.
Quadrature orders were set high enough to guarantee that
numerical integrations would be accurate to better than one
part in 10
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Fig. 1. Bistatic cross section of a1�-radius circle for TM and TE polariza-
tion (Mie series).

Fig. 2. Fractional difference between the cross section computed by FastScat
using pulse basis functions and the exact cross section (Fig. 1) as a function of
observation angle. The curves are labeled by the number of identical segments
into which the1�-radius circle was divided.

We performed a series of calculations with different basis
function orders and different numbers of segments, and com-
pared against the exact results (Fig. 1). A sample of the results
is shown in Fig. 2 for the case of zeroth-order basis functions
and TM polarization. The error in the cross section varies as
a function of bistatic scattering angle. It is evident, however,
that, for 64 or more patches, increasing the number of patches
by a factor of four reduces the overall error by a factor of
about 64.

We can make a stronger quantitative statement about the
discretization error if we condense the error versus angle
information into a single number for each discretization.
Of the many ways to do this, we have investigated three:
maximum relative error, maximum error average cross
section, and root mean square (rms) error. For this particular
problem, the result is essentially independent of which measure
of error is chosen. Fig. 3 shows maximum relative error

) versus density of unknowns
plotted on a log–log scale for basis function orders zero, one,
and two, and numbers of patches ranging from four to 4096.
Consider the TM polarization case first. The most important
feature to note is that, for enough unknowns, the data fit a

Fig. 3. Log-log plot of maximum relative error versus density of unknowns
for the TM and TE polarization cases. Each set of points is labeled by basis
function order.

linear trend line whose slope increases as the basis function
order increases. Since the discretization scaleis inversely
proportional to the number of unknowns, this simply reflects
the fact that the error diminishes as , where increases
with method order. In fact, the slopes of the lines connecting
constant basis function points are close to integers—three
for zeroth-order, five for first-order, and seven for second-
order—indicating that the order of convergence of the cross
section when using th-order basis functions is

On the same plot, we also show an example of how the
surface model affects the convergence rate. The dashed curve
connects points that were computed by replacing the circular
arc patches with flat patches. The order of the quadratures was
the same as in the previous case. For this case, however, only
one basis function order is shown, namely zero. The reason
is that the poor surface representation so limits the rate of
convergence that increasing the order of the basis functions has
essentially no effect on the accuracy of the solution. Curves for
higher basis function orders are virtual copies of the zeroth-
order result, shifted to higher numbers of unknowns. In all
such cases, the error in the cross section is consistent with
scaling.

In the TE case, the slopes of the lines connecting constant
basis function points are close to one for zeroth order, three
for first order, and five for second order, indicating that the
order of convergence of the cross section when usingth-
order basis functions is The dashed curve
connects points computed according to the standard method
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Fig. 4. Semilog plot of maximum relative error versus density of unknowns
for TM scattering from a10�-radius circle. Points corresponding to different
basis function orders for a fixed patch size are connected by lines and labeled
by the number of patches.

of moments procedure for TE polarization, namely, by putting
rooftop basis functions on a faceted approximation to the
scatterer. It converges more rapidly than do the calculations
that used zeroth-order (i.e., pulse) basis functions with an
exact geometry representation. This is not surprising given that
currents modeled by rooftop basis functions are guaranteed to
be continuous across patch boundaries, whereas those modeled
by pulse basis functions are not. As in the TM case, however,
using higher order basis functions, whether patch-based or
edge-based, does not improve the order of convergence when
a low-order geometry representation is used. It only increases
the number of unknowns used to achieve a given accuracy.
In all such cases, the error in the cross section is consistent
with scaling.

Since memory usage is proportional to , these plots
also show how method order affects the relationship between
accuracy and memory used. For errors less than about 10
in the TM case and one in the TE case, not only are the
errors in the cross sections lower when high-order methods are
employed, but also the marginal cost of additional accuracy is
lower.

In the plots shown so far, curves connect data points
corresponding to decreasing patch sizes at a constant method
order. In finite element terminology this is known as “-
refinement.” As we have seen,-refinement on a smooth
scatterer results in geometric convergence in the cross sec-
tion. Alternatively, one can take the same data and make
a plot by connecting points of increasing method order for
a fixed patch size. This is known as “-refinement.” The
result of doing this for bistatic scattering from a -radius
circle and TM polarization is shown in Fig. 4. The curves
tend toward straight lines, which, on a semilog plot, indi-
cates exponential convergence. Exponential convergence in the
computed cross section is characteristic of-refinement on a
smooth scatterer when high-order polynomial basis functions
are used.

Methods that achieve high-order convergence in general,
and exponential convergence in particular, have obvious ad-
vantages for efficiently computing accurate cross sections.

Fig. 5. Log-log plot of maximum relative error versus total computation
time required to calculate the bistatic cross section of a10�-radius circle
with TM polarization. Points corresponding to different basis function orders
and a fixed patching are connected by lines, which are labeled by the number
of equal arc length patches used.

What may be less obvious is the fact that they facilitate
accuracy estimation for computed solutions. For example,
suppose we had not had an independent means (such as the
Mie series for a circle) for computing a suitably accurate
reference solution. We could still obtain an estimate of the
accuracy of a given computed solution by comparing it to
a reference solution generated by redoing the computation
with an even finer discretization. To be useful, however,
the reference solution must be significantly more accurate
than the comparison solution. Obtaining a suitable reference
solution using low-order methods may require doubling or
quadrupling the number of patches, and hence the number
of unknowns. The additional cost of such a calculation may
be so high as to make it impractical. On the other hand, gen-
erating the reference solution by increasing the basis function
order can produce a significantly better answer with only a
modest increase in the number of unknowns. The increase in
required memory and computation time is likewise modest. In
our opinion, the widespread reliance on low order methods
is what accounts for the fact that it is virtually unheard
of to see accuracy estimates accompanying computed cross
sections.

Another observation that may be made from Fig. 4 is that
the way to achieve a high accuracy result using the least
memory (i.e., fewest unknowns) is to make the patches large
and put high-order basis functions on them. A look at run
times instead of unknowns/memory usage leads to the same
conclusion. Fig. 5 shows that for TM scattering from a -
radius circle, the total computation time required to achieve a
given accuracy decreases as the number of patches decreases.
A point of diminishing returns is reached at around 16 patches,
at which point the arc length of each patch is about The
optimum distribution of patch sizes for an arbitrary scatterer
will depend on its geometry. The general rule of thumb
that we follow for patching smooth scatterers is to make
the patches about one wavelength long, except in regions
where the geometry is strongly curved. In such regions, the
patches should be some moderate fraction of the local radius
of curvature.
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Fig. 6. Monostatic cross section of a20� � 2� ellipse (shown with 32
patches) for TM polarization.

B. Ellipse

A good candidate geometry on which to apply this rule of
thumb is the ellipse. We can describe the ellipse by
the parametric equations

(20a)

(20b)

where and A sensible patching, which
puts the highest density of patches in the most highly curved
regions and vice versa for the flatter regions, is obtained if the
patches cover equal increments in the parameter, as indicated
in the inset to Fig. 6.

We used FastScat to compute the monostatic cross section
in TM polarization of a ellipse using several different
combinations of basis function order and number of patches. In
all cases, an exact surface representation was used to eliminate
surface representation error, and the quadrature order was set
high enough to guarantee that quadrature error would have
an insignificant effect on the final accuracy. The reference
solution was computed by putting tenth-order basis functions
on an ellipse divided into 160 patches. Although we did not
know the accuracy of the reference solutiona priori, we have
deduced from the convergence behavior of the comparison
solutions that it is at least ten digits. A plot of the monostatic
cross section versus angle for the reference solution is given
in Fig. 6.

Fig. 7 demonstrates that one can realize exponential conver-
gence in the cross section by using high-order basis functions
with a fixed patching. In the high-accuracy regime, memory
usage is optimized by using large patches and high-order basis
functions. In the low-accuracy regime, the accuracy is not that
sensitive to the discretization for a given density of unknowns.
The accuracy at which the various curves tend to bunch up is
geometry dependent, but, as a general rule, can be expected
to decrease as the problem size increases.

The analog to Fig. 5 for the ellipse is Fig. 8.

C. Bat

A bat is composed of straight faces connected smoothly by
circular arcs of radius There are two long edges of length

Fig. 7. Semilog plot of maximum relative error versus density of unknowns
for TM scattering from a20�� 2� ellipse. Points corresponding to different
basis function orders for a fixed patch size are connected by lines and labeled
by the number of patches.

Fig. 8. Log-log plot of maximum relative error versus total computation time
required to calculate the monostatic cross section of a20�� 2� ellipse with
TM polarization. Points corresponding to different basis function orders and
a fixed patching are connected by lines, which are labeled by the number of
patches used.

Fig. 9. “Bat” geometry.

and six short edges, each of length , at right angles to each
other. The surfaces of the corresponding 3-D bat are assumed
to be perfect conductors. It is interesting from a practical
point of view because it has three high cross section specular
reflection regions (one of which is the 2-D analog of a corner
cube) and a low cross section everywhere else (see Fig. 9).
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Fig. 10. Monostatic RCS ofR = 1�; L = 300� bat in TM polarization. Low-order result computed using zeroth-order basis functions on1

5
� patches.

High-order result computed using fourth-order basis functions on1� patches. Both computations used 6000 unknowns.

The results shown here are for Fig. 10
shows two computations of the monostatic cross section as a
function of incidence angle for Dirichlet boundary conditions
(i.e., TM polarization). One computation was performed using
low-order basis functions, the other used high-order basis func-
tions. Both calculations used an exact surface representation,
quadratures good to at least eight digits of accuracy, and
exactly 6000 unknowns to represent the sources. In the former
case, the surface was broken up into 6000 segments, each
about long, and the sources were represented by pulse basis
functions (i.e., one unknown per segment). This constitutes the
standard, low-order procedure (except for the exact surface
representation used on the circular arcs) for solving a 2-D
scattering problem with TM polarization. In the latter case, the
surface was divided into 1200 patches, each aboutlong, and
basis functions up to fourth-order were employed to represent
the sources (i.e., five unknowns per segment).

The two plots are very similar over a good portion of the
angular range, particularly in regions of high cross section.
There are narrow peaks at 45 and 135as expected and a
broader peak centered at 180, resulting from the “corner
square” effect. Note that the oscillations evident in the cross
section are the result of interference, not due to any solution
error. However, in the angular ranges from 0 to 30and 60
to 120 , there are significant disagreements. The “spikes” in
the upper plot Fig. 10 are suspicious looking. Which is right?
How can one be sure?

Having high-order methods at one’s disposal makes it
possible to answer these questions with the kind of certainty
that is impractical to attain with low-order methods. If we
keep the same patching of the bat, but allow up to fifth-order
basis functions instead, the number of unknowns increases to
7200. This corresponds to a 44% increase in the amount of
memory required to store the impedance matrix and a 73%
increase in the amount of CPU time required to LU decompose

the impedance matrix (which is the most time-consuming step
in the solution process). More importantly, allowing for one
higher polynomial order to represent the sources improves the
accuracy of the solution significantly. So much so that we are
justified in using the fifth-order solution as a reference solution
against which we can compare the lower-order solutions in
order to estimate their accuracies. To compute a reference
solution of comparable accuracy by the standard, low-order
technique would require subdividing the 6000 patches many
times into smaller patches. The number of unknowns would
increase significantly. In principle, it could be done, but since
CPU time for LU decomposition and memory for impedance
matrix storage scale so badly with number of unknowns,
the cost would be so exorbitant as to make the procedure
impractical.

Fig. 11 shows plots of the differences between the fifth-
order reference solution and the two solutions plotted in
Fig. 10. It is evident that the fourth-order solution is the better
of the two. As expected, the error is least where the cross
section is highest. The estimated error of the fourth-order
solution is generally below 10 ; at a few angles it rises
to almost 10 If error bars were to be plotted on the high-
order data of Fig. 10, they would all be less than the thickness
of the plotted line. Fig. 11 also shows the estimated error
of the low-order solution to be generally higher. Whereas it
is probably acceptable over angular regions where the cross
section is high, in the low cross section region the error cannot
be considered acceptable, exceeding, as it does, 20 dB for
certain angles. Similar results obtain for TE polarization.

V. SUMMARY

The unfavorable tradeoff between cost and problem size for
method of moments solutions to scattering problems is well
known and several so-called “fast” methods, such as the fast



690 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999

Fig. 11. RCS error with respect to reference solution computed with fifth-order basis functions on1� patches (7200 unknowns). Upper curve: zeroth-order
calculation; lower curve: fourth-order calculation.

multipole method [10], have been devised in recent years to
address it.

The subject of this paper is another tradeoff that, while no
less important, is apparently much less widely appreciated. It
is the tradeoff between cost and accuracy for a fixed problem
size. Improving the accuracy of a computed solution requires
refining the discretization, which in turn requires more memory
and more computation time. With low-order methods the
amount of additional computer memory and time required to
achieve a more accurate result may be substantial. High-order
methods are designed to make accuracy improvements much
less costly.

The focus in this paper has been on using high-order basis
functions to compute cross sections in 2-D. High-order basis
functions are part of the triad of high-order methods that
make FastScat a high-order scattering code. The results show
that by using high-order methods it is possible to achieve
very accurate solutions to simple scattering problems on a
workstation in a reasonable amount of time. Furthermore, we
have demonstrated that the solution converges at a geometric
rate as a function of patch size for fixed basis function order
and exponentially as a function of basis function order for
fixed patch size. For high accuracies, the most computationally
efficient solutions, in terms of both memory and CPU time,
are produced by using high-order basis functions on large
patches.

High-order methods are important for doing large problems
as well. In fact, the adverse effects of a low-order discretization
are likely to manifest themselves even more prominently as
problems grow in size. The error caused by a low-order
discretization will be particularly noticeable on scatterers
whose cross section has a large dynamic range as a function
of angle. We devised a large 2-D scatterer called the bat
in order to demonstrate this effect. We observed that where
the cross section is high, solutions computed using low-order

and high-order basis functions were about the same, whereas
in the more interesting regions where the cross section is
low, the high-order solution is accurate while the low-order
solution has significant errors. Had we used a low-order
surface representation the result would likely have been worse
still. The bat also demonstrated the practical utility of high-
order methods for estimating the accuracy of a computed
solution.
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