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Numerical Solution of 2-D Scattering
Problems Using High-Order Methods
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Abstract—We demonstrate that a method of moments scatter- current basis functions, quadratures, and geometry description.
ing code employing high-order methods can compute accurate The focus of this paper is on the current basis functions and
values for the scattering cross section of a smooth body more gy they influence the convergence rate of computed cross
efficiently than a scattering code employing standard low-order . - . .
methods. Use of a high-order code also makes it practical to se_ctlons for two dlmen5|onal (2-D) scattering p_roblemfs. We
provide meaningful accuracy estimates for computed solutions. Will demonstrate that high-order methods make it practical to
achieve solution accuracies limited only by machine precision.
Such a demonstration is not merely of academic interest.
High accuracies at intermediate stages of the calculation are
sometimes required to achieve even engineering accuracies in

. INTRODUCTION the final result. Furthermore, the ability to obtain accuracy

common misconception about method of moments solipprovements at relatively low cost has the added benefit
Ations to scattering problems is that they cannot produéeat it becomes possible to obtain meaningful estimates of the
results accurate to more than a few decimal places. Suckgguracy of a computed solution [2]. Without some estimate
limitation cannot be fundamental. The method of momeng its accuracy, a computed solution is of limited usefulness.
technique results from discretizing an integral formulation of
the wave equation, which, in its continuous form, is exact. We Il. SCALAR INTEGRAL EQUATIONS
expect that the solution to the discretized integral equation will

converge to the solution of the continuous integral equation ciﬂTzﬁsigglztrgrgag:ciferesf?:]znirs]gtra?\rsolg?omnallf Orinvilri?nrte ien'
the limit as the discretization scale size is reduced to zero,olne direction(can)be decounled into two inde engent roblems
finite precision effects are negligible. P P P '

each of which is isomorphic to a two dimensional scalar

The problem with achieving high accuracy is not a fun: attering problem with a different boundary condition. In the

damental one but rather a practical one, and it stems ersl[i/I o o )
the almost universal use of low-order numerical methods " €@se the incident electric field is polarized parallel to the
is of symmetry; in the TE case, it is the incident magnetic

scattering codes. Low-order numerical methods, while simpl?fld The boundary conditions for the 2-D scalar scattering

to implement, suffer from the fact that the computer resourc rqoblem corresponding to a perfect electrical conductor (PEC)
.g., memory an PU time) requir hiev iV - o
(e.g., memory and CPU time) required to achieve a g in, 3-D are Dirichlet for TM polarization and Neumann for

solution accuracy grow rapidly as the accuracy requirem .
y 9 pIcy y red polarization.

increases. Even for scatterers only a few wavelengths in siz L , .
the computer resources required to compute cross secti? Eor the TM polarization casg)(z' on C) = 0], the electric

to more than a few digits of accuracy may be excessivére.]FOI integral equation for PEC boundary conditions is
High-order methods are specifically designed to overcome e , , ,
such limitations by reducing the incremental cost of accuracy P (x) = _jgc dl" G(z, ' )o (') (1)
improvements.

FastScdt is a general purpose, method of moments scattavhere ¢i*° is the incident field and is the surface charge
ing code [1] developed at Hughes Research Laboratories (ndensity. It is defined as the normal derivative of the total field
HRL Laboratories) that employs high-order methods in it¢ on the surface, i.e.,

Index Terms—Boundary integral equation, electromagnetic
scattering, high-order numerical method, method of moments.
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where Hél) is the zeroth-order Hankel function of the firsiand
kind andk is the wavenumber of the incident field. Similarly, _ X o ) )
for the TE polarization cas@r(z’ on C) = 0], the electric Zij = fc dl fi(:c)(n~V)7§C di'(w - V'G(z,2')) f;(2")

field integral equation is (16a)
V) = (309) G V@) @) = @)
C C C
r 2
The correspondence between the scalar quantjtiasd o . <k2(ﬁ i) — a—/)G(w,x’):| 1) (16Db)
and the parallel (to the surface) components of the electric L 9lol
and magnetic fields is given by _ dl dl’
C C
E\(z) =9 (x)2 (5) r 4 (o
Sl R a@ e - 200 L G,
H”(I)I - ZXn (6) L
W (16c)

in the TM case and The second form f0|Z~ij is like the first in that it requires

H(z) =y(x)2 @) dlfferentlatl_ng _the.k_ernel twice. In the first form they are
o(x) normal derivatives; in the second they have been converted to

Ej(z)=——nx2z (8) tangential derivatives by use of the Helmholtz equation. Dif-
we

ferentiating the kernel exacerbates the singularity of the kernel
in the TE case, wherg is the direction of translational invari- at x = z’, which is unattractive from a numerical standpoint
ances is the surface normal, is the angular frequency, ard unless some smoothing operator is applied to the kernel before
andy are the dielectric constant and magnetic susceptibility dffferentiation. FastScat uses a high-order regulated kernel [4]
the external medium, respectively. All fields implicitly contairthat is analytic everywhere to avoid this difficulty. The third
the time dependence factef“*. form is obtained from the second by twice integrating by

A Galerkin method of moments solution [3] to the continuparts. This reduces the singularity of the kernel to that of the
ous scalar field equation, (1), proceeds by first expanding tbeichlet case. It does, however, require basis functions that
unknown charger(z) in terms of basis functiong;(x), are differentiable.

o(x) = Z I; fi(x) ©) lll. HIGH-ORDER METHODS
J

. . ) ) ~ FastScat uses patch-based basis functions for both the TM
and then testing the equation with each of the basis functiogisy TE polarization cases. That is to say the basis functions

by applying the operatog.. ds’ fi(a’)- to both sides. The are nonzero only on individual patches. The patches are

result is a matrix equation of the form arbitrarily curved line segments parameterized by a function
V=71 (10) z(u),0 < w < 1. The basis functions are defined in terms of
the surface parameterization according to
where
V2 1
| Fulw) = Y222 p(2u - 1) 17)
Vi = 74 dl () f(=) (11) INGD)
C
q where P, is thenth Legendre polynomial and
an
oz\? dy 2
Zi; = fc dl fc dl fi(x)GQ(z, &) ().  (12) g(u) = <%> + <£> (18)
Similarly, we can discretize the scalar charge equation, (4), ISy the metric for the patch [5]. The normalization factors
expanding the unknown field as are chosen to make the basis functions orthonormal when

integrated over a patch, i.e.,

P(@) = S5ifi(x) (13)
; / (@)

and applying the testing operators to arrive at the matrix 1
equation = / du /() frn () fr(w) = Span- (19)
0
V=25 (14) The contribution to the overall solution error due to surface

misrepresentation can be eliminated by internally representing

the surface using its exact functional form [6]. Using the
V= _j[ dl [ - V¢ (x)] fi(z) (15) combination of high-order basis functions and an exact surface
c representation, FastScat can obtain a high-order approximation

where
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to the smoothly varying source distribution that is to bénk, the convergence rate of an algorithm whose final result
expected on a smooth scattering surface. depends on several numerical methods, is limited by the
By contrast, standard, low-order method of moments inconvergence rate of its lowest order method. For scattering
plementations use flat segments to approximate the surfaomputations, this applies to the numerical methods used for
geometry and basis functions that are constant (in the TM casa)face representation, basis functions, and quadratures. To
or piecewise linear (in the TE case) on a patch to approximateow how the method order of one of these components affects
the sources. Representing a smoothly curved scatterer udimg rate of convergence of the full solution, it is best to vary
flat segments is an example of surface representation ertbat one while setting the method order for each of the other
Using flat segments further degrades the accuracy of the came components high enough that they do not contribute any
putation by introducing artificial edges, which cause spuriomticeable error. With FastScat, the user can control the order
diffraction. Constant (or “pulse”) basis functions are equivalef each of these three numerical methods.
to the zeroth-order basis functions in FastScat; piecewiseThe focus of this paper is on high-order basis functions and
linear (or “rooftop”) basis functions can be constructed frothow they can be employed to efficiently compute accurate
FastScat's zeroth-order and first-order basis functions. Ttesults. Therefore, the calculations summarized here show the
advantage of having higher order polynomial basis functioe$fect of varying the basis function order while using exact
is that they can provide accurate approximations to smogthrface representations and quadrature orders high enough that
functions more efficiently than pulse or rooftop basis functiomsumerical integration error was negligible. In normal usage,
alone can. one generally uses exact surfaces and sets the orders of the
The third numerical method that must be high order thasis functions and the quadratures to be no higher than
achieve high-order convergence in the final result involves noecessary to achieve the desired accuracy in the final result.
merical evaluation of integrals such as those in (12) and (16).
Gaussian quadrature is a well-known high-order method for
evaluating integrals of nonsingular integrands. The impedance IV. RESULTS

matrix elements of (12) and (16) fall into this category when \1easuring the order of convergence of a numerical method

. ) . . .
the regions of integration ofr and =’ do not intersect. oqires observing how the error in the final result responds to

Such integrals may be evaluated efficiently with Gaussiganges in the discretization. For small enough discretization
quadrature and typically are, even in standard method gf;jes7 we expect the error to scale as~ A" for an
moments codes. The trouble begins when the regions .gf,_order numerical method.

integrationdo intersect, as occurs when the patches involved |, this next two sections. we present results of FastScat

touch or are the same. In such cases, standard Gausgiggylations on canonical 2-D geometries (a circle and an
quadrature is reduced to the status of a low-order methgffyse) that demonstrate how the rate of convergence varies
[7], [8]. So-called “singularity removal” (which is misnamedit, giscretization scale size and basis function order. The
becau/se_, although it removes the infinity in the kemel glirq subsection is devoted to a large 2-D scattering geometry
x =/, it does not eliminate the singularity of the kermel &fe call the “bat.” The bat is prototypical of scatterers whose
« =« in the strict mathematical sense) is often called upon {9455 section has a large dynamic range as a function of angle.
handle such integrals, even though it does not actually restei§ sych scatterers, the utility of a high-order scattering code
the high-order behavior of Gaussian quadrature. _ becomes evident even at “practical” accuracies. Sun SPARC
Several schemes for high-order evaluation of singular intgys were used for the circle calculations: the ellipse and bat

grands have been devised for and implemented in FastSegjcylations were performed on IBM RS/6000 computers.
One involves using quadrature rules that are specific to the

singularity. For 2-D, where the singularity of the kernel is
logarithmic, high-order “lin-log” rules [9] have been develA- Circle
oped. They are designed to exactly integrate products ofThe circle is one of the best geometries to use for investigat-
polynomials and logarithms. An alternate approach that iisg the convergence properties of a scattering code because it
more easily extended to the 3-D scattering case, involvkRas no geometrical singularities (e.g., edges and corners) and
tampering with the kernel to eliminate the singularityzat= the answer can be computed to arbitrary accuracy by summing
z', but doing it in such a way that convolutions of the kernehe Mie series. This means that we can determine exactly and
with polynomial functions are still computed exactly [4]. Theinambiguously what the errors are in our computed solutions,
resulting function is regular (i.e., analyticy—hence, the namehich eliminates one of the sources of disagreement about
“regulated kernel”. Convolutions of smooth functions with ahow to quantify solution accuracy.
appropriate regulated kernel may be evaluated in a high-ordeiVe used FastScat to compute the bistatic cross section
fashion by means of standard Gaussian quadrature. Bothobf1A-radius circles for Dirichlet and Neumann boundary
these methods lead to similar results. The calculations reportemhditions, corresponding to TM and TE polarizations, re-
in this paper were performed using a high-order regulategectively. The circles were divided into equal segments,
kernel and Gaussian quadrature. each segment being represented internally as a circular arc.
High-order methods have the potential to greatly improv@uadrature orders were set high enough to guarantee that
the efficiency of obtaining accurate numerical results. Homumerical integrations would be accurate to better than one
ever, like a chain whose strength is limited by its weakepart in 102.
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linear trend line whose slope increases as the basis function
_ . . _ order increases. Since the discretization scéalis inversely
Fig. 2. Fractional difference between the cross section computed by Faaiﬁﬂ#portional to the number of unknowng, this simply reflects
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using pulse basis functions and the exact cross section (Fig. 1) as a functiof 0 . . .
observation angle. The curves are labeled by the number of identical segméf@ fact that the error diminishes &$', wherem increases

into which thelX-radius circle was divided. with method order. In fact, the slopes of the lines connecting
constant basis function points are close to integers—three

We performed a series of calculations with different basfer zeroth-order, five for first-order, and seven for second-
function orders and different numbers of segments, and cofifder—indicating that the order of convergence of the cross
pared against the exact results (Fig. 1). A sample of the resiiggtion when usingth-order basis functions is = 2n + 3.
is shown in Fig. 2 for the case of zeroth-order basis functionsOn the same plot, we also show an example of how the
and TM polarization. The error in the cross section varies &grface model affects the convergence rate. The dashed curve
a function of bistatic scattering angle. It is evident, howevegonnects points that were computed by replacing the circular
that, for 64 or more patches, increasing the number of patclegs patches with flat patches. The order of the quadratures was
by a factor of four reduces the overall error by a factor dhe same as in the previous case. For this case, however, only
about 64. one basis function order is shown, namely zero. The reason

We can make a stronger quantitative statement about iRethat the poor surface representation so limits the rate of
discretization error if we condense the error versus angtenvergence thatincreasing the order of the basis functions has
information into a single number for each discretizatioressentially no effect on the accuracy of the solution. Curves for
Of the many ways to do this, we have investigated threkigher basis function orders are virtual copies of the zeroth-
maximum relative error, maximum erroe average cross order result, shifted to higher numbers of unknowns. In all
section, and root mean square (rms) error. For this particufarch cases, the error in the cross section is consistenta#ith
problem, the result is essentially independent of which meassealing.
of error is chosen. Fig. 3 shows maximum relative error In the TE case, the slopes of the lines connecting constant
(max[|RCS(8) /RCS,.;(6) — 1]]) versus density of unknowns basis function points are close to one for zeroth order, three
plotted on a log—log scale for basis function orders zero, orer first order, and five for second order, indicating that the
and two, and numbers of patches ranging from four to 409@&.der of convergence of the cross section when usitig
Consider the TM polarization case first. The most importantder basis functions i&x = 2n + 1. The dashed curve
feature to note is that, for enough unknowns, the data fitcannects points computed according to the standard method
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Fig. 4. Semilog plot of maximum relative error versus density of unknowrfgg. 5. Log-log plot of maximum relative error versus total computation

for TM scattering from al0A-radius circle. Points corresponding to differenttime required to calculate the bistatic cross section dfoa-radius circle

basis function orders for a fixed patch size are connected by lines and labakid TM polarization. Points corresponding to different basis function orders

by the number of patches. and a fixed patching are connected by lines, which are labeled by the number
of equal arc length patches used.

of moments procedure for TE polarization, namely, by putting/hat may be less obvious is the fact that they facilitate
rooftop basis functions on a faceted approximation to thgcuracy estimation for computed solutions. For example,
scatterer. It converges more rapidly than do the calculatiosgppose we had not had an independent means (such as the
that used zeroth-order (i.e., pulse) basis functions with ame series for a circle) for computing a suitably accurate
exact geometry representation. This is not surprising given theference solution. We could still obtain an estimate of the
currents modeled by rooftop basis functions are guaranteedhtsturacy of a given computed solution by comparing it to
be continuous across patch boundaries, whereas those modgledference solution generated by redoing the computation
by pulse basis functions are not. As in the TM case, howeveyith an even finer discretization. To be useful, however,
using higher order basis functions, whether patch-basedthé reference solution must be significantly more accurate
edge-based, does not improve the order of convergence wiigin the comparison solution. Obtaining a suitable reference
a low-order geometry representation is used. It only increasgsiution using low-order methods may require doubling or
the number of unknowns used to achieve a given accuragyiadrupling the number of patches, and hence the number
In all such cases, the error in the cross section is consistefitunknowns. The additional cost of such a calculation may
with 22 scaling. be so high as to make it impractical. On the other hand, gen-
Since memory usage is proportional 62, these plots erating the reference solution by increasing the basis function
also show how method order affects the relationship betwesitler can produce a significantly better answer with only a
accuracy and memory used. For errors less than about 1Gnodest increase in the number of unknowns. The increase in
in the TM case and one in the TE case, not only are tiequired memory and computation time is likewise modest. In
errors in the cross sections lower when high-order methods at@ opinion, the widespread reliance on low order methods
employed, but also the marginal cost of additional accuracyiss what accounts for the fact that it is virtually unheard
lower. of to see accuracy estimates accompanying computed cross
In the plots shown so far, curves connect data poingections.
corresponding to decreasing patch sizes at a constant methoginother observation that may be made from Fig. 4 is that
order. In finite element terminology this is known as-“ the way to achieve a high accuracy result using the least
refinement.” As we have seem-refinement on a smooth memory (i.e., fewest unknowns) is to make the patches large
scatterer results in geometric convergence in the cross sage put high-order basis functions on them. A look at run
tion. Alternatively, one can take the same data and makemes instead of unknowns/memory usage leads to the same
a plot by connecting points of increasing method order faonclusion. Fig. 5 shows that for TM scattering froni@\-
a fixed patch size. This is known ag-fefinement.” The radius circle, the total computation time required to achieve a
result of doing this for bistatic scattering froml@A-radius given accuracy decreases as the number of patches decreases.
circle and TM polarization is shown in Fig. 4. The curveg point of diminishing returns is reached at around 16 patches,
tend toward straight lines, which, on a semilog plot, indiat which point the arc length of each patch is abéht The
cates exponential convergence. Exponential convergence indpgmum distribution of patch sizes for an arbitrary scatterer
computed cross section is characteristicpaefinement on a will depend on its geometry. The general rule of thumb
smooth scatterer when high-order polynomial basis functiotieat we follow for patching smooth scatterers is to make
are used. the patches about one wavelength long, except in regions
Methods that achieve high-order convergence in generafere the geometry is strongly curved. In such regions, the
and exponential convergence in particular, have obvious gmhtches should be some moderate fraction of the local radius
vantages for efficiently computing accurate cross sectiorts. curvature.
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Fig. 6. Monostatic cross section of 20\ x 2\ ellipse (shown with 32 Fig. 7. Semilog plot of maximum relative error versus density of unknowns

patches) for TM polarization. for TM scattering from &0\ x 2 ellipse. Points corresponding to different
basis function orders for a fixed patch size are connected by lines and labeled
by the number of patches.

B. Ellipse
A good candidate geometry on which to apply this rule of 1 , :
thumb is the20\ x 2 ellipse. We can describe the ellipse by i |
the parametric equations 102 | |
T =acosu (20a) E L 1
y =bsinu (20b) .2 10?4 | 512 .
K R
wherea = 10A and b = 1A. A sensible patching, which % r | I
puts the highest density of patches in the most highly curved 2 10° | 110240
regions and vice versa for the flatter regions, is obtained if the % g . L \ '. 1
patches cover equal increments in the parametas indicated = 108 | 32'*\5‘ "-.,,64 ! i ]
in the inset to Fig. 6. I [ o ]
We used FastScat to compute the monostatic cross section 1010 . LT e R L
in TM polarization of a20\ x 2 ellipse using several different 10 100 1000
combinations of basis function order and number of patches. In Total Computation Time (sec)

all cases, an exact S_urface representation was used to e“m“ﬁﬁ;t.%. Log-log plot of maximum relative error versus total computation time
surface representation error, and the quadrature order wasrégiired to calculate the monostatic cross section 28 x 2 ellipse with
high enough to guarantee that quadrature error would hal)é polarization. Points corresponding to different basis function orders and
an insignificant effect on the final accuracy. The referen@g‘}'éﬁgspﬁtscgfg are connected by lines, which are labeled by the number of
solution was computed by putting tenth-order basis functions
on an ellipse divided into 160 patches. Although we did not
know the accuracy of the reference solutmpriori, we have
deduced from the convergence behavior of the comparison . i
solutions that it is at least ten digits. A plot of the monostatic 45 \
cross section versus angle for the reference solution is given /
in Fig. 6.

Fig. 7 demonstrates that one can realize exponential conver-
gence in the cross section by using high-order basis functions 0° —» -«— 180°
with a fixed patching. In the high-accuracy regime, memory
usage is optimized by using large patches and high-order basis
functions. In the low-accuracy regime, the accuracy is not that
sensitive to the discretization for a given density of unknowns.
The accuracy at which the various curves tend to bunch Uprig. o. “Bat’ geometry.
geometry dependent, but, as a general rule, can be expected

to decrease as the problem size increases. and six short edges, each of lendii3, at right angles to each
The analog to Fig. 5 for the ellipse is Fig. 8. other. The surfaces of the corresponding 3-D bat are assumed
to be perfect conductors. It is interesting from a practical
C. 300X Bat point of view because it has three high cross section specular
A bat is composed of straight faces connected smoothly bsflection regions (one of which is the 2-D analog of a corner
circular arcs of radiugz. There are two long edges of length cube) and a low cross section everywhere else (see Fig. 9).

90°

135°
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Fig. 10. Monostatic RCS off = 1A, L = 300X bat in TM polarization. Low-order result computed using zeroth-order basis functiorﬁskopatches.
High-order result computed using fourth-order basis functiond drpatches. Both computations used 6000 unknowns.

The results shown here are f&r= 1\, L = 300\. Fig. 10 the impedance matrix (which is the most time-consuming step
shows two computations of the monostatic cross section aimahe solution process). More importantly, allowing for one
function of incidence angle for Dirichlet boundary conditionfigher polynomial order to represent the sources improves the
(i.e., TM polarization). One computation was performed usirgccuracy of the solution significantly. So much so that we are
low-order basis functions, the other used high-order basis fuiigstified in using the fifth-order solution as a reference solution
tions. Both calculations used an exact surface representati@@@inst which we can compare the lower-order solutions in
quadratures good to at least eight digits of accuracy, aftfer to estimate their accuracies. To compute a reference
exactly 6000 unknowns to represent the sources. In the forng@fution of comparable accuracy by the standard, low-order
case, the surface was broken up into 6000 segments, efgginique would require subdividing the 6000 patches many
abouti ) long, and the sources were represented by pulse bg¥Res into smaller patches. The number of unknowns would
functions (i.e., one unknown per segment). This constitutes #hérease significantly. In principle, it could be done, but since
standard, low-order procedure (except for the exact surfagEU time for LU decomposition and memory for impedance
representation used on the circular arcs) for solving a 2/Balrix storage scale so badly with number of unknowns,
scattering problem with TM polarization. In the latter case, tH8€ oSt would be so exorbitant as to make the procedure
surface was divided into 1200 patches, each abainng, and MmPractical.

basis functions up to fourth-order were employed to represent':'g' 11 shows plots_ of the differences betyveen the flﬂh'
the sources (i.e., five unknowns per segment). order reference solution and the two solutions plotted in

The two plots are very similar over a good portion of thgig. 10. It is evident that the fourth-order solution is the better

. . . . ._of the two. As expected, the error is least where the cross
angular range, particularly in regions of high cross section

There are narrow peaks at 45 and 138 expected and asectlon is highest. The estimated error of the fourth-order

. - solution is generally below 1¢); at a few angles it rises
broader peak centered at :E80re_su|t_|ng frof“ the_ COMET {5 almost 132)\. If e)r/ror bars were to be plottedgon the high-
square” effect. Note that the oscillations evident in the CrO%¥der data of Fig. 10, they would all be less than the thickness

section are the result of interference, not due to any soluti8p the plotted line. Fig. 11 also shows the estimated error
error. However, in t_he_a_mgular_ ranges from 0 t@ md 60” of the low-order solution to be generally higher. Whereas it
to 120, there are significant disagreements. The “spikes |§ probably acceptable over angular regions where the cross
the upper plot Fig. 10 ire suspicious looking. Which is righttion is high, in the low cross section region the error cannot
How can one be sure* be considered acceptable, exceeding, as it does, 20 dB for

Having high-order methods at one’s disposal makes dgtain angles. Similar results obtain for TE polarization.
possible to answer these questions with the kind of certainty

that is impractical to attain with low-order methods. If we

keep the same patching of the bat, but allow up to fifth-order

basis functions instead, the number of unknowns increases to V. SUMMARY

7200. This corresponds to a 44% increase in the amount ofThe unfavorable tradeoff between cost and problem size for
memory required to store the impedance matrix and a 73¥%ethod of moments solutions to scattering problems is well
increase in the amount of CPU time required to LU decompokerown and several so-called “fast” methods, such as the fast
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Fig. 11. RCS error with respect to reference solution computed with fifth-order basis functidrs matches (7200 unknowns). Upper curve: zeroth-order
calculation; lower curve: fourth-order calculation.

multipole method [10], have been devised in recent years dad high-order basis functions were about the same, whereas
address it. in the more interesting regions where the cross section is
The subject of this paper is another tradeoff that, while dow, the high-order solution is accurate while the low-order
less important, is apparently much less widely appreciated shlution has significant errors. Had we used a low-order
is the tradeoff between cost and accuracy for a fixed problesurface representation the result would likely have been worse
size. Improving the accuracy of a computed solution requirstll. The bat also demonstrated the practical utility of high-
refining the discretization, which in turn requires more memogrder methods for estimating the accuracy of a computed
and more computation time. With low-order methods thgolution.
amount of additional computer memory and time required to

achieve a more accurate result may be substantial. High-order ACKNOWLEDGMENT
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