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Monte Carlo Simulations of Wave Scattering
from Lossy Dielectric Random Rough

Surfaces Using the Physics-Based Two-Grid
Method and the Canonical-Grid Method

Qin Li, Chi Hou Chan,Member, IEEE, and Leung Tsang,Fellow, IEEE

Abstract—In using the method of moments to solve scattering
by lossy dielectric surfaces, usually a single dense grid (SDG)
with 30 points per wavelength is required for accurate results. A
single coarse grid (SCG) of ten points per wavelength does not
give accurate results. However, the central processing unit (CPU)
and memory requirements of SDG are much larger than that of
SCG. In a physics-based two-grid method (PBTG) two grids are
used: a dense grid and a coarse grid. The method is based on
the two observations: 1) Green’s function of the lossy dielectric
is attenuative and 2) the free-space Green’s function is slowly
varying on the dense grid. In this paper, the PBTG method is
combined with the banded-matrix iterative approach/canonical
grid method to solve rough surface scattering problem for both
TE and TM cases and also for near grazing incidence. We
studied cases of dielectric permittivities as high as(25 + i)"0
and incidence angle up to 85�. Salient features of the numerical
results are: 1) an SCG has poorer accuracy for TM case than
TE case; 2) PBTG-banded-matrix iterative approach/canonical
grid BMIA/CAG method speeds up CPU and preserves the
accuracy; it has an accuracy comparable to single dense grid
and yet has CPU comparable to single coarse grid; 3) PBTG-
BMIA/CAG gives accurate results for emissivity calculations and
also for low grazing backscattering problems (LGBA); and 4)
the computational complexity and the memory requirements of
the present algorithm areO(N log(N)) and O(N), respectively,
whereN is the number of surface unknowns on the coarse grid.

Index Terms—Grid generation, Monte Carlo methods, rough
surfaces.

I. INTRODUCTION

T HE scattering of waves from random rough surfaces has
been a topic of continued study for many years because

of its broad applications. Recently, Monte Carlo simulations of
the wave scattering problem have been a common approach
because of the advent of modern computers and the devel-
opment of fast numerical methods. Monte Carlo simulations
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performed by all authors require at least 20 wavelengths
because the surface must have enough valleys and peaks
to be a legitimate statistical sample (realization) in random
rough surface simulations. The most common method that has
been used in numerical simulations is the integral equation
method [1]–[9]. Conventional implementation of the integral
equation method requires an operation and an
computer memory storage. Therefore, the simulation has been
limited to small to moderate surface length with no more
than a few thousand surface unknowns. Over the past few
years, there are several fast numerical methods that have
been developed [10]–[19]. One of them is the banded-matrix
iterative approach/canonical grid method (BMIA/CAG) that
permits the solution of large-scale random rough surface
problems [13]–[19]. The essence of the method consists of
decomposing the interaction into near and nonnear field in-
teractions. The nonnear field interactions are then expanded
on a canonical grid of a horizontal surface so that the fast
Fourier transform (FFT) can be applied. The computational
complexity and the memory requirements for BMIA/CAG
are and , respectively. Another method
for the one-dimensional (1-D) case is by Michielssen’set al.
[12], which has computational complexity of .
For the case of perfectly electrical conductor (PEC), the paper
by Michielssenet al. reports a central processing unit (CPU)
of 8 to 12 min for 4000 unknowns while the BMIA/CAG
method as reported in [17, Table II] reports a CPU of 20 min
for 8000 unknowns. Thus, the two methods are comparable
in CPU time for the PEC case. The BMIA/CAG is also
applied to dielectric rough surface [19]. The experience with
dielectric surface is that the CPU increases much more than
the PEC case.

In the application of method of moments to rough surface
scattering problem, a common implementation is to use a grid
of ten points per wavelength to discretize the surface. We
shall call such a gridding a single coarse grid (SCG). But, to
study scattering by lossy dielectric rough surfaces with high
permittivity, there can be rapid spatial variation of surface
fields. Two alternatives were used. The first alternative is to
use impedance boundary condition [20]. The disadvantage
of this alternative is that an approximation is used in the
problem without any error estimate. The second alternative
is to use a dense grid with a large number of points (say

0018–926X/99$10.00 1999 IEEE



LI et al.: MONTE CARLO SIMULATIONS OF WAVE SCATTERING FROM LOSSY DIELECTRIC RANDOM ROUGH SURFACES 753

more than 20 points) per wavelength. We shall call such a
gridding a single dense grid (SDG). The disadvantage of this
second alternative is that there is a large increase in CPU
and required memory. The physics-based two-grid (PBTG)
method [21] is an improvement over these two alternatives
in that it has the same accuracy as the single dense grid and
yet has CPU comparable with that of the single coarse grid.
Another improvement is that the PBTG method can calculate
the emissivity accurately because the method obeys energy
conservation accurately. In PBTG, two grids were used: a
dense grid and a sparse grid. The sparse grid is that of the
usual ten points per wavelength. The dense grid ranges from
20 to higher number points per wavelength depending on the
relative permittivity of the lossy dielectric medium. The key
point of PBTG is based on the following two observations:
1) Green’s function of the lossy dielectric is attenuative and
2) Green’s function of free-space is slowly varying on the
dense grid. Because of Kramer–Kronig relation, a large real
part of dielectric constant is usually associated with a large
imaginary part. The first property of lossy dielectric gives
a banded submatrix for the Green’s function of the lossy
dielectric. The second property allows us, when using the free-
space Green’s function on the dense grid, to first average the
values of surface unknowns on the dense grid and then place
them on the sparse grid. PBTG speeds up the CPU and yet
preserves the accuracy of the solution. It needs to be mentioned
the PBTG is different from multigrid method. The multigrid
method [10], [22] tries to facilitate the convergence of iteration
in iterative techniques. It entails discretization of the structure
into various grid sizes. The coarse grid corresponds to the
low-frequency portion of the solution while the fine grid
corresponds to that of the high-frequency solution. An iterative
solution is obtained for each level of discretization and the
solutions are interpolated from the coarse grid to the fine
grid. The solution is first obtained in the coarse grid and then
one moves to the next level of fine grid. Once the iterative
solution is obtained in the fine grid, then one has to go back
to the coarse grid to refine the solution. The present method
that we have is based on scattering physics. The purpose
of PBTG is to speed up the matrix-vector product of two
Green’s functions convolving with the surface fields on the
dense grid.

In the previous paper [21], we developed PBTG for TE
case. In this paper, we 1) combine the PBTG method with
the BMIA/CAG method for improving of CPU and memory
requirements; 2) study bistatic scattering coefficients and emis-
sivity for TM case and compare TM and TE results; and 3)
apply to low grazing scattering. We use it to treat a rough
surface with a large surface length since the edge effects have
to be avoided for low-grazing angle incidence [17], [20]. We
use two grids, a dense grid and a coarse grid. The interaction
is divided into (1) very near field of less than one wavelength,
(2) near field of between one wavelength andwavelengths,
and (3) nonnear field beyond wavelengths. In numerical
simulations, is an adjustable parameter so that BMIA/CAG
can be used to solve the equations. In this paper,is fixed
at ten wavelengths. For very near-field interactions, we use a
dense grid which is represented by four banded submatrics.

For near-field and nonnear field interactions, the free-space
Green’s function is slowly varying on the dense grid. We
can first average the fields on the dense grid to get fields
on the sparse grid. The nonnear field interactions are also
expanded on a canonical grid of a horizontal surface so that
the fast Fourier transform (FFT) can be applied. In the lower
medium, nonnear field interactions were neglected because of
lossy properties of the lower medium. The approach is denoted
as PBTG-BMIA/CAG. The computational complexity and the
memory requirements for present algorithm are
and , respectively, where is the number of surface
unknowns on the coarse grid. Using this approach, we illustrate
numerical results of TE and TM wave scattering up to surface
length of 500 wavelengths and 30 000 surface unknowns. Note
that all the surface unknowns on the dense grid are calculated
by this method. The salient features of the numerical results
are as follows.

(1) An SCG has poorer accuracy for TM case than for TE
case.

(2) PBTG-BMIA/CAG speeds up CPU and preserves the
accuracy. It has accuracy comparable to single dense
grid and yet has CPU comparable to single coarse grid.
It also gives surface fields on the dense grid and can
give accurate results of the surface fields when the
surface fields have rapid spatial variation.

(3) PBTG-BMIA/CAG gives accurate results for emissivity
calculations and also for low-grazing backscattering
problems (LGBA).

Thus PBTG-BMIA/CAG produces accurate results on the
dense grid at CPU comparable with that of a single coarse
grid.

In Section II, the formulation of the problem of TE and
TM wave impinging upon a dielectric surface is given in
terms of integral equations. Then the integral equations are
converted into a matrix equation using a single-grid dis-
cretization. In Section III, we implement the physics-based
two-grid algorithm and combine it with the BMIA/CAG
method. In Section IV, the bistatic scattering coefficients and
the emissivity are defined. In Section V, the numerical results
are illustrated.

II. FORMULATION AND SINGLE GRID IMPLEMENTATION

Consider a tapered plane wave with a time
dependence of , impinging upon a 1-D rough surface
with a random height profile . It is tapered so that the
illuminated rough surface can be confined to surface length
[19]. The incident wave is

(1)
where , with a proper choice of the
branch cut, is the wavenumber of the free-space, andis
the parameter that controls the tapering of the incident wave.
Let and denote, respectively, the wave functions for the
upper medium and lower medium. They satisfy the following
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surface integral equations [23]:

(2)

(3)

where denotes a Cauchy integral andand are the two-
dimensional (2-D) Green’s function of the upper and lower
medium that are given by

(4)

(5)

is the zeroth order Hankel function of the first kind and
is the wavenumber of the lower medium. The wave functions

and are related through the boundary conditions on the
surface , namely,

and (6)

where equals and for TE and TM polarization,
respectively. The integral equation is next discretized using
an evenly spaced single grid. The surface is discretized into
a single grid of points for between and and
the points are at

(7)

(8)

where . The matrix
elements , , , and are given by

[16] (9)–(12), shown at the bottom of the page,
where and

, is the first-
order Hankel function of the first kind, and
represent the first and second derivative of evaluated at

, respectively. The matrix equation in (7) and (8) is in the
form of a single grid. Let be the number of points
per wavelength. Usually a sample frequency of is
taken meaning that we have ten points per wavelength. We
shall call such a sampling an SCG. If the sampling frequency
is two or more times denser than the coarse grid, we shall call
it an SDG. The dense grid that we use ranges from
to in the paper.

III. PHYSICS-BASED TWO-GRID METHOD

COMBINED WITH BANDED MATRIX ITERATIVE

APPROACH/CANONICAL GRID METHOD

In this section, we describe the physics-based two-grid
method correlated the BMIA/CAG.

Assume that the upper medium is the free-space and the
lower medium is lossy with the following relative permittivity:

(13)

where stands for loss tangent. Let and represent
the wavelength of the wave with the identical frequency in
the free-space and the lower medium, respectively, and

eger (14)

Then, the relationship between and can be expressed
approximately by

(15)

The number of sampling points needed in the lower medium
should be times more than that in the free-space.

In the physics-based two-grid method, we use two grids
with samplings per wavelength of (coarse grid) and
(dense grid), respectively. Let and be, respectively, the

(9)

(10)

(11)

(12)
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total number of points on the dense grid and the coarse grid.

(16)

(17)

Usually and . We first rewrite (7) and
(8) using the dense grid

(18)

(19)

The Roman numeral subscripts denote indexing with the
dense grid. Note that in the method of PBTG, the surface
field at the dense grid are calculated. It is when the Green’s
function is multiplied with the surface fields on the dense grid,
we can make substantial CPU saving by using PBTG. The
matrix elements represent Green’s function of the
upper medium while represents Green’s function
of the lower medium of the lossy dielectric. To reduce the
calculation, we make the following three observations.

1) The Green’s function in the lower region is heavily
attenuative. A medium with a large real part of dielectric
constant is normally associated with a large imaginary
part. Let be the imaginary part of . If ,
where is a constant, then the field interaction between
the th and the th point is vanishingly small. We can
define a distance limit as dictated by dissipative loss

(20)

outside of which the lower medium Green’s function
can be set equal to zero. The constantdepending on
the loss tangent varies from case to case. In this
paper, was fixed at 1.5.

Based on this observation, we calculate the left-hand
sides of (19) as follows. We approximate

(21)

(22)

where is the distance between theth point and
the th point on the dense grid. Thus, and are
banded matrices and (19) becomes

(23)

2) For nonnear field interaction, Green’s function for the
upper medium is slowly varying compared with Green’s
function of the lossy dielectric lower medium. Thus,
when performing matrix and column-vector multiplica-
tion on the dense grid as indicated in (18), the Green’s
function of the upper medium is essentially constant over

an interval of points on the dense grid. Thus, we can
write

(24)

where and the points with indexes
and are the middle points of the th

point and the th point and the th point
and the th point, respectively. What is done
in (24) is that the surface fields on the dense grid are
first averaged before multiplied by the upper medium
Green’s function.

3) The slowly varying nature of Green’s function of the
upper medium only applies to nonnear field interaction.
For near field interaction, Green’s functionsand
have roughly the same rate of variation. Thus, we need
to separate out a distance, say, outside of which
is much more rapidly varying than .

Based on the observations above, we decompose the
upper medium Green’s function into near field and
nonnear field interactions

(25)

(26)

where , , , and are determined by

(27)

(28)

(29)

(30)

Thus, is the distance outside which the Green’s
function of the lower medium is fast varying compared
with that of free-space Green’s function.

Let and denote the coarse grid indexes. The coarse
grid has surface unknownsand , which are averages of the
dense grid surface unknowns. Thus, if is centered in the
middle of the dense grid points of , , ,
we have

(31)

(32)

We calculate Green’s function of the upper medium on the
coarse grid. These are represented by and and (33)
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and (34), shown at the bottom of the page, where is the
coarse-grid sampling, , and is the dense-grid
sampling. Thus, (18) becomes

(35)

Note in (35) that includes values of
while only has values

of . Thus, we first compute .
Then we use linear interpolation to find on the dense grid.
In (35), we use subscript to represent that interpolation.

In the original PBTG, the BMIA is used to solve matrix (23)
and (35). In this paper, we use BMIA/CAG to solve matrix
equation. We further divide nonnear field interactions into two
regions which are separated by. For the interactions between

and , we implement matrix and vector multiplication
directly. For the interactions larger than, we expand
and in Taylor series as in the BMIA/CAG so that the
FFT’s can be used to compute this part of the matrix-vector
multiplication. The Taylor series expansion is given below:

(36)

Here, represents both and

, , and

. The first three terms of the expansion coefficients
are given in [19].

The accuracy of Taylor series expansion depends on the
ratio of , which, in turn, dictates the bandwidth of the
stored near-field interactions.

IV. BISTATIC SCATTERING COEFFICIENT AND EMISSIVITY

After the matrix equation is solved, the surface field can
be calculated. The bistatic scattering coefficient is a
measure of the scattering from incident angleinto scattered
angle . It is defined by (37), shown at the bottom of the
next page. In (37), and

. The bistatic scattering coefficient has been
normalized by the incident power impinging upon the rough
surface. For scattering by a perfect conducting surface, the
energy conservation test is that . For

(a)

(b)

Fig. 1. Comparison of the bistatic scattering coefficients between the single
dense grid of 30 points per wavelength and the single coarse grid of ten points
per wavelength. TE wave, root mean square (rms)h = 0:5�, correlation
length of l = 0:6�, dielectric constant of"r = 25 + i, surface length
of L = 100�, and tapering parameter ofg = L=4 at incidence angle of
�i = 30�. (a) One realization. (b) Twenty realizations.

scattering by a dielectric surface, the emissivity of the rough
surface at incident angle is

(38)

Thus, emissivity is a measure of energy conservation in a
scattering calculation. Because of reciprocity, emissivity is the
same as absorptivity which is the amount of power absorbed

(33)

(34)
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(a)

(b)

Fig. 2. Comparison of the bistatic scattering coefficients between the single
dense grid of 30 points per wavelength and the single coarse grid of ten points
per wavelength. TM wave, rmsh = 0:5�, correlation length ofl = 0:6�,
dielectric constant of"r = 25+ i, surface length ofL = 100�, and tapering
parameter ofg = L=4 at incidence angle of�i = 30�. (a) One realization
(b) Twenty realizations.

by the dielectric in a scattering problem. In passive remote
sensing, the brightness temperature of the medium is
measured at incident angle. The brightness temperature is

(39)

where is the physical temperature of the medium in Kelvin
degrees. Brightness temperatures are commonly measured by
instruments mounted on satellites and aircrafts. The brightness
temperature can be measured to an accuracy of 1K. For the
case of K, an error of calculation in the emissivity of
0.03 gives an error of 9 K in brightness temperature and will

(a)

(b)

Fig. 3. Comparison of the surface fields between the single dense grid
of 30 points per wavelength and the single coarse grid of ten points per
wavelength rmsh = 0:5�, correlation length ofl = 0:6�, dielectric constant
of "r = 25 + i, surface length ofL = 100�, and tapering parameter of
g = L=4 at incidence angle of�i = 30�. (a) TE wave. (b) TM wave.

not be acceptable. It is important that the scattering calculation
obey energy conservation to less than 0.01, so that the error
in brightness temperature is limited to less than 3K.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate the numerical simulation results
of wave scattering from rough lossy dielectric surface for both
TE and TM waves. Simulations are based on Gaussian random
rough surfaces with Gaussian correlation functions. First, we
show the comparisons of bistatic scattering coefficients and
surface fields based on an SDG and an SCG with a dielectric
constant of , surface length of 100 wavelengths and at

(37)
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TABLE I
COMPARISON OF EMISSIVITIES BASED ON PBTG-BMIA/CAG AND SINGLE GRID METHOD (L = 100 WAVELENGTH)

TABLE II
COMPARISON OFCPU BASED ON PBTG-BMIA/CAG AND SINGLE GRID METHOD (1 REALIZATION AND L = 100 WAVELENGTH)

an incidence angle of 30. The results show that the dense
grid is required for the case with large dielectric constant. We
shall regard the SDG results to be correct. Next, we compare
the results based on PBTG-BMIA/CAG with that of SDG.
Then we use the new method to calculate the cases with large
surface length at different incident angles and compare with
SDG. Results indicate that the method still works well for
large surface length and at near-grazing incidence angle. It is
important to note that the PBTG-BMIA/CAG calculates the
surface fields on the dense grid.

Our numerical results for rms heights less than a wavelength
indicate that it requires a long surface to have accurate
solutions of close to grazing incidence since the edge effects
have to be avoided [17]. It has been reported that the surface
length of 8192 wavelengths is needed for the incidence angle
of 89 [20]. For the case of small incidence angle the required
surface length can be much shorter. However, the advantage
of the present method is for long surfaces and that is why
the examples deal with cases with rms height less than a
wavelength.

To avoid the edge effects, the tapering parameter was taken
to be for the case of surface length of 100 wavelengths
and for the case of surface length of 500 wavelengths at
near-grazing incidence. The critical distance ofthat defines
the very near field is fixed at one wavelength in this paper.
The cases with surface length of 100 wavelengths were run on
SPARC 20 workstation and the cases with surface length of
500 wavelengths were run on Pentium-Pro Personal Computer
with the clock rate of 200 MHz. The random rough surfaces
used in the simulation are Gaussian random rough surfaces.
The dielectric constant is set at .

A. Comparison Between Single Dense
Grid and Single Coarse Grid

In Fig. 1(a) and (b), we compare, respectively, the results
of the bistatic scattering coefficients of a single realization of
rough surface and averaged over 20 realizations for TE wave,
at incident angle and surface length , where

is the wavelength. The rms height and correlation length are
0.5 and 0.6 wavelength, respectively. We compare the cases
of SCG of and SDG of 30 points per wavelength.
We note that the results of SCG and SDG are quite different
both for one realization and for averages over 20 realizations.
Obviously, the results based on SCG are not accurate enough.
The comparisons were also made in Fig. 2(a) and (b) for
TM wave with the same parameters. It is noted that the
performance of SCG is poorer for TM case. This is because the
more energy is transmitted into the lower medium for TM case
than for the TE case and the lower medium dielectric requires
a dense discretization. In Fig. 3(a) and (b), we compare the
surface electric fields between SDG and SCG for TE and TM
waves, respectively. It is obvious that the coarse grid cannot
give rapid spatial variation of the surface fields. In Table I, we
compare the emissivities calculated for using one realization
and 20 realizations for SCG and SDG for both TE and TM
waves. We found that for SCG the emissivity is 0.614 097,
while for SDG the emissivity is 0.592 344 for one realization
of TE wave. The difference of emissivities of 0.021 753 can
give a difference of K K in brightness
temperature. Even after averaging over 20 realizations, the
emissivity for SCG still has difference from that
of SDG. For TM wave, the difference of emissivity is much



LI et al.: MONTE CARLO SIMULATIONS OF WAVE SCATTERING FROM LOSSY DIELECTRIC RANDOM ROUGH SURFACES 759

(a)

(b)

Fig. 4. Comparison of the bistatic scattering coefficients between the single
dense grid of 30 points per wavelength and the PBTG-BMIA/CAG with
rf = 1�. TE wave, rmsh = 0:5�, correlation length ofl = 0:6�, dielectric
constant of"r = 25+ i, surface length ofL = 100�, and tapering parameter
of g = L=4 at incidence angle of�i = 30�. (a) One realization (b) Twenty
realizations.

larger. It is for one realization and
for 20 realizations. This gives differences of 18.5 K and 27.78
K in brightness temperatures, respectively. Thus, SCG is not
accurate for problems of large dielectric constant and cannot
be used to calculate the emissivities. In Table II, we compare
the CPU. We note that although SDG is accurate, it requires
much more CPU than SCG. We regard the SDG results as
accurate.

B. Comparison Between PBTG Combined with
BMIA/CAG and Single Dense Grid

In Fig. 4(a) and (b), we compare the results of the bistatic
scattering coefficients respectively obtained from a single
realization of rough surface and averaged over 20 realizations
of rough surfaces using SDG and PBTG-BMIA/CAG for TE
wave. For PBTG-BMIA/CAG, the two grids are used with

and . The result obtained by PBTG-

(a)

(b)

Fig. 5. Comparison of the bistatic scattering coefficients between the single
dense grid of 30 points per wavelength and the PBTG-BMIA/CAG with
rf = 1�. TM wave, rmsh = 0:5�, correlation length ofl = 0:6�, dielectric
constant of"r = 25+ i, surface length ofL = 100�, and tapering parameter
of g = L=4 at incidence angle of�i = 30�. (a) One realization (b) Twenty
realizations.

BMIA/CAG is almost identical to the SDG result. In Fig. 5(a)
and (b), the comparisons are made for TM wave that also
shows PBTG-BMIA/CAG can give almost the same results as
SDG. The comparisons of the surface electric fields between
SDG and PBTG-BMIA/CAG for TE and TM cases are shown
in Fig. 6(a) and (b), respectively. The agreements are good
since the PBTG-BMIA/CAG computes the surface fields on
the dense grid. The emissivities calculated by SDG and
PBTG-BMIA/CAG are compared in Table I. The emissivity
calculated by PBTG-BMIA/CAG is very close to that of SDG
for TE and TM waves. The difference of emissivities averaged
over 20 realizations between SDG and PBTG-BMIA/CAG is

for TE wave and for TM wave that
will lead to maximum differences of 2.3667 K and 0.8799 K
in brightness temperatures, respectively. We also compare the
CPU between PBTG-BMIA/CAG, SDG, and SCG. In Table II,
we give the comparisons of the total CPU and CPU per
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(a)

(b)

Fig. 6. Comparison of the surface fields between the single dense grid of
30 points per wavelength and the PBTG-BMIA/CAG withrf = 1�. rms
h = 0:5�, correlation length ofl = 0:6�, dielectric constant of"r = 25+ i,
surface length ofL = 100�, and tapering parameter ofg = L=4 at incidence
angle of�i = 30�. (a) TE wave. (b) TM wave.

iteration based on PBTG-BMIA/CAG and single grid methods
for one realization. It is shown that the CPU per iteration is
the smallest for PBTG and the largest for SDG. The total CPU
of PBTG is slightly more than that of SCG because PBTG-
BMIA/CAG requires more number of iterations. But the CPU
of PBTG-BMIA/CAG is still several times less than that of
SDG. The CPU for PBTG-BMIA/CAG is also comparable to
SCG.

C. Comparison Between PBTG-BMIA/CAG and
SDG for Large Surface Length Case

In Fig. 7(a) and (b), the bistatic scattering coefficients
obtained by PBTG-BMIA/CAG and SDG, respectively, are
compared for the case of a large surface length of 500
wavelengths, rms height of , correlation length of ,
and dielectric constant of at incidence angle of 30
for one realization for both TE and TM waves. In this case,
SDG has 20 points per wavelength. PBTG-BMIA/CAG is with

(a)

(b)

Fig. 7. Comparison of the bistatic scattering coefficients between the single
dense grid of 20 points per wavelength and the PBTG-BMIA/CAG with
rf = 1� for one realization. rmsh = 0:3�, correlation length ofl = 0:5�,
dielectric constant of"r = 17+ i, surface length ofL = 500�, and tapering
parameter ofg = L=8 at incidence angle of�i = 30�. (a) TE wave. (b)
TM wave.

and . The agreements are good. The
comparisons of emissivities and CPU are shown in Table III.

D. Backscattering Coefficients from Rough Surface with
Large Dielectric Constant at Near-Grazing Incidence Angle

We also compare the bistatic scattering coefficients between
PBTG-BMIA/CAG and SDG at incidence angle of 85in
Fig. 8(a) and (b). In this case, other parameters used are the
same as the Figs. 7(a) and (b). The agreements are good except
in the forward scattering directions. The agreement in the
forward direction is reasonable. It is important to note that
PBTG-BMIA/CAG gives accurate results in backscattering
direction.

In Fig. 9(a), we show the bistatic scattering coefficients
of TE wave at 85 incidence angle averaged over various
number of realizations. In Fig. 9(b), we zoom in and show the
bistatic scattering coefficients in the vicinity of backscattering
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TABLE III
COMPARISON OFEMISSIVITY AND CPU BASED ON PBTG-BMIA/CAG AND SDG METHOD (1 REALIZATION AND L = 500 WAVELENGTH)

(a)

(b)

Fig. 8. Comparison of the bistatic scattering coefficients between the single
dense grid of 20 points per wavelength and the PBTG-BMIA/CAG with
rf = 1� for one realization. rmsh = 0:3�, correlation length ofl = 0:5�,
dielectric constant of"r = 17+ i, surface length ofL = 500�, and tapering
parameter ofg = L=8 at incidence angle of�i = 85�. (a) TE wave. (b)
TM wave.

direction. In Fig. 10(a) and (b), we show the corresponding
results for TM wave. We take the surface length of 500
wavelengths, rms height of , correlation length of ,
dielectric constant of . In PBTG-BMIA/CAG, we use

(a)

(b)

Fig. 9. Comparison of the bistatic scattering coefficients averaged over
various number of realizations calculated by PBTG-BMIA/CG withrf = 1�
and using the dense grid of 30 points per wavelength and the coarse grid
of 10 points per wavelength. TE wave, rmsh = 0:5�, correlation length of
l = 0:6�, dielectric constant of"r = 25 + i, surface length ofL = 500�,
and tapering parameter ofg = L=8 at incidence angle of�i = 85�. (a) Entire
range of scattering angles. (b) Vicinity of backscattering direction.

two grids of ten points per wavelength and 30 points per
wavelength. We did not calculate the results of SDG because
of large CPU and memory requirements. We found that 50
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(a)

(b)

Fig. 10. Comparison of the bistatic scattering coefficients averaged over dif-
ferent realization number calculated by the PBTG-BMIA/CAG withrf = 1�
and using the dense grid of 30 points per wavelength and the coarse grid of
ten points per wavelength. TM wave, rmsh = 0:5�, correlation length of
l = 0:6�, dielectric constant of"r = 25 + i, surface length ofL = 500�,
and tapering parameter ofg = L=8 at incidence angle of�i = 85�. (a) Entire
range of scattering angles. (b) Vicinity of backscattering direction.

realizations are required for convergence of backscattering
coefficients for TE and 70 realizations are required for TM
waves.

VI. CONCLUSION

In this paper, we have combined PBTG method with
BMIA/CAG to calculate the wave scattering from rough
surfaces of large surface length with a large lossy dielectric
constant. The method saves both CPU and memory and
provides the required accuracy. The computational complexity
and the memory requirements of the present algorithm are

and , respectively, where is the number
of surface unknowns on the coarse grid. We also applied
the method to calculate the backscattering coefficients from
rough surface at near-grazing incidence angle and also the
emissivities. The PBTG-BMIA/CAG gives accurate results

when compared with SDG and with CPU time comparable
with SCG. The method can be extended to the three-
dimensional (3-D) case. Results for the 3-D case have been
obtained and are being prepared for a separate publication.
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