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Monte Carlo Simulations of Wave Scattering
from Lossy Dielectric Random Rough
Surfaces Using the Physics-Based Two-Grid
Method and the Canonical-Grid Method

Qin Li, Chi Hou Chan,Member, IEEE and Leung Tsangsellow, IEEE

Abstract—n using the method of moments to solve scattering performed by all authors require at least 20 wavelengths
by lossy dielectric surfaces, usually a single dense grid (SDG) pecause the surface must have enough valleys and peaks
with 30 points per wavelength is required for accurate results. A to be a legitimate statistical sample (realization) in random

single coarse grid (SCG) of ten points per wavelength does not ; -
give accurate results. However, the central processing unit (CPU) rough surface simulations. The most common method that has

and memory requirements of SDG are much larger than that of been used in numerical simulations is the integral equation
SCG. In a physics-based two-grid method (PBTG) two grids are method [1]-[9]. Conventional implementation of the integral
used: a dense grid and a coarse grid. The method is based onequation method requires & N?) operation and a®(N?)

the two observations: 1) Green'’s function of the lossy dielectric computer memory storage. Therefore, the simulation has been
is attenuative and 2) the free-space Green’s function is slowly . . ) ' .

varying on the dense grid. In this paper, the PBTG method is limited to small to moderate surface length with no more
combined with the banded-matrix iterative approach/canonical than a few thousand surface unknowns. Over the past few
grid method to solve rough surface scattering problem for both years, there are several fast numerical methods that have
TE and TM cases and also for near grazing incidence. We peen developed [10]-[19]. One of them is the banded-matrix
studied cases of dielectric permittivities as high ag25 + ¢)zo iterative approach/canonical grid method (BMIA/CAG) that

and incidence angle up to 85%. Salient features of the numerical . .
results are: 1) an SCG has poorer accuracy for TM case than PErMIts the solution of large-scale random rough surface

TE case; 2) PBTG-banded-matrix iterative approach/canonical problems [13]-[19]. The essence of the method consists of
grid BMIA/CAG method speeds up CPU and preserves the decomposing the interaction into near and nonnear field in-

accuracy; it has an accuracy comparable to single dense grid teractions. The nonnear field interactions are then expanded
and yet has CPU comparable to single coarse grid; 3) PBTG- o 5 canonical grid of a horizontal surface so that the fast

BMIA/CAG gives accurate results for emissivity calculations and . . .
also for low grazing backscattering problems (LGBA): and 4) Fourier transform (FFT) can be applied. The computational

the computational complexity and the memory requirements of complexity and the memory requirements for BMIA/CAG
the present algorithm are O(N log(N)) and O(N), respectively, are O(Nlog(N)) and O(N), respectively. Another method
where N is the number of surface unknowns on the coarse grid. for the one-dimensional (1-D) case is by Michielssegtsl.
Index Terms—Grid generation, Monte Carlo methods, rough [12], which has computational complexity @#(N log” N).
surfaces. For the case of perfectly electrical conductor (PEC), the paper
by Michielssenet al. reports a central processing unit (CPU)
of 8 to 12 min for 4000 unknowns while the BMIA/CAG
|. INTRODUCTION method as reported in [17, Table II] reports a CPU of 20 min

HE scattering of waves from random rough surfaces hf 8000 unknowns. Thus, the two methods are comparable
been a topic of continued study for many years becau$e CPU time for the PEC case. The BMIA/CAG is also
of its broad applications. Recently, Monte Carlo simulations &Pplied to dielectric rough surface [19]. The experience with
because of the advent of modern computers and the deJBg PEC case.
opment of fast numerical methods. Monte Carlo simulations In the application of method of moments to rough surface
scattering problem, a common implementation is to use a grid
of ten points per wavelength to discretize the surface. We
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more than 20 points) per wavelength. We shall call suchFor near-field and nonnear field interactions, the free-space
gridding a single dense grid (SDG). The disadvantage of ti&een’s function is slowly varying on the dense grid. We
second alternative is that there is a large increase in CRlhn first average the fields on the dense grid to get fields
and required memory. The physics-based two-grid (PBT®h the sparse grid. The nonnear field interactions are also
method [21] is an improvement over these two alternativexpanded on a canonical grid of a horizontal surface so that
in that it has the same accuracy as the single dense grid #mel fast Fourier transform (FFT) can be applied. In the lower
yet has CPU comparable with that of the single coarse griedium, nonnear field interactions were neglected because of
Another improvement is that the PBTG method can calculdtgssy properties of the lower medium. The approach is denoted
the emissivity accurately because the method obeys eneagyPBTG-BMIA/CAG. The computational complexity and the
conservation accurately. In PBTG, two grids were used: raemory requirements for present algorithm &gV log(V))
dense grid and a sparse grid. The sparse grid is that of tred O(V), respectively, whereV is the number of surface
usual ten points per wavelength. The dense grid ranges fromknowns on the coarse grid. Using this approach, we illustrate
20 to higher number points per wavelength depending on themerical results of TE and TM wave scattering up to surface
relative permittivity of the lossy dielectric medium. The keyength of 500 wavelengths and 30 000 surface unknowns. Note
point of PBTG is based on the following two observationghat all the surface unknowns on the dense grid are calculated
1) Green’s function of the lossy dielectric is attenuative artay this method. The salient features of the numerical results
2) Green’s function of free-space is slowly varying on thare as follows.

dense grid. Because of Kramer—Kronig relation, a large real(1) An SCG has poorer accuracy for TM case than for TE
part of dielectric constant is usually associated with a large case.

imaginary part. The first property of lossy dielectric gives (2) PBTG-BMIA/CAG speeds up CPU and preserves the
a banded submatrix for the Green’s function of the lossy accuracy. It has accuracy comparable to single dense
dielectric. The second property allows us, when using the free-  grid and yet has CPU comparable to single coarse grid.
space Green'’s function on the dense grid, to first average the |t also gives surface fields on the dense grid and can
values of surface unknowns on the dense grid and then place give accurate results of the surface fields when the
them on the sparse grid. PBTG speeds up the CPU and yet  surface fields have rapid spatial variation.

preserves the accuracy of the solution. It needs to be mentioneg3) PBTG-BMIA/CAG gives accurate results for emissivity
the PBTG is different from multigrid method. The multigrid calculations and also for low-grazing backscattering
method [10], [22] tries to facilitate the convergence of iteration problems (LGBA).

in iterative techniques. It entails discretization of the structusg, ;s PBTG-BMIA/CAG produces accurate results on the

into various grid sizes. The coarse grid corresponds to thgnse grid at CPU comparable with that of a single coarse
low-frequency portion of the solution while the fine gridgrid_

corresponds to that of the high-frequency solution. An iterative | section 11, the formulation of the problem of TE and
solution is obtained for each level of discretization and thgy wave impinging upon a dielectric surface is given in
solutions are interpolated from the coarse grid to the fiRgrms of integral equations. Then the integral equations are
grid. The solution is first obtained in the coarse grid and theRnverted into a matrix equation using a single-grid dis-
one moves to the next level of fine grid. Once the iterativgetization. In Section Ill, we implement the physics-based
solution is obtained in the fine grid, then one has to go bagfs-grid algorithm and combine it with the BMIA/CAG

to the coarse grid to refine the solution. The present methgghthod. In Section IV, the bistatic scattering coefficients and

that we have is based on scattering physics. The purpqsg emissivity are defined. In Section V, the numerical results
of PBTG is to speed up the matrix-vector product of tw@e jllustrated.

Green’s functions convolving with the surface fields on the
dense grid.

In the previous paper [21], we developed PBTG for TE
case. In this paper, we 1) combine the PBTG method with
the BMIA/CAG method for improving of CPU and memory Consider a tapered plane wavgnc(z,z) with a time
requirements; 2) study bistatic scattering coefficients and emfi&pendence ot~*~*, impinging upon a 1-D rough surface
sivity for TM case and compare TM and TE results; and 3)ith a random height profile = f(). It is tapered so that the
apply to low grazing scattering. We use it to treat a roud uminated rough surface can be confined to surface leiigth
surface with a large surface length since the edge effects hak@l: The incident wave is
to be avoided for low-grazing angle incidence [17], [20]. We
use two grids, a dense grid and a coarse grid. The interaction g [7 i(kna—hz) — (z=kia)®s®
is divided into (1) very near field of less than one wavelength,z/’im(x’ flz) = 2/ /_Oo dkzc ¢ !

(2) near field of between one wavelength agdvavelengths, @

and (3) nonnear field beyond, wavelengths. In numerical wherek;, = ksin#6;, k? = k* — k2 with a proper choice of the
simulations;-, is an adjustable parameter so that BMIA/CAGoranch cut,k is the wavenumber of the free-space, anis

can be used to solve the equations. In this papeis fixed the parameter that controls the tapering of the incident wave.
at ten wavelengths. For very near-field interactions, we usd.et i) and+; denote, respectively, the wave functions for the
dense grid which is represented by four banded submatriapper medium and lower medium. They satisfy the following

Il. FORMULATION AND SINGLE GRID IMPLEMENTATION
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(1)

surface integral equations [23]:
o } ds = Pince(7")

g0 - [ s 2T -
@

3+ [ [0 2 - 6y 22 | =0
@

where [ denotes a Cauchy integral a6dandG, are the two-

G(r, 7)) —=

dimensional (2-D) Green’s function of the upper and lowe

medium that are given by
(4)
5)

G(r,7') = Hé”(/wr )

G (7, 7) =

)

H( ) is the zeroth order Hankel function of the first kind dnd
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[16] (9)-(12), shown at the bottom of the page,
where ., = /(@0 — )2+ [f(#a) — flz,)]? and

m = I+ [F@m) ¢ = 271828183, HY is the first-
order Hankel function of the first kindf’(z,,) and f"(x,)
represent the first and second derivativeft) evaluated at
ZTm, respectively. The matrix equation in (7) and (8) is in the
form of a single grid. Let, = N/L be the number of points
per wavelength. Usually a sample frequencynof= 10 is
taken meaning that we have ten points per wavelength. We

it an SDG. The dense grid that we use ranges from 20
to n = 30 in the paper.

Ill. PHYSICSBASED TwO-GRID METHOD
COMBINED WITH BANDED MATRIX ITERATIVE
APPROACHCANONICAL GRID METHOD

is the wavenumber of the lower medium, The wave functions'n this section, we describe the physics-based two-grid
¥ and ¥, are related through the boundary conditions on tHBethod correlated the BMIA/CAG.

surfaceS, namely,
a =
n@ = and 2 _,

G
on

(6)

where p equalsy; /ix ande; /e for TE and TM polarization,
respectively. The integral equation is next discretized usi
an evenly spaced single grid. The surface is discretized ir}

a single grid of N points forz between—L/2 and L/2 and
the z,, points are at

xm:(m—().S)Ax—g, m=12-- N
N N
Z arn,nu(xn) + Z bnln,z/}(xn,) = winc(xnl) (7)
n=1
I
2 afhpu(an) + Z Dt (n) = 8)
where u(z) = /1 + (= ]281/)/871 The matrix

Assume that the upper medium is the free-space and the
lower medium is lossy with the following relative permittivity:

g1 =€ (1 +itan§) (13)

wavelength of the wave with the identical frequency in
the free-space and the lower medium, respectively, and

ny = integel\/e]).

Then, the relationship betweeh and A; can be expressed
approximately by

Né;ere tan 6 stands for loss tangent. Let and A\; represent

(14)

A
)\1%—.

(15)
ny

The number of sampling points needed in the lower medium
should ben; times more than that in the free-space.

In the physics-based two-grid method, we use two grids
with samplings per wavelength ef., (coarse grid) anchg

elements a;n, Umn, amn, and bmn are given by (dense grid), respectively. Léf,, and.V be, respectively, the
H(l) (k7 mn) m#£n
Amn = (9)
Azr— Hé ) [kAzv,/(2¢)] m=n
Lk f/ 'Tn Tp — LTm) — f Tn) — f Tm
X > G R (C) P
rnn - f// mn (10)
47r ’Vm "
~Ax H<1> (k1T m#£n
af) = (11)
—Az (1) klAa:fym/(%)] m=n
Az Lkl f xn xn -/L'rn))_ [f(xn) - f(xrn)] Hl(l)(k'lTrnn) m ;é n
rnn 1 / A.Z‘ Tmn (12)
— m="n
2" Vi
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total number of points on the dense grid and the coarse grid.

L

ng = ndgx (16)
L

N = nch a7

Usually nes = 10 andng, = 10n;. We first rewrite (7) and
(8) using the dense grid

Nag Nag

Z arnnu xn + Z brnrﬂp xn r‘/)inc(xrn) (18)
J\dg Nag
Za%pu )+ zb;am Tn) = (19)

The Roman numeral subscripis, n denote indexing with the

dense grid. Note that in the method of PBTG, the surface3

field at the dense grid are calculated. It is when the Green’s
function is multiplied with the surface fields on the dense grid,
we can make substantial CPU saving by using PBTG. The
matrix elementsa,,,,,, bm,, represent Green's function of the
upper medium Whileag,llzl,bgnzl represents Green’s function
of the lower medium of the lossy dielectric. To reduce the
calculation, we make the following three observations.

1) The Green’s function in the lower region is heavily
attenuative. A medium with a large real part of dielectric
constant is normally associated with a large imaginary
part. Letk! be the imaginary part ok;. If k{r > C,
whereC is a constant, then the field interaction between
the mth and thenth point is vanishingly small. We can
define a distance limit as dictated by dissipative loss

C

W (20)

Te =
outside of which the lower medium Green’s function
can be set equal to zero. The constéhtlepending on
the loss tangentan é varies from case to case. In this
paper,C was fixed at 1.5.

Based on this observation, we calculate the left-hand
sides of (19) as follows. We approximate

(1)
L) g) = { Fmn Tmn < 21
Fmin = Fmn = {0 Tmn 2 T ( )
B
W) o0 = Jbmi e ST 29
bn brnn {0 /r'rn/n Z /]nl ( )

wherer,,, is the distance between theth point and
the nth point on the dense grid. Thusfﬁzl andbit), are

banded matrices and (19) becomes

]\15

Z (T

For nonnear field interaction, Green’s function for the
upper medium is slowly varying compared with Green’s
function of the lossy dielectric lower medium. Thus,
when performing matrix and column-vector multiplica-

]\15

)+ Z b1 () = 0. (23)

2)
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an interval ofn; points on the dense grid. Thus, we can
write
ni

E a(rn—l—l’)(n-l—l)un-i—l ~ arnmpnmp § Un+1
=1 =1

1 &
= N10%mpynmp <n E un+l> (24)
1
=1

wherel’ = 1,2,---, ny, and the points with indexes
Mup andny,, are the middle points of thémn + 1)th
point and the(m + n)th point and thgn + 1)th point
and the(n + nq)th point, respectively. What is done
in (24) is that the surface fields on the dense grid are
first averaged before multiplied by the upper medium
Green’s function.

n1

) The slowly varying nature of Green'’s function of the

upper medium only applies to nonnear field interaction.
For near field interaction, Green’s functiodsand G4
have roughly the same rate of variation. Thus, we need
to separate out a distance, shy, outside of whichG,
is much more rapidly varying tha'.

Based on the observations above, we decompose the
upper medium Green’s function into near field and
nonnear field interactions

]\‘r([g
> apnu(en) = Z 3+ Z Upotn (25)
n=1
Nag
Z bnlnz/}(xn Z b'rnnr(/}n Z b'rnnr(/}n (26)
n=1
wherea?, ., b, ars  andbl’ are determined by
s _ JQmn  Tmn S Tf
An = {0 Tmn 2 7’f (27)
b Tmn ST
s _ mn mn =
brnn - {0 T Z Tf (28)
ns __ 0 Tmn S Tf
Gmn = {arn,n Tmn 2 Tf (29)
0 Tn STy
ns __ mn >
brnn B {brnn Tmn Z Tf (30)

Thus, r; is the distance outside which the Green’s
function of the lower medium is fast varying compared
with that of free-space Green'’s function.

Let « and 8 denote the coarse grid indexes. The coarse
grid has surface unknownsand, which are averages of the
dense grid surface unknowns. Thus;7§f is centered in the

middle of then; dense grid points af+1, n+2, -+, n+nq,
we have
7;, _ Un+1 + Up+2 + -+ Un+nl (31)
ni
1/;,8 _ z/}n+1 + z/}n+2n+ s z/}n+nl ) (32)
1

tion on the dense grid as indicated in (18), the Greene calculate Green’s function of the upper medium on the
function of the upper medium is essentially constant oveparse grid. These are representedaly and b,z and (33)
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and (34), shown at the bottom of the page, whare is the - : - - - v . i i

coarse-grid samplinghZz = n1 Az, and Az is the dense-grid fggg ngf?g
sampling. Thus, (18) becomes n i " |
Nag Nyg
Z afnnu(xn) + Z bfnnz/}(xn) 0.8+

n=1 n=1

N N
+ Z da,ﬁa(x,ﬁ) + Z ba’@”(/)(fl"@) = z/}inc(xrn)-
8=1 8=1

intp

bistatic scattering coefficients
o
(=2
.

1
|
0.4 ¢ ! B
(35) ) Lo f
i ¥ ¥
. Ndo . 1 o i
Note in (35) thatd , % a3, u(xz,) includes Nyg values of | Binp { A il
. ' ~ ~ [ i Al
m=1,2,---, Ngg, while 22:1 Gopt(zg) Only hasN values A e ] i L gl i ’:-” nk .
of  =1,2,---,N. Thus, we first comput® | aasu(zs). DZATAAAREHE !N A A LT TS
i i i 1 ' i -80 -60 -40 -20 0 20 40 60 80
Then we use linear interpolation to fidd,, on the dense grid. soattering angle (degroe)

In (35), we use subscriphtp to represent that interpolation.
In the original PBTG, the BMIA is used to solve matrix (23)
and (35). In this paper, we use BMIA/CAG to solve matrix
equation. We further divide nonnear field interactions into two
regions which are separatedhy For the interactions between sl
ry and r4, we implement matrix and vector multiplication
directly. For the interactions larger thap, we expanda.gs
and Z)a@ in Taylor series as in the BMIA/CAG so that the
FFT’s can be used to compute this part of the matrix-vector
multiplication. The Taylor series expansion is given below:

H(ky/x2 +23) = i A (2 4) <Zl>2m. (36)

m=0

(@

— SDG nd =30
--8CGnd=10

0.2r

Q.15-

01} !

bistatic scattering coefficients

a2 Wy S22 oesr s
H((alge,H(f Qxd + z;) represents botlt; ’ (k+/x5 + z3) and /
HY (ky/22 42
MoOVrtE) = (o - af), and zg = (2 — #) = e

”’d"’%} ) ) . 80 60 40 20 0 20 40
f(z)—f(2"). The first three terms of the expansion coefficients scattering angle (degree)
are given in [19]. (b)

The accuracy Qf Ta}ylor Ser'?s expansion dep.ends on m& 1. Comparison of the bistatic scattering coefficients between the single
ratio of zq/xq, which, in turn, dictates the bandwidth of thedense grid of 30 points per wavelength and the single coarse grid of ten points
stored near-field interactions. per wavelength. TE wave, root mean square (rfasy 0.5A, correlation

length of i = 0.6\, dielectric constant of,, = 25 4 ¢, surface length
of L = 100X, and tapering parameter gf = /4 at incidence angle of

IV. BISTATIC SCATTERING COEFFICIENT AND EMISSIVITY #; = 30°. (a) One realization. (b) Twenty realizations.

After the matrix equation is solved, the surface field can
be calculated. The bistatic scattering coefficief#;, 6;) is a scattering by a dielectric surface, the emissivity of the rough
measure of the scattering from incident anglento scattered surface at incident angle; is
angle 8,. It is defined by (37), shown at the bottom of the
next page. In (37),a(fs,z) = sinfsz + cosb,f(x) and e(f;) =1 —/d950(95,9i). (38)
k. = /k? — kZ. The bistatic scattering coefficient has been
normalized by the incident power impinging upon the roughhus, emissivity is a measure of energy conservation in a
surface. For scattering by a perfect conducting surface, theattering calculation. Because of reciprocity, emissivity is the

energy conservation test is thgto(6,,6;)df, = 1. For same as absorptivity which is the amount of power absorbed
e
dayﬁ — szHé )(IfT(y’@) Tag > Tf (33)
0 Tag S Tf
ik f'(zp) (s — xa) — [f(28) = f@)] o, , ,
b = {—sz o~ HyV(krag) Tag >y (34)
0 Tag S Tf
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Fig. 2. Comparison of the bistatic scattering coefficients between the sin§ild- 3. Comparison of the surface fields between the single dense grid
dense grid of 30 points per wavelength and the single coarse grid of ten po#s30 points per wavelength and the single coarse grid of ten points per
per wavelength. TM wave, rms = 0.5, correlation length of = 0.6), Wavelength rm& = 0.5, correlation length of = 0.6, dielectric constant
dielectric constant of, = 25 +1, surface length of. = 100, and tapering Of e- = 25 + ¢, surface length of. = 1004, and tapering parameter of
parameter ofy = L/4 at incidence angle of; = 30°. (a) One realization ¢ = L/4 at incidence angle of; = 30°. (a) TE wave. (b) TM wave.
(b) Twenty realizations.

not be acceptable. It is important that the scattering calculation
by the dielectric in a scattering problem. In passive remo@Pey energy conservation to less than 0.01, so that the error
sensing, the brightness temperatifg of the medium is in brightness temperature is limited to less thahk3
measured at incident angfe. The brightness temperature is

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we illustrate the numerical simulation results
whereT’ is the physical temperature of the medium in Kelviof wave scattering from rough lossy dielectric surface for both
degrees. Brightness temperatures are commonly measured Byand TM waves. Simulations are based on Gaussian random
instruments mounted on satellites and aircrafts. The brightnesagh surfaces with Gaussian correlation functions. First, we
temperature can be measured to an accuracy°df. FFor the show the comparisons of bistatic scattering coefficients and
case ofl’ = 300 K, an error of calculation in the emissivity of surface fields based on an SDG and an SCG with a dielectric
0.03 gives an error of 9 K in brightness temperature and wdbnstant of25 + 4, surface length of 100 wavelengths and at

o(0s,0:) = [ e [ikz/)(a:)(k;i—i sinf, — cost,) — u(x)] exp(—ika(f,, z))|’ (37)
47 g? f_k dky k. exp[—(k, — ksin6;)%g? /2]
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TABLE |
COMPARISON OF EMissIVITIES BASED oN PBTG-BMIA/CAG AND SINGLE GRID METHOD (L = 100 WAVELENGTH)
Method ny Polarization #of Emissivity | difference of
realization emissivity”
SCG” 10 TE ] 0.614097 +0.021753
SDG™ 30 TE ! 0.592344 0
PBTG-BMIA/CAG [ 10 and 30 TE 1 0.602337 0.0099
SCG 10 ™ 1 0.703530 -0.061699
SDG 30 ™ 1 0.765229 0
PBTG-BMIA/CAG | 10 and 30 ™ 1 0.768926 0.003697
SCG 10 TE 20 0.592318 -0.013456
SDG 30 TE 20 0.605774 0
PBTG-BMIA/CAG | 10 and 30 TE 20 0.613663 0.007889
SCG 10 ™ 20 0.701566 -0.092587
SDG 30 ™ 20 0.794153 0
PBTG-BMIA/CAG | 10 and 30 ™ 20 0.797086 -0.002933

SCG = Single Coarse Grid, SDG = Single Dense Grid, The difference of

emissivity means the emissivity minus the emissivity of SDG.

TABLE I
ComPARISON OF CPU Baseb oN PBTG-BMIA/CAG AND SINGLE GRID METHOD (1 ReALIZATION AND L = 100 WAVELENGTH)

Method ng # of surface | Polarizatio CPU time (s) # of CPU

unknowns n per iteration iteration time(s)

SCG 10 2000 TE 14.5 416 6064.8

SDG 30 6000 TE 75.0 383 28757.0
PBTG-BMIA/CAG | 10 and 30 6000 TE 11.6 662 7708.1

SCG 10 2000 ™ 14.51 108 1595.0

SDG 30 6000 ™ 77.0 108 8333.2
PBTG-BMIA/CAG | 10 and 30 6000 ™ 12.2 135 1655.0

an incidence angle of 30 The results show that the densé\. Comparison Between Single Dense

grid is required for the case with large dielectric constant. Werid and Single Coarse Grid

shall regard the SDG results to be correct. _Next, we compare, Fig. 1(a) and (b), we compare, respectively, the results
e g il .SDGof the bistatic scattering coefficients of a single realization of
Then we use the new meth_od_to calculate the cases with Iaf%ﬁgh surface and averaged over 20 realizations for TE wave,
surface length at different incident angles and compare wg

. . incident anglé; = 30° and surface length = 100\, where
SDG. Results indicate that the method still works well fo .is the wavelength. The rms height and correlation length are

large surface length and at near-grazing incidence angle. | I3 2nd 0.6 wavelenath. respectively. We compare the cases
important to note that the PBTG-BMIA/CAG calculates the : gin, P v P
X . of SCG ofny = 10 and SDG of 30 points per wavelength.
surface fields on the dense grid. e note that the results of SCG and SDG are quite different
Our numerical results for rms heights less than awavelethY1 resu quite aitre
% th for one realization and for averages over 20 realizations.

indicate that it requires a long surface to have accur iously. th its based on SOG ; ¢ h
solutions of close to grazing incidence since the edge effe Viously, the results based on areé not accurate enough.

have to be avoided [17]. It has been reported that the surfagd® comparisons were also made in Fig. 2(a) and (b) for
length of 8192 wavelengths is needed for the incidence ana—lyI wave with the same parameters. It is _”Qted that the
of 8% [20]. For the case of small incidence angle the requirdfrformance of SCG is poorer for TM case. This is because the
surface length can be much shorter. However, the advantdg@r® €nergy is transmitted into the lower medium for TM case
of the present method is for long surfaces and that is W,L@,an for thg TE case and thg lower medium dielectric requires
the examples deal with cases with rms height less thar@glense discretization. In Fig. 3(a) and (b), we compare the
wavelength. surface electric fields between SDG and SCG for TE and TM
To avoid the edge effects, the tapering parameter was takiaVes, respectively. It is obvious that the coarse grid cannot
to L/4 be for the case of surface length of 100 wavelengti§éve rapid spatial variation of the surface fields. In Table I, we
and L/8 for the case of surface length of 500 wavelengths §ompare the emissivities calculated for using one realization
near-grazing incidence. The critical distance-pfthat defines and 20 realizations for SCG and SDG for both TE and TM
the very near field is fixed at one wavelength in this papekaves. We found that for SCG the emissivity is 0.614 097,
The cases with surface length of 100 wavelengths were run\while for SDG the emissivity is 0.592 344 for one realization
SPARC 20 workstation and the cases with surface length @f TE wave. The difference of emissivities of 0.021 753 can
500 wavelengths were run on Pentium-Pro Personal Compugére a difference o800 K x 0.021 753 = 6.53 K in brightness
with the clock rate of 200 MHz. The random rough surfacdemperature. Even after averaging over 20 realizations, the
used in the simulation are Gaussian random rough surfacesissivity for SCG still has-0.013456 difference from that
The dielectric constant is set ab + . of SDG. For TM wave, the difference of emissivity is much
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Fig. 4. Comparison of the bistatic scattering coefficients between the singlfy 5 Comparison of the bistatic scattering coefficients between the single
dense grid of 30 points per wavelength and the PBTG-BMIA/CAG withyense grid of 30 points per wavelength and the PBTG-BMIA/CAG with
ry = 1A. TE wave, rmsh = 0.5, correlation length of = 0.6, dielectric .. _ 1 TM wave, rmsh = 0.5, correlation length of = 0.6, dielectric
constant o, = 25+, surface length of. = 1004, and tapering parameter ¢onstant of:, = 25+, surface length of. = 100, and tapering parameter

of ¢ = L/4 at incidence angle of; = 30°. (a) One realization (b) Twenty of g = L/4 at incidence angle of; = 30°. (a) One realization (b) Twenty
realizations. realizations.

larger. It is —0.061699 for one realization and-0.092587  BMIA/CAG is almost identical to the SDG result. In Fig. 5(a)
for 20 realizations. This gives differences of 18.5 K and 27.74,4 (b), the comparisons are made for TM wave that also
K'in brightness temperatures, respectively. Thus, SCG is n¢iows PBTG-BMIA/CAG can give almost the same results as
accurate for problems of large dielectric constant and canr@bG. The comparisons of the surface electric fields between
be used to calculate the emissivities. In Table I, we compa&gyg and PBTG-BMIA/CAG for TE and TM cases are shown
the CPU. We note that although SDG is accurate, it requirgs Fig. 6(a) and (b), respectively. The agreements are good
much more CPU than SCG. We regard the SDG results §fce the PBTG-BMIA/CAG computes the surface fields on

accurate. the dense grid. The emissivities calculated by SDG and
) ) ) PBTG-BMIA/CAG are compared in Table I. The emissivity

B. Comparison Between PBTG Combined with calculated by PBTG-BMIA/CAG is very close to that of SDG

BMIA/CAG and Single Dense Grid for TE and TM waves. The difference of emissivities averaged

In Fig. 4(a) and (b), we compare the results of the bistativer 20 realizations between SDG and PBTG-BMIA/CAG is
scattering coefficients respectively obtained from a singte0.007889 for TE wave and—0.002933 for TM wave that
realization of rough surface and averaged over 20 realizatiomtl lead to maximum differences of 2.3667 K and 0.8799 K
of rough surfaces using SDG and PBTG-BMIA/CAG for THn brightness temperatures, respectively. We also compare the
wave. For PBTG-BMIA/CAG, the two grids are used withCPU between PBTG-BMIA/CAG, SDG, and SCG. In Table I,
neg = 10 and ng; = 30. The result obtained by PBTG-we give the comparisons of the total CPU and CPU per
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Fig. 6. Comparison of the surface fields between the single dense gridFag. 7. Comparison of the bistatic scattering coefficients between the single
30 points per wavelength and the PBTG-BMIA/CAG with = 1XA. rms dense grid of 20 points per wavelength and the PBTG-BMIA/CAG with
h = 0.5, correlation length of = 0.6, dielectric constant of, = 25414, ry = 1A for one realization. rm& = 0.3, correlation length of = 0.54,
surface length of. = 100, and tapering parameter gf= L/4 at incidence dielectric constant of, = 17 + i, surface length oL, = 500, and tapering
angle of¢;, = 30°. (a) TE wave. (b) TM wave. parameter ofy = L/8 at incidence angle of; = 30°. (a) TE wave. (b)

T™ wave.

iteration based on PBTG-BMIA/CAG and single grid methods

for one realization. It is shown that the CPU per iteration i8.; = 10 and ng, = 20. The agreements are good. The
the smallest for PBTG and the largest for SDG. The total CRtdmparisons of emissivities and CPU are shown in Table IlI.
of PBTG is slightly more than that of SCG because PBTG-

BMIA/CAG requires more number of iterations. But the CPW. Backscattering Coefficients from Rough Surface with

of PBTG-BMIA/CAG is still several times less than that ofLarge Dielectric Constant at Near-Grazing Incidence Angle
SDG. The CPU for PBTG-BMIA/CAG is also comparable to We also compare the bistatic scattering coefficients between

SCG. PBTG-BMIA/CAG and SDG at incidence angle of 8%n
Fig. 8(a) and (b). In this case, other parameters used are the
same as the Figs. 7(a) and (b). The agreements are good except
in the forward scattering directions. The agreement in the
In Fig. 7(@) and (b), the bistatic scattering coefficientlorward direction is reasonable. It is important to note that
obtained by PBTG-BMIA/CAG and SDG, respectively, ar®BTG-BMIA/CAG gives accurate results in backscattering
compared for the case of a large surface length of 5@@ection.
wavelengths, rms height df.3), correlation length of).5X, In Fig. 9(a), we show the bistatic scattering coefficients
and dielectric constant of7 + ¢ at incidence angle of 30 of TE wave at 85 incidence angle averaged over various
for one realization for both TE and TM waves. In this cas&umber of realizations. In Fig. 9(b), we zoom in and show the
SDG has 20 points per wavelength. PBTG-BMIA/CAG is witlbistatic scattering coefficients in the vicinity of backscattering

C. Comparison Between PBTG-BMIA/CAG and
SDG for Large Surface Length Case
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TABLE 11l
CoMPARISON OF EMISsIVITY AND CPU Baseb oNn PBTG-BMIA/CAG anD SDG MeTHOD (1 ReALIZATION AND L = 500 WAVELENGTH)
Method # of surface | incident | Polarizatio emissivity | CPU time (s) # of CPU
unknowns angle n per iteration | iteration | time(mins)
SDG 20000 30 TE 0.639483 42.87 792 566
PBTG-BMIA/CAG 20000 30 TE 0.645528 9.84 1579 259
SDG 20000 30 ™ 0.803430 34.52 252 145
PBTG-BMIA/CAG 20000 30 ™ 0.804980 9.57 326 52
SDG 20000 85 TE 0.140942 40.72 358 243
PBTG-BMIA/CAG 20000 85 TE 0.073925 9.23 604 93
SDG 20000 85 ™ 0.508661 35.58 145 86
PBTG-BMIA/CAG 20000 85 ™ 0.47590 9.83 183 30
PBTG-BMIA/CAG 30000 85 TE 13.1 1323 290
PBTG-BMIA/CAG 30000 85 ™ 13.6 292 68
20 T T T T T T 10 T T T T T T T T
—— 8DG nd =20 —— # of realization = 50
101 |._ - PBTG-BMIAICAG 7 51~ - # of realization = 70 |
— — # of realization = 100
of o B
a —
S0 1 8 5| 1
2 =
5 8
B 20} 1 £ 10} 7
o-30| ! ! . o151 .
T -40 B § -20+ B
g-sof 1 £ o5t -
B 5
60 -30[ 1
]
-70F 1 1 -35+ E
0 e 0 a0 20 0 20 20 60 80 0 Teo 60  —40  —20 0 20 40 60 80 100
scattering angle {(degree) scattering angle (degrees)
(@) (@)
10 : : : T i i -10 T T T T T T .
—— SDG nd =20
— - PBTG-BMIA/CAG — # of realization = 50
-— - # of realization = 70
or L -
=151 |- — # of realization = 100 7
o —~
S g
£-10r = ook ]
:g il g 20 T
g 3
£-30 o
= § 90 |
8 z
i
—40r i ] 35 .
B 60 40 20 0 20 0 60 80 -40 y y ‘ y y y y : :
- - e 90 -89 -88 -87 -86 -85 -84 -83 -82 81  -80
scattering angle (degree} scattering angle (degrees)
(b)
(b)

Fig. 8. Comparison of the bistatic scattering coefficients between the single . N . -
dense grid of 20 points per wavelength and the PBTG-BMIA/CAG witfr9: 9. Comparison of the bistatic scattering coefficients averaged over

rp = 1\ for one realization. rm& = 0.3, correlation length of = 0.5,
dielectric constant of,, = 17 + ¢, surface length oL, = 500\, and tapering
parameter ofy = L/8 at incidence angle of; = 85°. (a) TE wave. (b)
T™ wave.

various number of realizations calculated by PBTG-BMIA/CG with= 1)

and using the dense grid of 30 points per wavelength and the coarse grid
of 10 points per wavelength. TE wave, rihs= 0.5A, correlation length of

! = 0.6, dielectric constant of,, = 25 + ¢, surface length of. = 500X,

and tapering parameter gf= L /8 at incidence angle &f; = 85°. (a) Entire
range of scattering angles. (b) Vicinity of backscattering direction.

direction. In Fig. 10(a) and (b), we show the corresponding
results for TM wave. We take the surface length of 50flvo grids of ten points per wavelength and 30 points per

wavelengths, rms height @f.5)\, correlation length 0D.6,
dielectric constant o5 + ¢. In PBTG-BMIA/CAG, we use

wavelength. We did not calculate the results of SDG because
of large CPU and memory requirements. We found that 50
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when compared with SDG and with CPU time comparable
with SCG. The method can be extended to the three-
dimensional (3-D) case. Results for the 3-D case have been
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Fig. 10. Comparison of the bistatic scattering coefficients averaged over dif-
ferent realization number calculated by the PBTG-BMIA/CAG with= 1A
and using the dense grid of 30 points per wavelength and the coarse grid of
ten points per wavelength. TM wave, rmhs= 0.5, correlation length of [13]
! = 0.6, dielectric constant of,, = 25 + ¢, surface length of. = 500X,
and tapering parameter gf= L/8 at incidence angle &f; = 85°. (a) Entire
range of scattering angles. (b) Vicinity of backscattering direction.

[14]

realizations are required for convergence of backscattering
coefficients for TE and 70 realizations are required for Tl\ﬁ5]
waves.

VI. CONCLUSION [16]

In this paper, we have combined PBTG method with
BMIA/CAG to calculate the wave scattering from rough
surfaces of large surface length with a large lossy dielectfit/]
constant. The method saves both CPU and memory and
provides the required accuracy. The computational complexity
and the memory requirements of the present algorithm diél
O(N log(N)) andO(N), respectively, wheré/ is the number
of surface unknowns on the coarse grid. We also applied
the method to calculate the backscattering coefficients froAf!
rough surface at near-grazing incidence angle and also the
emissivities. The PBTG-BMIA/CAG gives accurate results

obtained and are being prepared for a separate publication.
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