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On the Use of Finite Surfaces in the Numerical
Prediction of Rough Surface Scattering

Roger T. Marchand,Member, IEEE, and Gary S. Brown,Fellow, IEEE

Abstract—Method of moments (MOM)-based Monte Carlo
calculations are widely used in determining the average radar
cross section of randomly rough surfaces. It is desirable in these
numerical calculations to truncate the scattering surface into as
short a length as possible to minimize the solution time. However,
truncating the surface tends to change the solution for the surface
fields near the truncation points and may alter the scattered far
fields. In this paper, these end effect errors are examined for
one-dimensional (i.e., grooved or corduroy) surfaces which are
Gaussian distributed in height and have either a Gaussian or a
Pierson–Moskowitz spectra. In the case of the Pierson–Moskowitz
type surface, it is shown that a relatively short surface of 80–120
wavelengths can be used to obtain the average backscattered
radar cross section for backscattering angles as large as 60��� from
normal. For a comparatively smooth Gaussian surface, on the
other hand, its is shown that the truncation effects can be very
significant at moderate backscattering angles. Also, great care
should be taken when examining the scattering from Gaussian
surfaces which are dominated by specular scattering. It is shown
that in this situation, a very large number of calculations may be
needed to obtain a good numerical average.

Index Terms—End effects, method of moments, rough surface
scattering.

I. INTRODUCTION

M ONTE CARLO calculations for the average radar cross
section of randomly rough surfaces have been used

by a number of researchers for more than a decade [1]–[8],
[10]–[12]. Typically such calculations are performed using a
surface integral equation formulation of the scattering problem
in combination with a random surface generator and the
method of moments (MOM, sometimes referred to as the
boundary element method or the method of weighted resid-
uals). In the method of moments approach, the surface fields
(or surface currents) are approximated by a set of functions,
which are called basis functions. For rough surface scattering
problems, the basis functions are often chosen as set of
current pulses. In effect, the integral equation is approximated
by a matrix equation which can be solved using standard
matrix techniques. A significant difficulty with this approach
is that: 1) the MOM matrix is a full matrix (i.e., it is not
sparse) and 2) in order to obtain accurate results the basis
functions must be quite small, typically on the order of one-
tenth the size of the incident wavelength or less [1], [8],
[10], [12]. Regardless of whether the resulting matrix equation
is solved using traditional matrix equation solvers, such as

Manuscript received March 27, 1998.
The authors are with the Department of Meteorology, The Pennsylvania

State University, University Park, PA 16802 USA.
Publisher Item Identifier S 0018-926X(99)04788-2.

lower upper (LU) triangular matrix decomposition, or iterative
techniques, such as the conjugate gradient technique, the
method of ordered multiple interactions (MOMI), or the fast
multipole method, the time required to solve the matrix equa-
tion increases rapidly as the length of the scattering surface
increases [1], [3]. The time required using LU decomposition,
for example, scales as the (where is the length of the
scattering surface), while iterative techniques generally scale
between and for each iteration, depending on the
technique. It is therefore desirable to truncate the scattering
surface used in the numerical calculation into as short a
surface as possible to minimize the solution time. However,
truncating the surface generally causes numerical errors in the
solution for the surface fields near the truncation points and
in some circumstances may eliminate important contributions
to the scattered field. In order to reduce these end effect
errors, a tapered incident field is frequently used. Examples of
such end effect errors and tapering limitations are presented
in Section II.

Also, a serious limitation to any Monte Carlo simulation is
the possibility that some important events may be sufficiently
unlikely to occur that they are difficult to include in the
simulation. In Section III, it is shown that such a situation is
encountered when calculating the average radar cross section
of finite length surfaces with Gaussian spectra, large root mean
squared (rms) height and small rms slope.

II. END EFFECTS

Let us first consider the simple case of a perfectly flat finite
length one-dimensional surface. Fig. 1 plots the magnitude of
the electric surface current obtained from a method of mo-
ments (MOM) solution of the electric field integral equation,
(1), under various illuminations. A detailed description of the
MOM implementation for this equation can be found in [7]
and [10]

(1)

where is the incident electric field, is the
unknown surface current ( being the surface normal vector
at the point ), is the one-
dimensional Greens function, is the magnitude of
the incident wave vector
is the electromagnetic wavelength, is the incident an-
gle and is the zeroth-order Hankel function of the
second kind.
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Fig. 1. Magnitude of the electric surface current on a flat surface 80�

long under plane wave and tapered illumination. (The calculations use
�x = 0:1�; �i = 0�, and TE polarization.)

The figure shows that the solution obtained using plane
wave illumination (solid line) contains large spikes in the
current at the ends of the surface. Because the far-field
transformation (essentially a Fourier transform) of a delta
function is a constant and the Fourier transform of a constant
current over a finite length is the well known sinc function,
the plane wave illumination of the finite-length surface results
in a radar cross section which is a sinc function plus a broadly
dispersed (in angle) component due to the end currents. This is
not to infer that this sinc-like solution is not the correct solution
for the scattering from a finite-length surface. The essential
point is that we are interested in the scattered field for a surface
which is not truncated. The truncation is a limitation of the
numerical solution technique and not a part of the problem of
interest and so we desire to minimize the effects of the finite
surface truncation.

For a flat surface, suppressing the end effects is easily
achieved by tapering the incident field. One such tapering
introduced by Thorsos [10] has been widely used [3], [6], [8]

(2)

where
and the parameter “,” called the half-spot size, determines
the length on the surface over which the magnitude of the
incident field drops by a factor of from its maximum
value. It should be noted, that (2) only approximately satisfies
Maxwell’s equations, and there are conditions which limit
the minimum as a function of the incident angle (see the
Appendix).

Fig. 1 shows that the tapered field reduces the current at
the ends of the scattering surface. In this example, a tapering
parameter of , yields smaller current spikes than those
observed for the plane wave, while a spot size of 10produces
no noticeable spikes (at least on a linear scale). For
the surface currents and the scattered fields will not change
noticeably if the surface length is increased, and so in this
sense we can say that the scattered field solution is free of
end effects. (Of course, the scattered far field for the case
of the tapered incident field is not a delta function, as one
would obtain for an infinitely long surface under plane wave

Fig. 2. Example of surface truncation effects for�i = 0�, using one
realization of a PEC surface with a Gaussian spectrum, rms height
(�h) = 0:707�, and correlation length(L) = 4:5�. (The calculations
use�x = 0:1�; �i = 0�, TM polarization, andg = 15�.)

Fig. 3. Same as Fig. 2 but with�i = 70�.

illumination, but has a Gaussian-like shape. There is an inverse
relationship between the length of the illuminated surface and
the width of this Gaussian-like pattern.)

For rough surfaces, on the other hand, the incident field may
be scattered by the surface roughness along the surface such
that it reaches the ends of the truncated surface. Consequently,
tapering the incident field does not guarantee that the fields
at the ends of the truncated surface are small. This problem
becomes increasingly difficult as the incident angle approaches
grazing incidence. For example, Figs. 2 and 3 plot the mag-
nitude of the electric surface current and the normalized radar
cross section (NRCS), normalized by incident power as in
[3], for one realization of a rough PEC which is truncated
at 80 and at 400 wavelengths. The particular surface used
these calculations is depicted in Fig. 4 (left side). Examining
the surface current reveals that when the incident angle is
0 (Fig. 2) there is very little current outside the primary
illumination region (roughly ) and correspondingly
this is very little difference in the radar cross sections for
the two surface lengths. However, when the incident angle is
70 (Fig. 3), the scattered field propagates along the surface
much more than 40 wavelengths and consequently there are
very significant changes in the radar cross section for the two
surface lengths, especially where the radar cross section is
small.

This end effect is usually easy to identify when examin-
ing the backscattered radar cross section. Fig. 4 (right side),
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Fig. 4. (left side) Depiction of the Gaussian rough surface used in the
calculations displayed in Figs. 2–4. (right side) Backscattered normalized
radar cross section (NRCS).

Fig. 5. Surface truncation effects on the average backscattered NRCS from
ten realizations of surfaces with Pierson–Moskowitz spectra. [The calculations
use a wind speed (U19:5) = 15 m/s, � = 0:10 m, surface spectral cutoff
(kc) = 2k0, �x = 0:15�, TE polarization, andg = 15�.]

for example, plots the backscattered normalized radar cross
section (NRCS) for the same surface used in Figs. 2 and 3.
The backscattered cross sections for both surface lengths are
in good agreement up to about 40. In this angular region, the
backscattered NRCS is accurate because the contribution from
the illuminated surface is much greater than the contribution
from the region near the surface edges.

The above example was chosen for its pronounced end
effects. The end effects are not always this significant. Fig. 5,
for example, compares the average backscattered radar cross
section computed from ten surfaces with Pierson–Moskowitz
spectra, where the scattering surface has been truncated at
two different lengths of 8200 and 120 wavelengths. This
figure shows that there is very good agreement between the
two solutions down to incident angles of about 60. (The
breakdown in the solution for angles greater than about 70,
is directly related to an insufficiently large value for incident
field tapering parameter,. If is increased this problem
is eliminated, see Fig. 6.) In fact, we have observed that
for these Pierson–Moskowitz type surfaces, surface lengths
as short as 80 wavelengths with set to 15 wavelengths
produces good results for the backscattered radar cross section
to 60 .

Fig. 6. Same as Fig. 5 but withg = 15� andg = 2050�.

A large part of the reason why the far field in Fig. 5 is
seemingly unaffected by the surface truncation is simply that
the Pierson–Moskowitz surface contains considerable Bragg
scattering elements which give rise to a much larger backscat-
tered field than does the relatively smooth Gaussian surface. So
even though one might expect the rougher Pierson–Moskowitz
surface to have larger errors in the surface currents, these errors
are not significant in the far field.

In general, we have observed that the edge effects depend
slightly on the polarization, the nature of the surface rough-
ness, the integral equation used, the matrix solver (e.g., LU
decomposition versus MOMI) and the sampling density. In
regards to iterative matrix solvers, presumably truncating the
iterative series produces different end effects because each
technique has different “orderings” of the scattering process.

The important conclusion to be drawn here is that although
tapering the incident field can substantially reduce end effects,
they are not completely eliminated and extra care should be
taken whenever the calculated radar cross section is small. In
our research, a minimum value for of ten wavelengths or

(whichever is larger) and a total
surface length of four to six times was observed to be an
effective threshold for backscattering angles up to 80from
normal and normalized radar cross sections greater than about

60 dB.

III. FINITE-LENGTH MONTE CARLO RUNS

The scattering from Gaussian rough surfaces that do not
contain any significant variations in their height on spatial
scales ten times the length of the incident wavelength or
shorter are dominated by specular (i.e., ray-like) scattering [7].
However, these surfaces may contain important specular facets
(i.e., slopes) which occur very infrequently. For example,
Fig. 7 compares the theoretical probability density function
(pdf) with two estimated slope pdf’s (essentially histograms of
the slope) for randomly generated surfaces which are Gaussian
distributed in height and have a Gaussian spectra with a rms
height of 2.24 and rms slope of 24.1. The slope given along
the horizontal axis of this figure is the rate of change in the
height of the rough surface with respect to the mean scattering
surface (plane). (This value can be converted into the angle
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Fig. 7. Histograms of the surface slopes for finite length surfaces with
Gaussian spectra [�h = 2:24� and rms slope(�s) = 24:1�]. Slope estimates
obtained via difference formula with�x = 0:1�.

Fig. 8. The average NRCS for the same surfaces examined in Fig. 7.
[Calculations use a dielectric constant("r) = 2:0, TM polarization, a surface
length of 80� and g = 15�].

formed between a line with this slope and the mean scattering
plane by taking its tangent, i.e., .) Fig. 7 shows
that when 200 surfaces which were 80 times longer than the
incident wavelength were examined, no slope greater than
about 1.7 was found. As a result, none of the 200 surfaces
contained a slope which could specularly backscatter a ray
incident at 60. When the number of surfaces examined was
increased to 2000, a few slopes of up to 2.1 were found. These
slopes can back reflect rays up to about 65. Note that this
is not an error in the surface generation program. For this
example, the likelihood that a point on the surface will have
a slope of two or greater is 3.385 10 %. When the large
slopes are not included in the Monte Carlo sample population,
the average backscattered radar cross section is significantly
underestimated at large backscattering angles, as shown in
Fig. 8.

IV. SUMMARY

The time required to solve the MOM matrix equation
increases as the length of the scattering surface increases.
It is therefore desirable to truncate the scattering surface
used in the numerical calculations into as short a surface as

possible to minimize the solution time. However, truncating
the surface generally causes numerical errors in the solution
for the surface fields near the truncation points and in some
circumstances may alter the scattered far field. Although
tapering the incident field can substantially reduce the end
effects, they are not completely eliminated and extra care
should be taken whenever the calculated radar cross section is
small. Conditions which the authors have found effective in
suppressing end effects for surfaces with Pierson–Moskowitz
and Gaussian spectra are described in Section II.

Finally, a serious limitation to any Monte Carlo simulation is
the possibility that some important events may be sufficiently
unlikely to occur that they will not be properly included in the
simulation. Section III demonstrates that such a situation is
encountered when calculating the averaged radar cross section
of finite length surfaces with Gaussian spectra, large rms
height, and small rms slope.

APPENDIX

One possible incident field tapering, derived by Thorsos
[10], was given in Section II as (2). Thorsos’ derivation of (2)
starts with an angular spectrum of plane waves representation
for the incident field. That is, the incident field is given by
a sum of plane waves traveling in different directions with a
Gaussian weight

(A.1)

Equation (2) is then obtained from (A1) by: 1) performing
a change of variables, ; 2) extending the limits
of integration to infinity; and 3) expanding the term

in , and retaining terms
up to order . Thorsos states that the resulting equation
is accurate to order . However, in extending
the limits beyond , Thorsos has allowed for contributions
to the incident field representing plane waves with incident
angles greater than 90. Therefore, an additional constraint
must be placed on to prevent any “significant” incident
field contribution from these unrealistic incident angles. A
reasonable form for this condition is given as follows:

(A.2)

where “ ” is a constant which specifies how much the incident
field spectrum has drooped (at grazing incidence) from its peak
value at . In our research, a value for “” of three to four
was observed to be an effective threshold for backscattering
angles down to roughly 80, although this may depend on
the surface spectrum. At incidence angles away from normal,
this additional constraint dominates the condition given by
Thorsos. When Thorsos’ approximate incident field can not
be used, one can numerically evaluate an angular spectrum of
plane waves equation, such as (A.1), to obtain the incident
field [9].
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