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Stability of Absorbing Boundary Conditions

Omar M. RamahiMember, IEEE

Abstract— Higher order absorbing boundary conditions peak of the signal, the instability is commonly referred to as
(ABC's) exhibit instabilities that can be detrimental to a wide |ate-time instability. Unfortunately, such nomenclature can be
class of finite-difference time-domain (FDTD) open-region iqieading since the degree of growth of the solution should
simulations. Earlier works attributed the cause of instabilities . . .
to the intrinsic construction or makeup of the ABC's, and be measured with respect to, or in relation to the frequency
consequently to the pole-zero distribution of the transfer bandwidth of the analysis. For instance, when one is interested
function that characterizes the boundary condition. In this only in the response of the system over a narrow band of
work, we investigate the cause of instability. We focus on axial frequency, then what is referred to as late-time instability can
gggngﬁgx/vc?ﬁgﬂgﬂsasnuc:mapsirilggd:tr&,dsat);:;s;;:;ﬁelAggqsLSrcé, be of _Iittle concern. However, when the interest lies in the
not intrinsically unstable in their original unmodified forms. ~Pehavior of the system over a wide frequency band, then the
Furthermore, we show that the instability typically observed FDTD simulation would need to include a sufficiently large
in FDTD open-region simulations is caused by an artifact of number of time steps to capture the correct frequency response.
the rectangular computational domain, contrary to previously |, thege applications, a small growth in the solution can have a
conjectured hypotheses or theories. These findings will have detrimental effect on the lower frequency response. Also, when
strong implications that can aid in the construction of stable - ) : - )
FDTD schemes. analyzing open-region resonant structures such as microstrip
filters, the simulation needs to proceed for an excessively
large number of time steps to capture the resonant frequencies
accurately. Again, any artificial growth in the solution renders
the simulation useless.

.- INTRODUCTION Instabilities in the FDTD method are caused by different
HENEVER the finite-difference time-domain (FDTD)mechanisms; some of which are understood and some have
method is used to simulate open-region radiation semained unresolved. The most visible cause of instability
scattering problems, the implementation of a mesh-truncatisnrelated to the relationship between the grid spacing and
scheme becomes an integral part of the simulation. For mathwe time step, typically referred to in the electromagnetic
FDTD applications, the required duration of the simulatioliterature as the Courant—Friedrichs—Lewy (CFL) criterion.
need only to extend over enough time steps to capture the buitiis type of instability is resolved by adhering to the CFL
of the output energy or pulse at a desired point of observati@ondition. The second important type of instability is caused
For such problems, the stability behavior of mesh-truncatidy the mesh-truncation technique that is essential to produce
techniques does not pose a serious challenge. However, theee finite computational domain when simulating open-region
a wide class of problems where the output time signature negusblems. This type of instability arises at the analytical level
to be obtained for a very long duration in order to reproducg at the numerical level. If the mesh-truncation mechanism
the response of the system over a wide frequency band (giathe boundary condition is intrinsically ill posed, then the
Fourier transformation). For this important class of problemgstability is analytical. An ill-posed formulation implies the
care must be taken to ensure that the evolution of the fieldd@nuniqueness of the solution. Alternatively, a well-posed
time does not exhibit any unstable behavior. solution does not admit a reflection that can grow in time. The

In the electromagnetic computational context, instabilitf posedness of a boundary condition is typically addressed at
is generally referred to the time-dependent growth of thfe formulation stage of the problem and for the most part is
solution such that it violates the physical phenomenon beigg minor concern to practical FDTD modelers.
simulated. The potential of the solution to become unstableon the other hand, the instabilities that arise at the numerical
is a concern not only when using the FDTD method, byye| are more difficult to analyze. This is primarily due to the
whenever a time-domain technique is encountered such asf{\& that the mapping from the analytical domain to the discrete
time-domain method of moments (MoM) and the time-domaiflomain is not unique; thus, each discretization scheme has to
finite elements method (FEM). (See [1] and [2] and referencgg carefully scrutinized for its instability potential.
therein for a perspective on the importance of the subject of\jesh-truncation techniques fall into two distinct categories:
stability in MoM and FEM.) When the growth in time of rhe first consists of material-based techniques, and the second
the solution is slow or weak in comparison to the maximurg absorbing boundary condition (ABC)-based techniques. In

the first group, the perfectly matched layer (PML) figures
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further investigation in the general stability properties o rectangular terminal boundary (parallel to #haxis). The
PML. The second group of mesh-truncation techniques includperator B which represents the ABC and its corresponding
ABC's such as Bayliss—Turkel [5], Engquist—-Majda [6], an@nalytic reflection coefficientz, are given, respectively, by
Higdon [7], [8], in addition to methods based directly or

indirectly on these ABC's such as the class of numerical " &

operators [9], [10], and the complementary operators method Biu} = H (s + Eat)u =0 (1)
(COM) [11], [12]. In this work, we focus on the instability Z:lN

caused by the second group. Furthermore, we concentrate only R(B) = — H <—jkgC + inw/c> @
on ABC's that are uni-axial (involve only normal derivatives e Jke + jéw/c

in space) such as Bayliss—Turkel, Higdon, and Liao. These

ABC'’s are considered here because of their unique flexibiliwhere &; is a constant that can be chosen to maximize the

and ease of construction, but also because of their simplesorption in a specified direction,is the speed of light in

and direct applicability in the COM method. However, it willfree spacew is the radian frequency, ané. is the wave

be seen from the discussion and findings in this work thaumber in thez-direction.

it is most likely that the conclusions inferred henceforth are In [8] it was argued that as the frequency approaches dc, the

applicable to other analytical ABC's. denominator ink approaches zero, thus creating a potential for
instability. An alternative explanation of this potential cause
of instability can be presented based on the theoryZef

Il. ABSORBING BOUNDARY CONDITIONS transformation, in which the reflection coefficient is recast

It is commonly established that higher order ABC’s introln the descretized domain as a transfer function. (In this
duce instabilities into the FDTD simulation of open-regio§onstruction, the transform variabtecorresponds to a time
problems. Previous work exhibiting such instabilities deafihift.) From the theory of discrete signal processing, the system
primarily with Higdon and Liao ABC's [8], [13], nevertheless,described by the transfer function is stable if the poles of the
it is highly probable that the stability behavior transcends tgansfer function lie within the unit circle. Since the boundary
other classes of analytical ABC's. condition given in (1) produces poles that lie precisely on the

The cause of instability arising from the application ofinit circle, the FDTD scheme will be only marginally stable
higher-order ABC'’s has been attributed to at least one of tif- Any slight shift of the poles outside the unit circle would
following factors: 1) finite computer precision; 2) differencingherefore render the boundary condition unstable. A shift of
schemes used to approximate the differential boundary op#te poles can be caused by limited computer word length and
ator; and 3) low-frequency content of the excitation pulse. §an be prevented by using higher arithmetic precision [14].
consequence, several remedies were proposed, some which ag&sed on the above analysis, it was suggested in [8], that
simple, such as increasing the computer arithmetic precisié¢ instability can be prevented by introducing a loss factor
in the mesh region of the computational domain occupié@sulting in a new ABC given by
by the numerical stencil of the ABC [14]. The numerical N
stencil, henceforth referreq to as thg stencil, refers to .t_he Blu) = H(aac + Qat fe)=0 3)
nodes that are needed to discretize a given boundary condition. c
The differencing schemes used to translate an analytic partial
differential equation into a discrete algebraic equation are naith a corresponding reflection coefficient given by
unique. In fact, the mathematical definition of the derivative N
does not have to be unique and can be generalized to a R(B) = _H <—jkm +j§iw/0+€i>
wider class as long as the limit behavior remains unchanged ke + j&w/c+¢;

([15] and references therein). Some schemes used within the

FDTD method to discretize boundary operators have beerBy observation of (4), we see that the introduction of the
found, empirically, to yield satisfactory result [6]. Becaus&equency independent term prevents the denominator of

of the varying possibilities available to discretize an equatio®(B) from reaching zero as approaches zero. Viewed in
weighting coefficients can be inserted in addition to differethe context of Z-transforms, the introduction of; shifts
averaging measures [8], which were found to increase ttiee poles of the transfer function into the interior of the
stability potential of certain ABC's. However, it needs to benit circle, thus maintaining stability. What is unfortunate,
stressed that, to the author’'s knowledge, no systematic studywever, is that the order of the pole increases as the order of
has been carried out on this subject, especially the effecttbé boundary condition [higheW in (3)], and it is expected
the discretization scheme on stability. that the stabilization of the boundary condition becomes more

The third factor considered to cause instability has bedlifficult. Another important point is that while the introduction
investigated in the context of Maxwell's equations. Wheaof ¢; increases the stability potential of the ABC, it adversely
the pulse contains sufficient energy in the lower frequenaypacts the frequency domain behavior of the solution over
components (close to dc) it was suggested that the solutitve lower end of the spectrum [14]. This is because the
employing an ABC becomes unstable because of the increasdlection coefficient (4) ceases to be frequency independent
above unity, of the reflection coefficient [8]. Let us considervhene; is introduced, and approaches unity monotonically as
the Nth order Higdon ABC enforced at the left-hand side ahe frequency approaches dc.

i=1

(4)

i=1
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Fig. 1. Solution due to a sinusoidal signal. source observation
This limitation can be significant when the objective of
the analysis is the frequency response over a wide-band. For
problems requiring the frequency response over a very narrow
band, one can always choose a snaalbufficient enough to Vol
stabilize the solution, yet affecting the accuracy of the solution
. .. la s
in a negligible way. _ _ ~N ~
The theory that the lower frequencies are responsible for
instabilities can perhaps explain the mechanism of instability; Vb .
however, it falls short of explaining why the solution can
become unstable even when its lower frequency content is ~ ~
virtually null. To expound upon this we consider a source ~ ~
with virtually zero low-frequency content. Throughout this I

paper, we adopt the following notation: For a domain of | |
size NA x MA, we useN x M. Similarly, an observation 40A

point at @A, mA) is denoted by, m). We consider a
40 x 40 two-dimensional computational domain where th
space step is 0.015 m and the time step is 90% of the

CFL limit. The excitation is a line source with a simple m
sinusoidal temporal waveform positioned at (20, 20) (E- ) ) .
or TM-polarization). The observation point is at (36, 20) L€t US consider several computational domains in two-
Fig. 1 shows thek. component of the solution obtained usin#‘lmensmpal space. 'The vertical ter'mlnal boundaries will be
Higdon fourth-order ABC IV = 4 in (1)]. Notice that despite |xeq_, while the_ horizontal l_)oundarlgs (top and_ bottom) are
the fact that the output pulse has hardly any lower frequen895't'_0ned at dlﬁerent Io_catlo_ns to give three different com-
components, the solution still becomes highly unstable. TH&tational domains having sizes 40 50, 40 x 500, and
simple counter example leaves the lower frequencies thedd * 2000. A diagram illustrating these experimental bound-
incomplete. aries is shown in Fig. 2. For each computational domain,

In the strict sense, the “stabilized” forms of Higdon anéhe source is positioned at the center of the domain de-
Liao boundary conditions improved the stability potential ofoted by {., j.), and the observation point is selected at
these ABC's, but certainly did not eliminate the instability(is + 18), js). The excitation is E-polarized with a source
altogether. Furthermore, efforts to stabilize higher order ABCR@ving a smooth temporal waveform (resembling a differenti-
were unsuccessful [13]. And when stability is achieved it mogted Gaussian pulse) used in [11]. (In this and the following
likely compromises the solution’s accuracy over the lower efgkamples, the precise nature of the pulse waveform is not
of the frequency spectrum [14]. relevant to the discussion.)

The analyzes advocated initially by Higdon and later used Notice that as the horizontal terminal boundaries (top and
and generalized to Liao’'s ABC’s by Wagner and Chew [13jottom) are positioned further away from the source, the
helped to partially explain the mechanism behind a type dfstance from the source to the corner regions is increased,
instability. It will be shown in the next section, that the polewhile the distance from the source to the observation point
zero distribution of the transfer function can explain onlyemains unchanged at 18 cells. Fig. 3 shows the component
partially the instability mechanism. However, the cause of the E. field at the observation point as calculated in
instability is yet another form of incompatibility that can besach of the three computational domains. Higdon fourth-order
also interpreted in light of the analyzes above. ABC is used without any loss facter, = 0. Observation of

Iéig. 2. Computational domains with increasing source-to-corner distance.

. | SOLATION OF CORNER REGIONS
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these curves shows that the solution starts to become unst@l;g.e‘ll Computational domain devoid of corner regions.
precisely as the time waveform reaches the corner region. The
start of the instability in Fig. 3 for each curve corresponds to e
the distance the wavefront takes to travel from the source to J
the nearest corner region. What is crucial to observe here, is 1&°
that the “side or vertical boundaries” (which are the closest 1es
to the source) did not produce any instability, even thougl’g e L
a fourth-order Higdon ABC was used without involving any% i
stabilizing factors. This experiment leads to an importan§ 158
empirical finding; that the instability arise in the corner regions e
and is not caused by the interaction of the wavefront with the%u 10 |
side boundaries. & ‘

As a further consolidation of this finding, we considerg ™
a second numerical experiment in which the effect of the g2 e m
ABC corner regions is eliminated. The most practical way to _ F T 1] (] 1TV PP AN g
eliminate the effect of ABC corners and to be able to perform 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
the simulation over large number of time steps is to replace Time step
any two parallel boundaries with perfectly conducting platq:§g_ 5. Solution obtained using Higdon fourth-order ABC.
as shown in Fig. 4. For this problem, the source is a line
source polarized in the-direction (TM polarization) having _ ) ) _ _
a temporal waveform and simulation parameters as in tRePractical demonstration, we consider a microstrip struc-
previous example. Fig. 5 shows the FDTD solution obtaindd'® With a cross section in the—y plane shown in the
for 100 000 time steps while using Higdon fourth-order ABdnset of Fig. 7. The size of the computational domain is
without any stabilizing parameters. The results presented3fx 40x 100. The source is positioned ten cells from the
Fig. 5 show conclusively that the solution waveform coulf€ar-end of the guide and the observation plane (for both
approach very low values without triggering any instabilitycurrent and voltage) is ten cells inward from the far-end
Clearly, in the absence of ABC corner regions, the wavefroftrminal boundary. On both terminal boundaries, a fourth-
interacts singularly with the ABC enforced on a side boundagfder Higdon ABC is enforced witlf; to & having values
resulting in stable solution. between one an¢/e,. (the solution is insensitive to variations

An important corollary to this finding impacts the simulationn &;’s as long as they are spread between one gfag)).
of a class of waveguiding structures that have no ABEIQ. 7 shows the characteristic impedance calculated from
corner regions such as shown in Fig. 6. In this class @eld values obtained from a simulation that ran for 3000 time
structures, the waveguide geometry ends with planar terréfeps. Comparison is made with the reference solution, which
nal boundaries defining the FDTD computational domaitas obtained by considering a long enough guide (350 cells
Since the FDTD domain is devoid of any corner region#) the z-direction) such that the reflection from the far end
higher-order ABC's can be employed without concern fatoes not reach the observation plane. Considering that this
instabilities. This corollary has a significant implication in thetructure is highly dispersive, we see that the fourth-order ABC
simulation of dispersive structures such as shielded microstéiphieved a very satisfactory level of accuracy without resorting
lines; especially structures containing resonant discontinuitis postprocessing or other indirect techniques as would be
which demand excessively large number of time steps. Ascessary had we used a lower order ABC [16], [17].

Fig. 3. Instabilities arising from corner regions.
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Fig. 8. Surface current on a perfectly conducting circular cylinder due to a
TE-polarized plane wave incidence.

to a half-plane terminal boundary. It is important, however, to
terminal boundary keep in mind that the second coefficient in (5) is a correction
Fig. 6. Geometry for a three-port waveguiding structure showing a disco‘ih—at ad_JUStS for the curvature of the Wa\,/efrom When_ expanded
tinuity. on a circular outer boundary and thus it cannot be interpreted
to play the role of the loss factar; in (3).

60 Without loss of generality, we demonstrate the effect of
circular outer boundaries on stability by using a recently
reported FDTD scheme having an unstaggered mesh ([18]
and references therein). We consider the problem of a plane
wave (TE-polarization) scattering from a perfectly conducting
cylinder with a I radius. The outer boundary is positioned
only ten radial cells from the conductor’'s surface. The mesh
consists of 360 cells in the angular direction and ten cells in
the radial direction. Fig. 8 shows the surface current obtained
le—>1 using Baylilss—Turkel's fourth-order ABC and the reference
dI e solution (obtained through Hankel’s function expansion). The
* surface current was obtained from the total field samples
2l for a simulation spanning 20000 time steps. What is to be
P R S S S T S S emphasized here is that not only the simulation was free

0 2 4 6 8 10 12 14 16 18 20 from any instability, but equally important, it resulted in a
Frequency (GHz) remarkably accurate solution that can hardly be distinguished
) o . . ) from the reference solution.
Fig. 7. Characteristic impedance obtained using a domain of size . .
50 x 40 x 100. Comparison is made with the reference solution devoid |ne above experiments lead us to conclude that higher order
of any terminal boundary reflections\z = 0.1 mm, Ay = Az = 0.25 ABC’s are not intrinsically unstable. Furthermore, the insta-
mm, & =4mm,A=1mm,b=10 mm, W =1mm,e- = 10. bility arises from an artifact of the computational domain that
causes an incompatibility, which we discuss in the following
Having established that the instability arises in the corneection.
region, it would then be expected that if the outer boundary is a
smoothly varying contour, then the instability problem would IV. CORNER REGION INCOMPATIBILITY

not arise. To test th'.s hypothes_ls, we consider the SImpIeStLI'he incompatibility that arises at corner regions is linked to
of suph contours; a C|rc|e.. On this, we entorce a fourth-ordﬁ{e numerical process that converts the solution process from
Bayliss—Turkel ABC [5] given by the analytical to the numerical domain. In the analytic domain,
N the boundary operator, which is composed of differential
Biu} =[] (@, + (2i —3/2)/p+ d)u=0 (5) operators in time and space, is applied at a single point in
i=1 space and time. When the analytic operator is converted to
where p is the radius of the circular contour. Thea discrete operator through finite-difference approximation, it
Bayliss—Turkel operators are, in effect, a generalization o&n no longer be applied at a single point in space and time, but
Higdon’'s ABC's. This can be seen asincreases, the secondnow it is applied over a set of points, or a stencil. This directly
term in (5) approaches zero in the limit, thus correspondingads to the potential incompatibility when encountering points

reference

Surface current

58 |
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reference
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3
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close to the corner regions and, in other applications, to points numerical stencil
close to any terminal boundary. (For instance, in [19], the f°’P°i"‘B\,f
averaging of the fields that reflect off the terminal boundary
must take place at a plane located beyond the stencil region.)
The appearance of any sudden irregularity within the stencil
region, such as a “source term” creates a discontinuity in the ST PSR i B
field and its derivatives that compromises the assumption of o—+— 3L o2, g 1h A
analyticity of the field in that region. As a consequence, the DR LT pepapege B
definition of the partial derivativespx and dt, within the
stencil become meaningless (unless the analysis is carried out
within the context of the theory of distributions).

To explain this in more detail, recall that boundary condi-
tions are constructed under the assumption that the electromag-
netic fields in their proximity satisfy the homogeneous wave
equation. This implies that the region over which the ABC NP P
is enforced cannot contain sources or virtual discontinuities.
Let us consider the upper right-hand corner region in a two-
dimensional FDTD. Without loss of generality, we show in
Fig. 9 the stencils of a third-order Higdon’s ABC. For clarity,
we limit this discussion to the two-dimensional space, however Y
the conclusions apply to the three-dimensional space. Let u{n
apply the ABC on nodel shown in Fig. 9. Assuming that the
incident field has the wave numbler= ki, —Hﬂy@y, then the Fig. 9. _ Corner region showing the overlap b_etween the stencils needed to

L . . ! . descretize the boundary condition on boundaries A and B.

application of the ABC give rise to a reflected field having a
wavenumbek = —k, i, + k,%,. However, it should be noted o ) -
that the incident field on the right-hand side boundary woufly Source within the stencil of the boundary condition cannot
admit two different values ok, given by ./(k? — k2. This be satisfied by_ _the bogndgry condition since it _V|0Iates the
is because of waves that have been reflected off the uppgrndary condition, which is homogeneous, having the form
terminal boundary. Nod&, or more precisely the numerical3{#} = 0 instead of the inhomogeneous boundary condition
counterpart of nodés, which comprises11, z12, 13, andB B{u} +a=0, whereaq is a constant. It. is cI.ear at this point
(see Fig. 9) now experiences waves that are reflected off ndfat an inhomogeneous boundary condition is a good candidate
A. To nodeB (again, inclusive of the stencil), these wavefor canceling the effect of(z). However, considering the fact
are “incident’” with k = —kyii, =+ |k, |, which in effect Fhat b(t) is a function that cannot be predicted in _adyance,
resemble waves incident upon the upper terminal bounddpj)omogeneous boundary conditions are very restrictive; and
from outside. This can lead to an uncontrollable growth in tHelS conjectured that they do not have practical applications in
field, or instability, since the ABC was not designed to absoffPTD simulations except in very limited applications where
such waves. the physical source of excitation lies outside the computational

Viewed from another different, yet, coherent perspective, ti@main [20]. _ _ _ _
artificial reflection caused by the reflection from notlean be [N light of the above discussion, a question arises: If the
considered as an energy source as far as ieconcerned. overlap of ABC stencils in the corer region creates an
To make this clear, let us consider once again painend B incompatibility, then why would lower order ABC's such
in Fig. 9. These two points are located at two different physic@p Higdon's and Liao’s second-order operators exhibit stable
locations. However, when the discretized ABC is applied R€havior? A careful look at Higdon and Liao second-order
each of these two points, their stencils overlap, thus creatif§C’s reveals that they too exhibit a degree of instability,
numerical points within the stencil that are supposed to H@Wever, much less pronounced than that exhibited by higher
analytically unique. Let us assume that the ABC is first applicfder operators. To show this, we reconsider the domain shown
at A. After at least one time step from the time the field arrivé® Fig. 4, but without the conducting plates. In Fig. 10 we
at A, an artificial reflection is introduced at node; (see show the solution due to the application of Higdon’s second-
Fig. 9). Since this field appears at nogdg without passing orde.r ABC without lstabili.z_ing_parameters: For all practical
through any of the earlier nodes of the stencil®fz1, and applications, such instability is of very little consequence
x13), it is effectively an independent source of energy as sef€ maximum signal level in Fig. 10 is 10), however, its
by nodeB. In fact the field experienced h§ can no longer existence is predicted from the analysis given above.
be characterized by incoming and outgoing waves only, but
also by an additional source term as V. SUMMARY

w(z) = ateikvutet o= pikyytet L b(E). (6) In this_ paper, we presente_d an _e_malysis qf the cause _and
mechanism behind a type of instability that arises when using
Hereb(t) is a function of time that represents the appearancetbe FDTD method to solve open-region radiation problems.
a field that is not governed by the homogeneous wave equatitinwas shown through an empirical study that when using
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Fig. 10. Instability caused by Higdon second-order ABC.

13
a Cartesian mesh, instabilities arise due to corner regior[13,]
which are viewed as an artifact of the Cartesian computatio ?4]
domain. These incompatibilities are a direct consequence 0
the finite difference approximation used to transform the
analytical equations into algebraic relations. It was sho
that isolation of the corner region eliminates this dominants]
type of instability. As a consequence, we have identified an
important class of FDTD applications that do not involvei\,17
corner regions. This class of problems allows the application
of higher-order ABC'’s that were typically considered unfit
because of perceived instability potential. [18]
Finally, it is hoped that identification of the cause of
instability can lead to the construction of stable FDTD schemes
employing rectangular mesh. [19]
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