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Stability of Absorbing Boundary Conditions
Omar M. Ramahi,Member, IEEE

Abstract— Higher order absorbing boundary conditions
(ABC’s) exhibit instabilities that can be detrimental to a wide
class of finite-difference time-domain (FDTD) open-region
simulations. Earlier works attributed the cause of instabilities
to the intrinsic construction or makeup of the ABC’s, and
consequently to the pole-zero distribution of the transfer
function that characterizes the boundary condition. In this
work, we investigate the cause of instability. We focus on axial
boundary conditions such as Higdon, Bayliss–Turkel, and Liao,
and show through an empirical study that these ABC’s are
not intrinsically unstable in their original unmodified forms.
Furthermore, we show that the instability typically observed
in FDTD open-region simulations is caused by an artifact of
the rectangular computational domain, contrary to previously
conjectured hypotheses or theories. These findings will have
strong implications that can aid in the construction of stable
FDTD schemes.

Index Terms—Absorbing boundary conditions, finite-difference
time-domain method, stability.

I. INTRODUCTION

W HENEVER the finite-difference time-domain (FDTD)
method is used to simulate open-region radiation or

scattering problems, the implementation of a mesh-truncation
scheme becomes an integral part of the simulation. For many
FDTD applications, the required duration of the simulation
need only to extend over enough time steps to capture the bulk
of the output energy or pulse at a desired point of observation.
For such problems, the stability behavior of mesh-truncation
techniques does not pose a serious challenge. However, there is
a wide class of problems where the output time signature needs
to be obtained for a very long duration in order to reproduce
the response of the system over a wide frequency band (via
Fourier transformation). For this important class of problems,
care must be taken to ensure that the evolution of the field in
time does not exhibit any unstable behavior.

In the electromagnetic computational context, instability
is generally referred to the time-dependent growth of the
solution such that it violates the physical phenomenon being
simulated. The potential of the solution to become unstable
is a concern not only when using the FDTD method, but
whenever a time-domain technique is encountered such as the
time-domain method of moments (MoM) and the time-domain
finite elements method (FEM). (See [1] and [2] and references
therein for a perspective on the importance of the subject of
stability in MoM and FEM.) When the growth in time of
the solution is slow or weak in comparison to the maximum
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peak of the signal, the instability is commonly referred to as
late-time instability. Unfortunately, such nomenclature can be
misleading since the degree of growth of the solution should
be measured with respect to, or in relation to the frequency
bandwidth of the analysis. For instance, when one is interested
only in the response of the system over a narrow band of
frequency, then what is referred to as late-time instability can
be of little concern. However, when the interest lies in the
behavior of the system over a wide frequency band, then the
FDTD simulation would need to include a sufficiently large
number of time steps to capture the correct frequency response.
In these applications, a small growth in the solution can have a
detrimental effect on the lower frequency response. Also, when
analyzing open-region resonant structures such as microstrip
filters, the simulation needs to proceed for an excessively
large number of time steps to capture the resonant frequencies
accurately. Again, any artificial growth in the solution renders
the simulation useless.

Instabilities in the FDTD method are caused by different
mechanisms; some of which are understood and some have
remained unresolved. The most visible cause of instability
is related to the relationship between the grid spacing and
the time step, typically referred to in the electromagnetic
literature as the Courant–Friedrichs–Lewy (CFL) criterion.
This type of instability is resolved by adhering to the CFL
condition. The second important type of instability is caused
by the mesh-truncation technique that is essential to produce
a finite computational domain when simulating open-region
problems. This type of instability arises at the analytical level
or at the numerical level. If the mesh-truncation mechanism
or the boundary condition is intrinsically ill posed, then the
instability is analytical. An ill-posed formulation implies the
nonuniqueness of the solution. Alternatively, a well-posed
solution does not admit a reflection that can grow in time. The
ill posedness of a boundary condition is typically addressed at
the formulation stage of the problem and for the most part is
of minor concern to practical FDTD modelers.

On the other hand, the instabilities that arise at the numerical
level are more difficult to analyze. This is primarily due to the
fact that the mapping from the analytical domain to the discrete
domain is not unique; thus, each discretization scheme has to
be carefully scrutinized for its instability potential.

Mesh-truncation techniques fall into two distinct categories:
The first consists of material-based techniques, and the second
of absorbing boundary condition (ABC)-based techniques. In
the first group, the perfectly matched layer (PML) figures
prominently [3]. Few publications have addressed the subject
of PML stability. Recently, it was found that the split version
of the PML to be not strongly well posed [4], which merits
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further investigation in the general stability properties of
PML. The second group of mesh-truncation techniques include
ABC’s such as Bayliss–Turkel [5], Engquist–Majda [6], and
Higdon [7], [8], in addition to methods based directly or
indirectly on these ABC’s such as the class of numerical
operators [9], [10], and the complementary operators method
(COM) [11], [12]. In this work, we focus on the instability
caused by the second group. Furthermore, we concentrate only
on ABC’s that are uni-axial (involve only normal derivatives
in space) such as Bayliss–Turkel, Higdon, and Liao. These
ABC’s are considered here because of their unique flexibility
and ease of construction, but also because of their simple
and direct applicability in the COM method. However, it will
be seen from the discussion and findings in this work that
it is most likely that the conclusions inferred henceforth are
applicable to other analytical ABC’s.

II. A BSORBING BOUNDARY CONDITIONS

It is commonly established that higher order ABC’s intro-
duce instabilities into the FDTD simulation of open-region
problems. Previous work exhibiting such instabilities dealt
primarily with Higdon and Liao ABC’s [8], [13], nevertheless,
it is highly probable that the stability behavior transcends to
other classes of analytical ABC’s.

The cause of instability arising from the application of
higher-order ABC’s has been attributed to at least one of the
following factors: 1) finite computer precision; 2) differencing
schemes used to approximate the differential boundary oper-
ator; and 3) low-frequency content of the excitation pulse. In
consequence, several remedies were proposed, some which are
simple, such as increasing the computer arithmetic precision
in the mesh region of the computational domain occupied
by the numerical stencil of the ABC [14]. The numerical
stencil, henceforth referred to as the stencil, refers to the
nodes that are needed to discretize a given boundary condition.
The differencing schemes used to translate an analytic partial
differential equation into a discrete algebraic equation are not
unique. In fact, the mathematical definition of the derivative
does not have to be unique and can be generalized to a
wider class as long as the limit behavior remains unchanged
([15] and references therein). Some schemes used within the
FDTD method to discretize boundary operators have been
found, empirically, to yield satisfactory result [6]. Because
of the varying possibilities available to discretize an equation,
weighting coefficients can be inserted in addition to different
averaging measures [8], which were found to increase the
stability potential of certain ABC’s. However, it needs to be
stressed that, to the author’s knowledge, no systematic study
has been carried out on this subject, especially the effect of
the discretization scheme on stability.

The third factor considered to cause instability has been
investigated in the context of Maxwell’s equations. When
the pulse contains sufficient energy in the lower frequency
components (close to dc) it was suggested that the solution
employing an ABC becomes unstable because of the increase,
above unity, of the reflection coefficient [8]. Let us consider
the th order Higdon ABC enforced at the left-hand side of

a rectangular terminal boundary (parallel to the-axis). The
operator which represents the ABC and its corresponding
analytic reflection coefficient, , are given, respectively, by

(1)

(2)

where is a constant that can be chosen to maximize the
absorption in a specified direction,is the speed of light in
free space, is the radian frequency, and is the wave
number in the -direction.

In [8] it was argued that as the frequency approaches dc, the
denominator in approaches zero, thus creating a potential for
instability. An alternative explanation of this potential cause
of instability can be presented based on the theory of-
transformation, in which the reflection coefficient is recast
in the descretized domain as a transfer function. (In this
construction, the transform variablecorresponds to a time
shift.) From the theory of discrete signal processing, the system
described by the transfer function is stable if the poles of the
transfer function lie within the unit circle. Since the boundary
condition given in (1) produces poles that lie precisely on the
unit circle, the FDTD scheme will be only marginally stable
[8]. Any slight shift of the poles outside the unit circle would
therefore render the boundary condition unstable. A shift of
the poles can be caused by limited computer word length and
can be prevented by using higher arithmetic precision [14].

Based on the above analysis, it was suggested in [8], that
the instability can be prevented by introducing a loss factor
resulting in a new ABC given by

(3)

with a corresponding reflection coefficient given by

(4)

By observation of (4), we see that the introduction of the
frequency independent term prevents the denominator of

from reaching zero as approaches zero. Viewed in
the context of -transforms, the introduction of shifts
the poles of the transfer function into the interior of the
unit circle, thus maintaining stability. What is unfortunate,
however, is that the order of the pole increases as the order of
the boundary condition [higher in (3)], and it is expected
that the stabilization of the boundary condition becomes more
difficult. Another important point is that while the introduction
of increases the stability potential of the ABC, it adversely
impacts the frequency domain behavior of the solution over
the lower end of the spectrum [14]. This is because the
reflection coefficient (4) ceases to be frequency independent
when is introduced, and approaches unity monotonically as
the frequency approaches dc.
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Fig. 1. Solution due to a sinusoidal signal.

This limitation can be significant when the objective of
the analysis is the frequency response over a wide-band. For
problems requiring the frequency response over a very narrow
band, one can always choose a smallsufficient enough to
stabilize the solution, yet affecting the accuracy of the solution
in a negligible way.

The theory that the lower frequencies are responsible for
instabilities can perhaps explain the mechanism of instability;
however, it falls short of explaining why the solution can
become unstable even when its lower frequency content is
virtually null. To expound upon this we consider a source
with virtually zero low-frequency content. Throughout this
paper, we adopt the following notation: For a domain of
size , we use . Similarly, an observation
point at ( , ) is denoted by (, ). We consider a
40 40 two-dimensional computational domain where the
space step is 0.015 m and the time step is 90% of the
CFL limit. The excitation is a line source with a simple
sinusoidal temporal waveform positioned at (20, 20) (E-
or TM-polarization). The observation point is at (36, 20)
Fig. 1 shows the component of the solution obtained using
Higdon fourth-order ABC [ in (1)]. Notice that despite
the fact that the output pulse has hardly any lower frequency
components, the solution still becomes highly unstable. This
simple counter example leaves the lower frequencies theory
incomplete.

In the strict sense, the “stabilized” forms of Higdon and
Liao boundary conditions improved the stability potential of
these ABC’s, but certainly did not eliminate the instability
altogether. Furthermore, efforts to stabilize higher order ABC’s
were unsuccessful [13]. And when stability is achieved it most
likely compromises the solution’s accuracy over the lower end
of the frequency spectrum [14].

The analyzes advocated initially by Higdon and later used
and generalized to Liao’s ABC’s by Wagner and Chew [13]
helped to partially explain the mechanism behind a type of
instability. It will be shown in the next section, that the pole-
zero distribution of the transfer function can explain only
partially the instability mechanism. However, the cause of
instability is yet another form of incompatibility that can be
also interpreted in light of the analyzes above.

Fig. 2. Computational domains with increasing source-to-corner distance.

III. I SOLATION OF CORNER REGIONS

Let us consider several computational domains in two-
dimensional space. The vertical terminal boundaries will be
fixed, while the horizontal boundaries (top and bottom) are
positioned at different locations to give three different com-
putational domains having sizes 40 50, 40 500, and
40 2000. A diagram illustrating these experimental bound-
aries is shown in Fig. 2. For each computational domain,
the source is positioned at the center of the domain de-
noted by ( , ), and the observation point is selected at

, . The excitation is E-polarized with a source
having a smooth temporal waveform (resembling a differenti-
ated Gaussian pulse) used in [11]. (In this and the following
examples, the precise nature of the pulse waveform is not
relevant to the discussion.)

Notice that as the horizontal terminal boundaries (top and
bottom) are positioned further away from the source, the
distance from the source to the corner regions is increased,
while the distance from the source to the observation point
remains unchanged at 18 cells. Fig. 3 shows the component
of the field at the observation point as calculated in
each of the three computational domains. Higdon fourth-order
ABC is used without any loss factor . Observation of
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Fig. 3. Instabilities arising from corner regions.

these curves shows that the solution starts to become unstable
precisely as the time waveform reaches the corner region. The
start of the instability in Fig. 3 for each curve corresponds to
the distance the wavefront takes to travel from the source to
the nearest corner region. What is crucial to observe here, is
that the “side or vertical boundaries” (which are the closest
to the source) did not produce any instability, even though
a fourth-order Higdon ABC was used without involving any
stabilizing factors. This experiment leads to an important
empirical finding; that the instability arise in the corner region
and is not caused by the interaction of the wavefront with the
side boundaries.

As a further consolidation of this finding, we consider
a second numerical experiment in which the effect of the
ABC corner regions is eliminated. The most practical way to
eliminate the effect of ABC corners and to be able to perform
the simulation over large number of time steps is to replace
any two parallel boundaries with perfectly conducting plates
as shown in Fig. 4. For this problem, the source is a line
source polarized in the-direction (TM polarization) having
a temporal waveform and simulation parameters as in the
previous example. Fig. 5 shows the FDTD solution obtained
for 100 000 time steps while using Higdon fourth-order ABC
without any stabilizing parameters. The results presented in
Fig. 5 show conclusively that the solution waveform could
approach very low values without triggering any instability.
Clearly, in the absence of ABC corner regions, the wavefront
interacts singularly with the ABC enforced on a side boundary
resulting in stable solution.

An important corollary to this finding impacts the simulation
of a class of waveguiding structures that have no ABC
corner regions such as shown in Fig. 6. In this class of
structures, the waveguide geometry ends with planar termi-
nal boundaries defining the FDTD computational domain.
Since the FDTD domain is devoid of any corner regions,
higher-order ABC’s can be employed without concern for
instabilities. This corollary has a significant implication in the
simulation of dispersive structures such as shielded microstrip
lines; especially structures containing resonant discontinuities
which demand excessively large number of time steps. As

Fig. 4. Computational domain devoid of corner regions.

Fig. 5. Solution obtained using Higdon fourth-order ABC.

a practical demonstration, we consider a microstrip struc-
ture with a cross section in the– plane shown in the
inset of Fig. 7. The size of the computational domain is
50 40 100. The source is positioned ten cells from the
near-end of the guide and the observation plane (for both
current and voltage) is ten cells inward from the far-end
terminal boundary. On both terminal boundaries, a fourth-
order Higdon ABC is enforced with to having values
between one and (the solution is insensitive to variations
in ’s as long as they are spread between one and).
Fig. 7 shows the characteristic impedance calculated from
field values obtained from a simulation that ran for 3000 time
steps. Comparison is made with the reference solution, which
was obtained by considering a long enough guide (350 cells
in the -direction) such that the reflection from the far end
does not reach the observation plane. Considering that this
structure is highly dispersive, we see that the fourth-order ABC
achieved a very satisfactory level of accuracy without resorting
to postprocessing or other indirect techniques as would be
necessary had we used a lower order ABC [16], [17].
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Fig. 6. Geometry for a three-port waveguiding structure showing a discon-
tinuity.

Fig. 7. Characteristic impedance obtained using a domain of size
50 � 40 � 100. Comparison is made with the reference solution devoid
of any terminal boundary reflections.�x = 0:1 mm, �y = �z = 0:25

mm, h = 4 mm,� = 1 mm, b = 10 mm, W = 1 mm, "r = 10.

Having established that the instability arises in the corner
region, it would then be expected that if the outer boundary is a
smoothly varying contour, then the instability problem would
not arise. To test this hypothesis, we consider the simplest
of such contours; a circle. On this, we enforce a fourth-order
Bayliss–Turkel ABC [5] given by

(5)

where is the radius of the circular contour. The
Bayliss–Turkel operators are, in effect, a generalization of
Higdon’s ABC’s. This can be seen asincreases, the second
term in (5) approaches zero in the limit, thus corresponding

Fig. 8. Surface current on a perfectly conducting circular cylinder due to a
TE-polarized plane wave incidence.

to a half-plane terminal boundary. It is important, however, to
keep in mind that the second coefficient in (5) is a correction
that adjusts for the curvature of the wavefront when expanded
on a circular outer boundary and thus it cannot be interpreted
to play the role of the loss factor in (3).

Without loss of generality, we demonstrate the effect of
circular outer boundaries on stability by using a recently
reported FDTD scheme having an unstaggered mesh ([18]
and references therein). We consider the problem of a plane
wave (TE-polarization) scattering from a perfectly conducting
cylinder with a 1 radius. The outer boundary is positioned
only ten radial cells from the conductor’s surface. The mesh
consists of 360 cells in the angular direction and ten cells in
the radial direction. Fig. 8 shows the surface current obtained
using Baylilss–Turkel’s fourth-order ABC and the reference
solution (obtained through Hankel’s function expansion). The
surface current was obtained from the total field samples
for a simulation spanning 20 000 time steps. What is to be
emphasized here is that not only the simulation was free
from any instability, but equally important, it resulted in a
remarkably accurate solution that can hardly be distinguished
from the reference solution.

The above experiments lead us to conclude that higher order
ABC’s are not intrinsically unstable. Furthermore, the insta-
bility arises from an artifact of the computational domain that
causes an incompatibility, which we discuss in the following
section.

IV. CORNER REGION INCOMPATIBILITY

The incompatibility that arises at corner regions is linked to
the numerical process that converts the solution process from
the analytical to the numerical domain. In the analytic domain,
the boundary operator, which is composed of differential
operators in time and space, is applied at a single point in
space and time. When the analytic operator is converted to
a discrete operator through finite-difference approximation, it
can no longer be applied at a single point in space and time, but
now it is applied over a set of points, or a stencil. This directly
leads to the potential incompatibility when encountering points
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close to the corner regions and, in other applications, to points
close to any terminal boundary. (For instance, in [19], the
averaging of the fields that reflect off the terminal boundary
must take place at a plane located beyond the stencil region.)
The appearance of any sudden irregularity within the stencil
region, such as a “source term” creates a discontinuity in the
field and its derivatives that compromises the assumption of
analyticity of the field in that region. As a consequence, the
definition of the partial derivatives, and , within the
stencil become meaningless (unless the analysis is carried out
within the context of the theory of distributions).

To explain this in more detail, recall that boundary condi-
tions are constructed under the assumption that the electromag-
netic fields in their proximity satisfy the homogeneous wave
equation. This implies that the region over which the ABC
is enforced cannot contain sources or virtual discontinuities.
Let us consider the upper right-hand corner region in a two-
dimensional FDTD. Without loss of generality, we show in
Fig. 9 the stencils of a third-order Higdon’s ABC. For clarity,
we limit this discussion to the two-dimensional space, however
the conclusions apply to the three-dimensional space. Let us
apply the ABC on node shown in Fig. 9. Assuming that the
incident field has the wave number , then the
application of the ABC give rise to a reflected field having a
wavenumber . However, it should be noted
that the incident field on the right-hand side boundary would
admit two different values of given by . This
is because of waves that have been reflected off the upper
terminal boundary. Node , or more precisely the numerical
counterpart of node , which comprises , , , and
(see Fig. 9) now experiences waves that are reflected off node

. To node (again, inclusive of the stencil), these waves
are “incident” with , which in effect
resemble waves incident upon the upper terminal boundary
from outside. This can lead to an uncontrollable growth in the
field, or instability, since the ABC was not designed to absorb
such waves.

Viewed from another different, yet, coherent perspective, the
artificial reflection caused by the reflection from nodecan be
considered as an energy source as far as nodeis concerned.
To make this clear, let us consider once again pointsand
in Fig. 9. These two points are located at two different physical
locations. However, when the discretized ABC is applied at
each of these two points, their stencils overlap, thus creating
numerical points within the stencil that are supposed to be
analytically unique. Let us assume that the ABC is first applied
at . After at least one time step from the time the field arrives
at , an artificial reflection is introduced at node (see
Fig. 9). Since this field appears at node without passing
through any of the earlier nodes of the stencil of( and

), it is effectively an independent source of energy as seen
by node . In fact the field experienced by can no longer
be characterized by incoming and outgoing waves only, but
also by an additional source term as

(6)

Here is a function of time that represents the appearance of
a field that is not governed by the homogeneous wave equation.

Fig. 9. Corner region showing the overlap between the stencils needed to
descretize the boundary condition on boundaries A and B.

A source within the stencil of the boundary condition cannot
be satisfied by the boundary condition since it violates the
boundary condition, which is homogeneous, having the form

instead of the inhomogeneous boundary condition
, where is a constant. It is clear at this point

that an inhomogeneous boundary condition is a good candidate
for canceling the effect of . However, considering the fact
that is a function that cannot be predicted in advance,
inhomogeneous boundary conditions are very restrictive; and
it is conjectured that they do not have practical applications in
FDTD simulations except in very limited applications where
the physical source of excitation lies outside the computational
domain [20].

In light of the above discussion, a question arises: If the
overlap of ABC stencils in the corner region creates an
incompatibility, then why would lower order ABC’s such
as Higdon’s and Liao’s second-order operators exhibit stable
behavior? A careful look at Higdon and Liao second-order
ABC’s reveals that they too exhibit a degree of instability,
however, much less pronounced than that exhibited by higher
order operators. To show this, we reconsider the domain shown
in Fig. 4, but without the conducting plates. In Fig. 10 we
show the solution due to the application of Higdon’s second-
order ABC without stabilizing parameters. For all practical
applications, such instability is of very little consequence
(the maximum signal level in Fig. 10 is 10), however, its
existence is predicted from the analysis given above.

V. SUMMARY

In this paper, we presented an analysis of the cause and
mechanism behind a type of instability that arises when using
the FDTD method to solve open-region radiation problems.
It was shown through an empirical study that when using
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Fig. 10. Instability caused by Higdon second-order ABC.

a Cartesian mesh, instabilities arise due to corner regions,
which are viewed as an artifact of the Cartesian computational
domain. These incompatibilities are a direct consequence of
the finite difference approximation used to transform the
analytical equations into algebraic relations. It was shown
that isolation of the corner region eliminates this dominant
type of instability. As a consequence, we have identified an
important class of FDTD applications that do not involve
corner regions. This class of problems allows the application
of higher-order ABC’s that were typically considered unfit
because of perceived instability potential.

Finally, it is hoped that identification of the cause of
instability can lead to the construction of stable FDTD schemes
employing rectangular mesh.
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