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for Impedance Matrix Compression
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Abstract—A novel method of moments procedure is applied
to the problem of scattering by metallic truncated periodic
arrays. In such problems, the induced current shows localized
behavior within the unit cell and at the same time exhibits
cell-to-cell periodicity. In order to select a set of expansion
functions that may account for such behavior, a two-stage basis
transformation, of which the first stage is an ordinary wavelet
transformation performed independently on each unit-cell, has
been applied to a pulse basis. The resultant basis functions
at the first stage are regrouped and retransformed to reveal
the periodicity of their coefficients. Expansion functions are
then iteratively selected from this newly constructed basis to
form a compressed impedance matrix. The compression ratios
obtained in this manner are higher than the compression ratio
achieved using a basis constructed via an ordinary single-stage
wavelet transformation, where compression is the ratio between
the number of nonzero elements in the matrix used to solve the
problem and the number of elements in the original matrix. An
even higher compression is attained by considering, in addition,
functions that reveal array-end related features and iteratively
selecting the expansion from an overcomplete dictionary.

Index Terms—Electromagnetic scattering by periodic struc-
tures, method of moments, wavelet transforms.

I. INTRODUCTION

AMONG the various categories of scattering problems
the case of scattering by a truncated periodic array is

of special challenge to be efficiently solved. Such arrays are
widely used in both microwave and optical systems owing to
their frequency selective properties. Their various applications
range from microwave filters to optical focusing devices and
reflectors. In a strictly periodic case it is possible to define a
unit cell, which once analyzed reveals the entire information
about the scattered fields. Unfortunately, in a real case, edge-
effects break down the pure periodicity.

Various authors [1]–[3] have proposed methods for solving
these scattering problems, which involve some kind of ap-
proximation or modification of the Floquet modes in order
to compensate for the truncation of the infinite array. The
method proposed in this paper is motivated by the fact
that in such problems the induced surface current might
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exhibit complicated localized behavior within the unit-cell
while keeping a certain degree of cell-to-cell periodicity. We
therefore construct a new set of expansion functions for the
scattering equation via a two-stage transformation. Of these
two stages, the first one is carried out at the unit-cell level
and focuses on the localized features of the current. We have
chosen to apply the wavelet transformation at this stage,
owing to its multiresolution property that enables efficient
expansion of the solution of scattering problems [4]. The
transformation is applied to each cell as if it were isolated
from the others, therefore excludes wavelet functions that span
over more than one cell. The second stage is performed at
the array-level and binds together identical basis functions
from different cells, thereby taking into account the inherent
periodicity of the array. Assuming that the cells are similar
(let alone identical), we expect the same basis functions to be
the dominant one in each and every cell. Hence, the second
stage of transformation is expected to result in a new basis
comprising composite functions which are much more suitable
for effectively expanding the current.

Once this new basis has been constructed, we can apply the
impedance matrix compression (IMC) and more particularly
the iterative IMC methods presented in [5]–[8]. These methods
solve a reduced (compressed) version of the matrix form
of the corresponding electromagnetic field integral equation.
The reduced form is obtained via an iterative process that
extracts a set comprising a small number of basis elements for
expanding the solution at a given accuracy. We further note
that the cell-to-cell variation of the coefficients of identical
basis functions belonging to different cells is expected to be
mainly characterized by phase-alternation. Therefore, it is very
likely that a Fourier-like basis would be quite adequate for
the second transformation stage. We have chosen to use the
windowed-Fourier-transform wavelet-packet (WF) basis ([7],
[9]). The elements of the WF basis may be well associated with
a different equally-spaced nonoverlapping spatial frequency
bands corresponding to the number of zero crossings they
make, thus spanning the discrete spatial-frequency domain in
a similar way to the discrete windowed (noncyclic) Fourier
transform basis. Moreover, this basis has a simple trans-
formation algorithm similar to the one used for wavelet
transformation. We further note that edge-effects, due to the
fact that the array is finite, call for more localized basis
functions. Hence, both a WF and a wavelet transformation are
applied independently at this second stage to form an overcom-
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plete dictionary of expansion functions [10]. Performing the
iterative matrix compression by selecting expansion functions
from this dictionary improves the matrix compression.

The mathematical formulation of the problem and the newly
proposed two-stage transformation are presented in the next
section, followed by a thorough description of the iterative
IMC method in Section III. The new approach has been
successfully applied to the problem of two-dimensional (2-D)
TM scattering by a finite periodic array of conducting strips, of
which results are given in Section IV. The advantages of using
the overcomplete set of wavelet-packet expansion functions
are presented as well. Summary and conclusions are given in
Section V.

II. FORMULATION

The general problem under consideration is that of eval-
uating the current density on a truncated periodic array
consisting of perfectly conducting 2-D cylindrical scatterers
excited by a time-harmonicTM wave. We first consider the
following E-Field integral equation formulation [11]:

(1)

where is the contour of the scatterers, is the frequency,
is the wavenumber, and is the permeability of vacuum.

Equation (1) is then reduced to matrix form by expanding the
current in terms of pulse expansion functions and using

pulse testing functions. The result is

(2)

where is the MoM impedance matrix, is the yet-to-
be-determined current vector, and is the excitation vector.
Due to the use of pulse expansion and testing functions, the
matrix in (2) is inherently dense. With a view toward
obtaining a reduced-rank (compressed) representation of (2),
we seek a new basis , out of which a small number of
selected functions would span the unknown induced current to
a good accuracy. In this new basis, (2) takes the form

(3)

Each column of describes the field across the array due
to a different expansion function, and denotes the new
vector of coefficients. The current density is given in terms
of the new basis functions as

(4)

As candidates for new basis functions, we consider the
use of multiresolution wavelet and wavelet-packet bases ([4],
[10]). Yet, for a problem involving a finite array of scatterers
these bases might not be good enough for our purposes, since
an expansion of the induced current on the perimeter of each
and every array element may require a large number of such
functions. Therefore, we resort to our understanding of the
characteristics of the induced current which stem from the
periodicity of the scatterer. First, we expect to find the same

dominant expansion functions on each of the various strips.
Second, we expect the coefficients of respective expansion
functions, each belonging to a different strip, to be charac-
terized by a certain periodicity. Based on this observation, we
suggest a new transformation technique that avails the periodic
properties of the problem.

The basis construction proceeds as follows. First, we trans-
form the pulse expansion functions within each
unit-cell to wavelet functions. This transform is effected,
when using Haar wavelets, by terminating the transformation
of the entire pulse-function set at the level of the
filter-tree. Hence, at the end of the first transformation stage
the current in each cell is expanded by a similar set of wavelet
expansion functions. We denote the set of wavelet functions
associated with theth unit-cell by , where the
double superscript I, WL designates that these functions are
associated with the first transformation stage and that the
transformation is a wavelet one. Next, we group the wavelet
functions from the various unit-cells in subsets, each
comprising similar wavelet functions, defined as

(5)

and in turn apply a WF transformation to the coefficients of
each of these subsets. This second stage of ransformation is a
procedure somewhat similar to extracting an array factor, and it
yields, respectively, subsets, each comprising new basis
functions which are linear combinations of similar wavelet
functions belonging to different unit-cell. We denote these new
basis functions by

(6)

where the double superscript II, WF designates that these
functions are associated with the second transformation stage
and that the transformation is a windowed-Fourier-transform
wavelet-packet one. Finally, these new basis functions are
reordered using a single index for use in (4). That is

(7)

The idea is schematically illustrated in Fig. 1, where the
same wavelet function participates in the expansion of the
current on each one of the four scatterers. Since only the
sign of the coefficients of these identical wavelet functions
alternates, it is possible to describe this localized behavior
of the current using merely one composite function instead
of four: the fundamental wavelet function modulated by a
periodic function accounting for the sign alternation. Hence,
we can expect that a basis constructed in this manner will offer
a considerably more concise expansion of the induced current.

It is possible to choose yet a more adequate basis for
the problem by selecting it from an overcomplete dictionary
[12]. An overcomplete dictionary is defined as a family

of expansion functions of unit norm, where
is the set of indexes that uniquely define the dictionary

elements. contains at least one basis for the space spanned
by the pulse expansion functions. Again, for simplicity, we
assume that the wavelet transformation is adequate enough
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Fig. 1. The two-stage transformation. Four wavelet functions, each of which
is used for expanding the current on a different strip, can be represented by a
single composite function. This composite function is defined by the original
wavelet function and the periodic function which describes the modulation of
the wavelet function from one strip to the other.

Fig. 2. Iterative algorithm for selection of expansion functions from an
overcomplete dictionary.

for efficiently spanning the induced current on each array
element. If the latter assumption does not hold, it is possible
to start with an overcomplete dictionary as early as at the first
transformation stage, at the expense of increased complexity.
Regarding the second transformation stage, it is easy to realize
that the WF transformation would not be the best choice.
Specifically, periodicity no longer exists at the vicinity of
the edges of a finite array of several wavelengths long.
Therefore, WF functions fail to efficiently span the induced
current there, hence a more localized basis is sought. We
conclude by stating that selecting expansion functions from an

overcomplete dictionary consisting of both WF and wavelet
bases would yield a highly compressed matrix. Introducing
the notation for the functions obtained when the
transformation in the second stage is a wavelet one, the
overcomplete dictionary, , for this case is defined as

(8)

III. T HE ITERATIVE IMC METHOD

With a view toward reducing the number of basis func-
tions needed while keeping the desired level of accuracy,
an alternative solution technique for (3) has been proposed
in [5], where a reduced (compressed) version of the linear
equation is constructed and solved. For the construction of this
compressed equation merely the dominant expansion functions
of the solution are taken into consideration. Obviously these
dominant functions are not knowna priori. However, they
can be obtained to a certain degree of success via an analysis
of an initial guess for the solution such as the physical
optics approximation. The analysis is performed either via
the wavelet transformation as done in [5], or any other basis
transformation. Adaptive analysis methods, such as best-basis
analysis [6] can be incorporated for enhanced compression.
Clearly, the analysis of an initial guess for the solution results
in merely a crude approximation for the expansion subset of
the exact solution. To improve the selection of a subset of
dominant expansion functions, an iterative matrix construction
process has been suggested in [8].

The complete iterative selection algorithm is shown in
Fig. 2. Assuming expansion functions have been chosen so
far, we construct and solve in iterationthe reduced version
of (3)

(9)

for in the least square error sense. The columns of
describe the field across the array due to theexpansion
functions, where the corresponding vector of coefficients is
denoted by . The indexes of the independent ele-

ments of that are used to construct are registered in a
working subset . The compressed matrix equation (9)
can be solved directly, but to further reduce the computational
cost it can be solved by an iterative solver using as the
initial guess for . The vector of error coefficients is given by

(10)

and the boundary condition error can be readily evaluated as

(11)

where are the elements of , and denotes the
th function in the original pulse basis used for testing. An

analysis of is then used for adding new expansion functions
for the construction of in the following iteration. This
analysis is performed via projecting the error onto the residual
elements (elements yet neither selected nor rejected) of the
dictionary. Then, dominant elements are selected while
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Fig. 3. Scattering problem of an array of conducting strips excited by an obliquely incidentTMz plane wave. Each strip is infinite in thez direction,
while its thickness in they direction is negligible.

rejecting those which are linearly dependent on the previously
selected ones. At the end of each iteration, the current density

can be expressed according to

(12)

The iterative procedure terminates if either is smaller
than a predefined value, or the iteration count has exceeded
a predefined number . Note that instead of solving
the original large matrix, we solve successively a series of
compressed matrix-equations with a view toward attaining
suitable accuracy more efficiently. It is possible to further
lessen the computational complexity by reducing the number
of rows of and thus solving a row-reduced version
of (9), keeping in mind, though, that to ensure stability, a
certain ratio between the number of rows and columns is
always maintained. In the first few iterations, the number
of testing functions can be reduced even below the limit
set by the sampling theorem for obtaining an accurate fi-
nal solution since merely low-spatial-frequency functions are
expected to be dominant. In the later iterations, sampling
requirements should be fulfilled, and usually twice as many
testing functions are used to ensure numerical stability. The
implementation of an iterative selection of expansion functions
from an overcomplete dictionary requires monitoring the linear
independence of the selected functions as well as overcoming
the difficulties introduced by their nonorthogonality. For this
purpose, a version of the matching pursuit algorithm [12] has
been adapted.

IV. NUMERICAL RESULTS

The example under consideration is the problem of scat-
tering by an array of perfectly conducting 2-D strips, as
shown in Fig. 3. There are strips of
width. The spacing between the strips is , and
an incident angle has been chosen. Thus a phase
advancement of radians from cell to cell is effected as

. The discretization
to pulses is done using 8 pulses per wavelength, or 16 pulses
per strip, which amounts to a total of pulses. To
ensure numerical stability, twice as many testing points are
used. Hence the dimension of the noncompressed impedance
matrix is 512 256. We select additional expansion

(a)

(b)

Fig. 4. Induced current density on the conducting strip, for the scattering
problem illustrated in Fig. 3 obtained with 256 basis functions. (a) Magnitude.
(b) Phase.

functions at each iteration. The amplitude and phase of the
induced current for this problem are shown in Fig. 4. Note
the rather complex behavior of the current on each strip and
the periodicity that breaks down at the vicinity of the array
edges. To demonstrate the advantage of the proposed method,
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Fig. 5. Error in induced current density versus compression ratio, for the
scattering problem illustrated in Fig. 3. Iterative selections were made from
three different 2-D dictionaries, constructed via Haar wavelet transformation
(first stage) and: Haar wavelet transformation (- - -), Haar WF (-� -), both
transformations (-). A 512� 256 reference impedance matrix is assumed.
For comparison, the left-most graph (-� -) is the compression achieved by
iterative selection from an ordinary Haar wavelet basis.

three expansion sets have been constructed in the following
manner. The first transformation stage, for all three sets, was
a Haar wavelet transformation up to level of
the wavelet filter-tree. We then construct two expansion sets
by separately applying a second Haar wavelet and Haar WF
transformations. The third set is an overcomplete dictionary
comprising both of the above two individual sets. Denoting
the number of rows in the row-reduced version of and

by , the impedance matrix compression level attained is
measured by the compression ratio evaluated as

Compression Ratio (13)

Fig. 5 shows the two-norm error in the induced current as a
function of the compression ratio, computed according to

% (14)

where is a reference current obtained by solving (2)
with the full 512 256 matrix. The three graphs on the right
correspond to iterative selection of expansion functions from
the three expansion sets defined above. For comparison, the
left-most graph displays the compression ratio obtained by
iterative selection from ordinary single-stage Haar wavelet
transformation expansion functions. It is evident that the
selection from the overcomplete dictionary yields the highest
compression ratio, owing to its ability to span both periodic
and localized features of the current.

More insight into the selection from the overcomplete dic-
tionary discussed above can be gained by examining Fig. 6(a)
and (b). Each one of these figures refers to a different basis:
Fig. 6(a) is related to the basis constructed via applying the
Haar wavelet transformation at both stages, while Fig. 6(b)
is related to the basis constructed via first applying the

(a)

(b)

Fig. 6. Selected elements from the two-stage overcomplete dictionary for
the scattering problem illustrated in Fig. 3, with incidence angle of 60�, after
25 iterations. (a) Haar wavelet transformation at both stages. (b) Haar wavelet
transformation at first stage and Haar WF transformation at second stage.

Haar wavelet transformation then, at the second stage, the
Haar WF transformation. Thus, in both figures the abscissas
refer to the set of 16 wavelet functions that spans the sur-
face current on each and every strip, independently. These
functions are numbered as shown in Fig. 9(a). This figure
presents a wavelet decomposition of the combined space
(spatial location—spatial frequency), while Fig. 9(b) presents
a decomposition of the combined space into the same number
of WF basis functions. The ordinates refer to the second
transformation stage, which is Haar wavelet transformation
in the case of Fig. 6(a) and Haar WF transformation in the
case of Fig. 6(b). For the latter, the elements are numbered
in ascending order according to the number of zero-crossings,
as shown in Fig. 9(b). The selected basis for the scattering
problem in hand is represented by the shaded squares in
both figures. Note that the gray-level scale may be used to
compare the relative magnitude of each basis element only
within the limits of each figure. Finally, note that there are
256 squares in each figure as the current over each strip is
spanned by 16 wavelets and there are altogether 16 strips in
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(a)

(b)

Fig. 7. The dominant functions in the expansion of the induced current
density on each conducting strip, for the scattering problem illustrated in
Fig. 3, for two angles of incidence: (a)�0 = 60�, hence dominant expansion
functions whose superpositions trace a full cycle over each strip; and (b)
�0 = 75:5�, hence dominant expansion functions trace only half a cycle
over each strip. The dotted lines in (b) describe the imaginary continuation of
the half-cycle expansion functions to the complete cycle. The circled numbers
refer to the serial numbers of the wavelet functions, as defined in Fig. 9(a).

the array. However, no more than a total of 256 squares will
be simultaneously shaded in both figures, as an expansion set
can not exceed 256 functions. The figures show the selection
after 25 iterations (100 expansion functions), when the error
in the surface current as defined by (14) drops below 1% for
the first time. Referring to Fig. 6(a), one may notice the two
dominant columns at unit cell-level wavelet functions number
eight and 16. These two wavelet functions span the current
at the right edge of each strip. Since periodicity breaks down
at the vicinity of the array edges and the coefficients of these
wavelets start varying significantly from strip to strip, their
array factor is spanned by wavelets and not by WF functions.
Fig. 6(b) reveals the periodic features of the current. Since
the phase completes a -cycle from one strip to the other,
the Haar WF with 15 zero-crossings dominates over the array
factor. The phase progression over each strip is spanned by
the lowest level wavelet functions [square (2,16) in Fig. 6(b)]
which can be interpreted as a single cycle of the sine function,
and by the two wavelets of the consecutive scale, [squares
(3,16) and (4,16) in Fig. 6(b)], that when properly combined,
form the corresponding cosine function as shown in Fig. 7(a).

(a)

(b)

Fig. 8. Selected elements from the two-stage overcomplete dictionary for the
scattering problem illustrated in Fig. 3, with incidence angle of 75.5�, after
25 iterations. (a) Haar wavelet transformation at both stages. (b) Haar wavelet
transformation at first stage and Haar WF transformation at second stage.

Fig. 8(a) and (b) presents the selection of expansion func-
tions after 25 iterations for a similar problem in which the
incident angle . In this case, it takes two adjacent
unit cells to complete a full -cycle. Therefore the frequency
of the dominant Haar WF functions is reduced by a half, as
shown in Fig. 8(b). Hence, a doublet consisting of sine-like
and cosine-like functions is required for properly representing
the phase progression of the induced current, and consequently
the array factors of the periodic strip-level wavelets shown in
Fig. 8(b) are characterized by a corresponding doublet com-
prising consecutive WF functions. More specifically, note that
the dominant functions on each strip are the scaling function
[squares (1,8) and (1,9) in Fig. 8(b)], which is constant over
each strip, and the lowest level Haar wavelet function [squares
(2,8) and (2,9) in Fig. 8(b)]. The scaling function can be
viewed as half a cycle of a sine function with a 4cycle
while the lowest level wavelet can be interpreted as half a
cycle of a 4 cycle cosine function, as shown in Fig. 7(b).
The selected combination of these functions naturally accounts
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(a)

(b)

Fig. 9. The key map for (a) wavelet and (b) WF decomposition of the
combined space.

for the radian phase
change across each strip.

V. SUMMARY AND CONCLUSIONS

This paper focused on enhancing the compression of the
impedance matrix in method of moments solutions of problems
of scattering by truncated arrays. We have demonstrated the
advantage of an iterative selection of expansion functions from
a set of functions constructed via a two-stage Haar wavelet-
packet transformation. This two-stage transformation exploits
the inherent features of a finite array. The transformation first
analyzes the structure at a cell-level and in turn it binds to-
gether identical functions from different cells in a way similar
to extracting an array factor. Noting that a finite array is not
perfectly periodic, the second transformation stage has been
modified to yield an overcomplete dictionary comprising both
localized and periodic expansion functions. Two numerical
examples of scattering by a truncated periodic array have been
studied to show the advantages of the proposed method.
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