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Scattering from Several Test-Objects
Computed by 3-D Hybrid IE/PDE Methods

Paul SoudaisMember, IEEE Herve Stve, and Fabrice Dubois

Abstract—The electromagnetic scattering from composite anis- Q
otropic dielectric and conducting structures is modeled by hybrid A
partial differential equation—integral equation formulations. We n

emphasize the role of edge elements for both the partial dif-

ferential equation and the integral equation discretization and

for the coupling of the two. Numerical results from the various Ty
formulations presented here and measurements are compared in

order to obtain test cases for the development and validation of
numerical methods. Fig. 1. Scatterer and exterior medium.

Index Terms—Electromagnetic scattering, FEM, integral equa-
tions, Method of Moments, partial differential equations. In this article, we continue a work that has been initiated

in the 1990, 1992, and 1994 JINA RCS Workshops, in
order to obtain reference solutions that can be used for
code development and validation. We present solutions for an
ECENTLY, partial differential equation and integralanisotropic sphere with lossy and symmetric electromagnetic
equation solution methods have been combined infoperties and also with unlossy antisymmetric properties.
general purpose formulations for scattering computations. TAe number of computed solutions of the scattering by a
partial differential equations are well suited for the modelingerfectly electrically conducting (PEC) plate, coated with
of inhomogeneous anisotropic scatterers. Whereas integffdomogeneous dielectric, are compared to measurements.
equations can be used to model homogeneous regions andrigllly, computations on an inhomogeneous prismatic cylinder

also particularly useful to model the unbounded free-spagfade of three different materials (PEC, isotropic dielectric,
problem. The integral equation can thus provide an exagiisotropic dielectric) are compared.

boundary condition for the partial differential equations.

The finite element discretization of the partial differential Il. FORMULATION
equations arising from time-harmonic Maxwell equations is
often based on so-called H(curl) “edge” elements [1]-[5].

These elements are free of spurious modes and lead to

correct field continuity properties at the interface betweén and permeability;o. The scatterer is illuminated by an
different media. incident wave{E,, H;} with wavenumberk.

Secondly, integral equations are mostly discretized with The weak form of the partial differential equation for the

H(div) “edge” boundary elements [6]-[9] which are free 0|:nterior problem irt2; relates_ the electri(_:fie_zIEin the vol_ume
line and point charges. to the trace_ of the tangential magnetic field (or equivalently
Several authors [2], [10]-[13] have presented hybrid form(f: % H) on its boundaryo,
lations discretized with the finite element/boundary element
method. Some authors combined H(div) and H(curl) elements
for the discretization [14]-[17]. We emphasize in this report .
the relationship between the two families of edge elements - k/ ®- (A x H)ds = 0. (1)
which makes this hybrid discretization possible. o _ _ o
Since we have two partial differential equations and two The scatterer can be made of inhomogeneous dielectric, in
integral equations, a number of different hybrid formulation&is case the complex permittivity and permeability ()
can be constructed. We shall compare some of them wiff complex valued functions of the position (comp(gx 3)
different discretizations (linear P1 elemeng,and E with Matrices for anisotropic materials).

Hdiv elementsJ and K with Hdiv elements). Alternatively, a weak equation can be derived relatign
2, to 7 x E on its boundary

I. INTRODUCTION

Consider a scatterer of volunig surrounded by a homoge-
QuS mediuni2y. The surrounding medium has permittivity

j/Q E*(eE) - ®dv— (n7 'V x E) - (V x ®) dv
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The exterior problem (in the unbounded regieg) is recast the coefficient needs to be calculated. Moreover, a dedicated
on the surfacey by means of an integral equation. We casymmetric solver can be used to speed up the solution and a
use either the electric field integral equation (EFIE) or th&ymmetric operator is expected to be more robust. However,
magnetic field integral equation (MFIE). The EFIE and MFIEnonsymmetric formulations can advantageously be solved in

written in weak form, are given by two steps: a sparse matrix solution and dense matrix solution.
1) Symmetric FormulationsA symmetric formulation can
/ {FPG(®-3)-G(Vs-®)(VYs-I))}dsds' be obtained by selecting (1) and (3), adding the redundant
o equation (4) to (1) and usingK and jE as unknowns rather
k
+§/ & (7 x K) ds+—// (V'@) than K and E
= . Zo\M Boo — Soo Poq + Qoa 0 J
(@ xK)dsds =k | ®-E;ds (3) *Poa+ Qa0 Baa — Saa+Mya  Majne | | 7Ka
2o 0 E My int Mgt int | |7 Eint
k k ) .
——/ & (7 x I)ds— // (V'G) - (® x I)dsds’ 2Poo(jEi 0 X )
2 Js, A J s\ m = | 2P4(n x H; 4) (5)
+ i/ (K2G(® - K') — G((Vs - ®) (Vs - K'))} ds ds’ 0
47r b .
0 with
:k/ZOQ-Hids 4 (B - $)A", ® / (2G(® - A)
with 3 = A x H, K = Ex #, G(r) = ¢~ fr, r = || MM||, - G(( Vs ®)(Vs A’))}ds ds’
_ H 41 !
k = w/ec, the pn/med quantities (e.gJ’) are taken at the (OA, ®) = // (V') - (® x A) dsds
emission pointM’, the others are taken at the observation So\M
point M. .
The interior problem (1) or (2) is discretized with tetrahedral (PA, @) = —3 . e (A xA)ds
curl-conforming edge elements [1]. These elements guarantee b
that the null-space of the curl operator is correctly approxi- (ME, ¥) = ij/ (eE) - ¥ dv
mated (no spurious modes are added to the solution). With $2
these elements, only the tangential components of the field are _ j/ (1 'V X E) - (V x ¥) dv
continuous at element boundaries, i.e., the normal components o

are allowed to jump which is the correct physical property. The indexes (e.g0d) in the (QouA’, ) notation indicate

The boundary problem s discretized with triangulag,q g\ (faces on which the integration is carried out
divergence-conforming basis functiorfs [6], which have

become very popular since the classical article [7]. , ik , , ,
The trace of the volume basis functiom; on a triangle (QoaAg, @) = T4 /2 M(V G) - (@ x Ay)ds ¢ ds'.

is related to the corresponding surface Rao—Wilton—Glisson o\

basis function by OperatorsB — 5 and ¢ are complex symmetricP is

antisymmetric, M is symmetric if¢ and ;; are symmetric

tensors. Note, that for a PEC scatterer this formulation yields

(see Appendix A). IfE is discretized with volume H(curl) the EFIE equation.
elements, the trace dE on the surfaceis indeed a mag- A dual symmetric formulation can be obtained by selecting

netic currentK discretized with H(div) elements. The samd3) and the sum of (2) and (4)

—ﬁXWZ‘If‘

correspondance holds féf and—J, and for the test-functions. Byg — Saa P+ Quo 0 he

The boundary condition on conducting surfaces is enforced |* P,y + Qoy  Boo — Soo + M, Mé . J
by settingsn x E (or, equivalently, the tangential part &) to 0 EMY Mfm oo | | Hine
zero and thus removing the corresponding unknowns. 2Pua(i x H; )

So the unknowns of the problem are . dd b

= 2P00(Ei70 X 7’L) . (6)
J=axH onX 0
K, =Eg; x 7 on Xy, the nonconducting part oty A detailed analysis of these formulations, of the properties
Ei,. on nonconducting edges internal ¥ of the operators, proofs of the existence of a unique solution

for the variational problem and for the discretized problem
can be found in [16].

Several formulations of the scattering problem can be based-or test purposes we note that interchangingnd ., E
on (1)—(4). Below we shall discuss two symmetric formulaand H; in system (5) leads to (6) (the unknowds; K, jE
tions and two nonsymmetric formulations. It is noteworthy thatre changed tgK,J, —H in the process). This allows us to
symmetric formulations do not need more assembly operatidest the two formulations with the same code (as long as there
or storage than the nonsymmetric ones, since only half afe no PEC conditions).

or H;,;, on edges internal t;.
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Fig. 2. Bistatic RCS of an anisotropic sphere with material characteristics (7). (a) copolarized RCS(if, fti¢ plane. (b) Cross-polarized RCS"(
component) in the(Z, X) plane, and (c) RCS in th¢Y, X) plane.

Ty

The results presented hereafter for symmetric formulations X _
have been obtained with the HEM3D code which implements g7 " Isouopic &7
. . . . . FRW. L X (5), edge elements
formulation (5) discretized with edge elements. The hydrid = 2 Wy -~ (6), edge elements

[5], which is efficient for hybrid dense/sparse systems with _Z
multiple right-hand sides. The HEM3D code runs on parallel !
machines or plain workstations. For dense systems it can alsol €
use a parallel out-of-core solver (which has mainly been Intel’s
DES-solver on Paragon so far).

dense/sparse linear system is solved with an iterative algorithm /
7

ma = -~ (5), Pl elements
— — (6), Pl elements
10+
i |
(> / |

7 -0 o oodshoo s 710

B. Nonsymmetric Formulations BCK. --- ME

Selecting one partial differential equation [e.g., (1)] with — MoM
one integral equation [e.g., (3)] leads to a coupled systempa. 3. Comparison of the RCS of an isotropic sphere= 7, = 1) with
equations which can be solved in two steps [19], [20]. F@n anisotropic sphere with characteristics (8). The copolarized RCS in the
instance solve first foE in terms ofJ from (1) (sparse matrix gizsk‘r\e)tiz‘gﬁnfvig é%z]e'sof‘;n;p;frgetﬁtsthe results of formulation (5) and (6)
solution), replacdK by # x E in (3) and solve forJ (dense
matrix solution). Then, specific optimized solvers can be usedThe wave vector: is directed alonge, the electric fieldE
for each of the linear systems (e.g., sparse solver and deissdirected along’. The mesh leads to 1710 surface and 3061
out-of-core parallel solver). volume unknowns.

Note, that the operator® and P + @ are not invertible  InFig. 2, we plot (a) the copolarized component in tiiez)
in the space H(div) (see Appendix B), therefore solvinglane, (b) the cross-polarized componeptémponent in the
(3) for K, would lead to very poor results. For this reasor, 7) plane, and (c) the bistatic RCS in tHg,#) plane.
we constructed the formulations with the operafér+ @ We compare formulation (5) and (6), discretized with edge
in off-diagonal blocks. elements, and formulation (5) and (6), discretized with P1

This difficulty with P + Q has lead some authors [21] toelements [12], [13]. The anisotropic material gives rise to a
discretize the integral equations with batfandE in the space Ccross-polarization. In addition, in the, 77) plane the pattern
H(div). In this case the operatdP + @ is replaced by an is tilted due to the anisotropic material.
invertible operator. However, this strategy leads to unwantedThe four results are quasiidentical despite (a) the different
field continuity at dielectric interfaces (continuity of normagliscretizations (b) the different formulations. In the P1 dis-
component off instead of continuity of the tangential com-Cretization,V - (¢E) = 0 is enforced via a projection method
ponent). We will present results using this strategy and, inded, formulation (5), similarlyV - (4H) = 0 is enforced for (6).

observe a strange behavior of the solution at the interfaces. e proceed to test a configuration with an antisymmetric
constitutive tensor without losses, the characteristics of the

Ill. TEST-CASES sphere are changed to
A. Anisotropic Sphere 7 0 0
=10 7 =35, p=1 (8)

First we study the bistatic RCS of an anisotropic sphere at

. 0 3y 7
ka = 1.125 whose characteristics are J

This corresponds to a case that has been presented in [22],

1.5-0.1y 0 0 . .
e — 0 2.5 — 0.1 0 where the computation was done with a method of moments
! . for a volume integral equation. The copolarized bistatic radar
0 0 1.2-0.2j . ; - i
. , _ _ (7) cross section (RCS ar) in the plane of incidencék, E) is
25— 1.8y ‘ —0.5+ 0-0;7 0 displayed in Fig. 3. The wave vector, incidence @ademain
po=1-05+055 25-18 0]. the same as in the first case. The RCS in the shadow region is

0 0 1 much lower in the anisotropic case than in the isotropic case.
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50 - - - IE/IE formulation ;ﬂ"‘ -
(6), P1 elements
2! -60 , . I . . I . .
Fig. 4. Cross-polarized RCS in thHeZ, X') plane of an anisotropic sphere 0 15 30 45
with characteristics (8). The results of [22] are compared to the results of Angle

formulation (5) and (6) discretized with edge or P1 elements. ) ) )
Fig. 6. Comparison of measured and computed RCS of a conducting plate

0.2 x 0.2 x 0.01 m coated on one side with a dielectric. Grazing incidence,

7 3.2 GHz, 86 polarization.
-10 T T T i T T
—— Measurements
220 ~ 2 | (5), edge elements
N - - - IE/IE formulation
— N — — (6), P1 elements
foa)
2
vi
9
~
Fig. 5. Conducting plate coated on one side.
As a result, the component of the RCS in {hdirection (cross- Angle

polarized), which is zero in the isotropic case, is of the order of . e , . 4 and od RCS of ducting olat
H H H . omparison of measured and compute Or a conauctin ate

magthde_ of the COpOIanzed RC_S (Flg.' 4)' We compare heg x 0.2 x O.F:)l m coated on one side withpa dielectric. Grazing incidgne:e,

the numerical results of [22] (anisotropic volume method &f2 GHz, ¢¢ polarization.

moments) with the result of formulation (5) and (6) discretized

with edge elements or P1 elements. The results obtained are _ ) o

very similar. We do see a little difference between formulatio#S€S an integral formulation both for the interior and the exte-

(5) and formulation (6) in the case of an antisymmetric unlos&Pr Problem E and.J are discretized with H(div) elements).
material. he IE/PDE edge result uses formulation (5) discretized with

surface and volume elements. The IE/PDE P1 result corre-
B. Conducting Plate Coated on One Side sponds to formulation (6) discretized with P1 elements (see

We shall now study the monostatic RCS of a coated PHE3). ) ) ) _
plate with grazing incidence (Fig. 5). The grazing incidence The two numerical methods discretized with edge elements

makes it a difficult test-case with low-RCS (the RCS fofE/IE and IE/PDE) lead to similar results which are in agree-

normal incidence on the PEC plate is about 4 dB whereas mgnt with the measurements. Significant differences appear

average RCS i polarization has a mean value of roughlymth thettP; dlst():reilﬁatlon most[y n t%fd?“\z/\?“on Wrtfr? th
—40 dB from 10 to 45°). Also the scattering from edges, € scatlering by Ihe corners 1S important. vve see inat the
: . ; . eo‘ge elements discretization leads to good results for this low
corners and the junction between PEC and dielectric materia . o : ;
signature object with important corner diffraction.
must be modeled accurately.
The object is a square metallic plate of size ¥.2.2x _ _ _ _ _
0.01 m. One face is coated with 3 mm of dielectric materi&. Anisotropic/Isotropic/Conducting Prism
with e, = 3.15 — 0.115, p, = 1. The frequency is 3.2 GHz.  The next object we shall study, is a cylinder of finite height
There are 9175 surface unknowns and 15079 volume Uncomposed of three different materials. A cross-sectional view
knowns. of the prismatic cylinder is shown in Fig. 8. The cylinder

In Figs. 6 and 7 we compare measurements made at Cixis is alongZ, its cross section is in théZ, i) plane. The
ERA and three computational results. The IE/IE computatiamoss section of the cylinder is an isosceles triangle whose



650 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999

y 10 AN R S | A —
0
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k i -10 .
|- 0 5 |
o I /,"/ 20 + — (5), edge elements mesh 1
—HT I (5), edge elements, mesh 2
11 X — — — (1)+(3), edge elements, mesh 1
_ PR UNUUE SR WUV SR SRR S
/ -180 -120 -60 0 60 120 180
0 (degrees)
Fig. 8. Section view of the prisn§ polarization. Fig. 10. RCS versus incidence angle of a prism made of three materials
(PECl/isotropic/anisotropic)y polarization.
TABLE 1

UNKNOWN COUNT FOR THE THREE MESHES OF THEPRISM . . . .
Three different meshes of increasing density have been used.

mesh 1 fmesh 2 fmesh 3 We plot normalized monostatic diagraris/2x2) for po-
: PL_[Fdges | Pdges | Bdges larizationsé and ¢ for § = —180° to § = 180°. If the two
Surfacic unknowns {3318 | 3239 | 7450 | 6860 dielectric materials were identical, we would have symmetric
Interior unkirowns |3390 | 3630 12838 | 27765 I'ESU|tS, i.e.,a(e) _ O(—e). The fact that the results are far
from symmetric shows that this test-case is significant for the
00— inhomogeneous dielectric object case.
The solutions from formulation (5) and the coupling of (1)
and (3) discretized with edge elements compare very well
(Fig. 9 and 10). Both formulations use H(div) elements for
% J andK discretization, H(curl) elements fd&. The coupled
> system (5) is solved in one step. Whereas (1) is solvedtfor
‘é in terms ofJ (sparse system solution), (3) is solved fbin
o terms of K on the PEC part of the outer surface, finally the
20 F T (5), edge clements mesh 1 system coupling andK on the dielectric part of the boundary
- (5), edge elements, mesh 2 is solved. There is no significant difference in using the finer
a0 L1 . - (‘l)+(3.)’ edlge C.'emfmsi me]Shl m_esh (mesh 2). We consider one of_ these solutions (e.g., (5)
2180 -120 60 O 60 120 180 with mesh 1) as our reference solution. _ _
0 (degrees) We p_roceed to compare the referenc_e solution with other
ones (Figs. 11 and 12). We note some differences between the
Fig. 9. RCS versus incidence angle of a prism made of three materig@&ference solution and the coupling of (2) and (3) when both
(PEClisotropic/anisotropicl polarization. J and E are discretized with H(div) elements. We have also

observed spurious componentsErat material discontinuities

medians divide it into three domains of different materigkhen plotting E on the surface. The main differences in
characteristics. The first domain is a dielectric with relativie RCS appear fof polarization aroundd = 0°, when
permittivity and permeabilitye;,, = 1.4 — 0.7j and pq,, = the incident electric field is normal to the dielectric/dielectric
1, respectively. The characteristics of the second dielecthterface. The discretization of (6) with P1 elements also yields
poorer results. This was expected and it confirms that this

domain are _ )
) test-case is stringent.
2-0.1j 0 0
o, = 0 2-0.1j 0
0 0 1.2 -0.2y
) . IV. CONCLUSION
25-18j —054055 0 _ ,
por = | 054055 25-18; 0 In this paper, we have presented several formulations of

electromagnetic scattering problems and tested several dis-
cretizations in order to compare them with respect to accuracy.

The third domain is perfectly conducting. The dimensiond/e have seen that a P1 finite element discretization with
are related to the wavelength by= 2 = A and« = 40°. divergence constraints yields very good results, as long as the
Figs. 9-12 show the RCS of this object versus the angle sfatterer is entirely dielectric. The results were less good when
incidence for incident waves with propagation direction in theart of the scatterer’'s outer surface was conducting. We have
(Z, %) plane. also seen that the discretization of bdhand J with H(div)

0 0 1
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l 0 T T T T T T T T T T

6/2)° (dB)
=

20 —— (5), edge elements mesh 1
''''''''' (2)+(3) E,J Hdiv elements, mesh 3 4
- — — (6), Pl elements, mesh 1 M
_ PR S T P R O
-180 -120 -60 O 60 120 180 Fig. 13. (M', M2, M3, M%) tetrahedral element and (MM?2, M?) triangle

element.
6 (degrees)

Fig. 11. Comparison of the RCS computed for the prism with differerthe f; being the surface edge element basis functions on

[ P1 and diff dge discretizatioAspplarization. . . .
elements (P1 and different edge discretizatiofig)plarization triangles [7], [6] [or H(div)], and tha, being the volume edge
element basis fuctions on tetrahedrons [1]-[3] [or H(curl)]. We

10 e need to obtairE x 7 on the boundary of the scatterer.

The basis function associated with the edge 2-3 of the
tetrahedron is given by

0
—~ 23
2 wB(M) = L (oM x OM* + MIM* x OM)
o -10 det
-
S det = (MIM2, MIM3 MIM*)
20 + — (5), edge elements mesh 1 = M1M2 . (M1M3 X M1M4)
""""" (2)+(3), E,J Hdiv elements, mesh 3 N
- =~ = (6), P1 elements, mesh 1 a23 = ||M2M3||.
_ A S T T |
-180 -120 60 0 60 120 180 The basis function can also be written using the barycentric
0 (degrees) coordinates of\f (A1, A2, A3, A4) and their gradients
Fig. 12. Comparison of the RCS computed for the prism with different w2 = a23()\2V)\3 — A3V As)
elements (P1 and different edge discretizatiogspolarization. 1
Vi = —(M*M3 x M'M*)
det
elements leads to improper modeling of dielectric interfaces Vi — 1 M1—>M4 I\W
and yielded not very accurate results on multidielectric objects. 3= E( X )-

we have_ stres_sed th_e fact that H(curl) volume _e_IementsWe then compute the cross product of the normal to triangle
are compatible with H(div) surface elements. In addition, thﬁvll M2, M3) with the basis function, and obtain
discretization ofE or H with H(curl) elements and o and B ’

. . L. .. 23 -,
K w!th H(dlv) .elemetnt_s leads to correct. contlr_lu!ty conditions . a_()\Q(MleL x MIM2) x 7
on dielectric/dielectric interfaces, PEC/dielectric interfaces and det
on the boundary of open PEC surfaces. Consequently, hybrid Y M—>1M3 M—>1M4 R
IE-PDE formulation with edge element discretization leads to 3 % ) X A).
a powerful general-purpose method. By using the double cross product formula and using

Several test-cases have emerged with reference soluti ST Tyr S .
and an idea of the accuracy that should be obtained. We will A =MM"-n _230 we obtain
be glad to provide the meshes that we have used. w2 x 7 = a_(/\QMlM2(M1M4 -7)
det
_—
APPENDIX A + AsMIM3(MIM* . 7)),

TRIANGLE AND TETRAHEDRAL EDGE ELEMENTS

For the discretization process we expand the fields on theThe quantitylet (= (M*M? M*M?3 MM*)) can be rewrit-
basis functions ten using the surfac& of the triangle(M*, M2, M?)

AxH= Zhifi (M*MZ MIM3 MIM*) = (MIM? x M*M3) - M'M*
=1 _—
= (2Th) - M*M*

E = C;,W; —_—
; = 2T (7 - M*M%).
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Finally, we obtain If the integral onM is evaluated at the centroid we see that
»s the columns of the elementary matrix are related by
23,5 _a Tp2 [IVE
= — . 1
W X 7 2T()\QM M= + AsM-M*) E§=1;Qiif(T,T’)
H 1 2 3y H ’bk ., —_— _—
If M belongs to the triangléM*, M=, M?), its barycentric _ _i_j%/ / (V'G)- ((zg‘;lwe) x MM’ ds’ = 0.
coordinates aré\;, A, Az, 0), and \sM*M? + A\sMIM® = 4 ’

_—
M*M. We recognize the Rao-Wilton—Glisson basis functiogincey:3 | MG = 0. The columns of} are related by the same

associated to edge” (here theM?M?® edge has positive ye|ation as the columns @. It follows that the operator®,

orientation for the Rao-Wilton-Glisson basis function).  and p 1 ) discretized with H(div) elements are not invertible.
This shows that a linear combination of volume edge
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