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Scattering from Several Test-Objects
Computed by 3-D Hybrid IE/PDE Methods

Paul Soudais,Member, IEEE, Herv́e St̀eve, and Fabrice Dubois

Abstract—The electromagnetic scattering from composite anis-
otropic dielectric and conducting structures is modeled by hybrid
partial differential equation—integral equation formulations. We
emphasize the role of edge elements for both the partial dif-
ferential equation and the integral equation discretization and
for the coupling of the two. Numerical results from the various
formulations presented here and measurements are compared in
order to obtain test cases for the development and validation of
numerical methods.

Index Terms—Electromagnetic scattering, FEM, integral equa-
tions, Method of Moments, partial differential equations.

I. INTRODUCTION

RECENTLY, partial differential equation and integral
equation solution methods have been combined into

general purpose formulations for scattering computations. The
partial differential equations are well suited for the modeling
of inhomogeneous anisotropic scatterers. Whereas integral
equations can be used to model homogeneous regions and are
also particularly useful to model the unbounded free-space
problem. The integral equation can thus provide an exact
boundary condition for the partial differential equations.

The finite element discretization of the partial differential
equations arising from time-harmonic Maxwell equations is
often based on so-called H(curl) “edge” elements [1]–[5].
These elements are free of spurious modes and lead to the
correct field continuity properties at the interface between
different media.

Secondly, integral equations are mostly discretized with
H(div) “edge” boundary elements [6]–[9] which are free of
line and point charges.

Several authors [2], [10]–[13] have presented hybrid formu-
lations discretized with the finite element/boundary element
method. Some authors combined H(div) and H(curl) elements
for the discretization [14]–[17]. We emphasize in this report
the relationship between the two families of edge elements
which makes this hybrid discretization possible.

Since we have two partial differential equations and two
integral equations, a number of different hybrid formulations
can be constructed. We shall compare some of them with
different discretizations (linear P1 elements,and with
Hdiv elements, and with Hdiv elements).
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Fig. 1. Scatterer and exterior medium.

In this article, we continue a work that has been initiated
in the 1990, 1992, and 1994 JINA RCS Workshops, in
order to obtain reference solutions that can be used for
code development and validation. We present solutions for an
anisotropic sphere with lossy and symmetric electromagnetic
properties and also with unlossy antisymmetric properties.
A number of computed solutions of the scattering by a
perfectly electrically conducting (PEC) plate, coated with
inhomogeneous dielectric, are compared to measurements.
Finally, computations on an inhomogeneous prismatic cylinder
made of three different materials (PEC, isotropic dielectric,
anisotropic dielectric) are compared.

II. FORMULATION

Consider a scatterer of volume surrounded by a homoge-
neous medium . The surrounding medium has permittivity

and permeability . The scatterer is illuminated by an
incident wave with wavenumber .

The weak form of the partial differential equation for the
interior problem in relates the electric field in the volume
to the trace of the tangential magnetic field (or equivalently

) on its boundary

(1)

The scatterer can be made of inhomogeneous dielectric, in
this case the complex permittivity and permeability ( )
are complex valued functions of the position (complex
matrices for anisotropic materials).

Alternatively, a weak equation can be derived relatingin
to on its boundary

(2)
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The exterior problem (in the unbounded region) is recast
on the surface by means of an integral equation. We can
use either the electric field integral equation (EFIE) or the
magnetic field integral equation (MFIE). The EFIE and MFIE,
written in weak form, are given by

(3)

(4)

with
, the primed quantities (e.g., ) are taken at the

emission point , the others are taken at the observation
point .

The interior problem (1) or (2) is discretized with tetrahedral
curl-conforming edge elements [1]. These elements guarantee
that the null-space of the curl operator is correctly approxi-
mated (no spurious modes are added to the solution). With
these elements, only the tangential components of the field are
continuous at element boundaries, i.e., the normal components
are allowed to jump which is the correct physical property.

The boundary problem is discretized with triangular
divergence-conforming basis functions [6], which have
become very popular since the classical article [7].

The trace of the volume basis function on a triangle
is related to the corresponding surface Rao–Wilton–Glisson
basis function by

(see Appendix A). If is discretized with volume H(curl)
elements, the trace of on the surfaceis indeed a mag-
netic current discretized with H(div) elements. The same
correspondance holds for and , and for the test-functions.

The boundary condition on conducting surfaces is enforced
by setting (or, equivalently, the tangential part of) to
zero and thus removing the corresponding unknowns.

So the unknowns of the problem are

on

on the nonconducting part of

on nonconducting edges internal to

or on edges internal to

Several formulations of the scattering problem can be based
on (1)–(4). Below we shall discuss two symmetric formula-
tions and two nonsymmetric formulations. It is noteworthy that
symmetric formulations do not need more assembly operations
or storage than the nonsymmetric ones, since only half of

the coefficient needs to be calculated. Moreover, a dedicated
symmetric solver can be used to speed up the solution and a
symmetric operator is expected to be more robust. However,
nonsymmetric formulations can advantageously be solved in
two steps: a sparse matrix solution and dense matrix solution.

1) Symmetric FormulationsA symmetric formulation can
be obtained by selecting (1) and (3), adding the redundant
equation (4) to (1) and using and as unknowns rather
than and

(5)

with

The indexes (e.g., ) in the notation indicate
the surfaces on which the integration is carried out

Operators and are complex symmetric, is
antisymmetric, is symmetric if and are symmetric
tensors. Note, that for a PEC scatterer this formulation yields
the EFIE equation.

A dual symmetric formulation can be obtained by selecting
(3) and the sum of (2) and (4)

(6)

A detailed analysis of these formulations, of the properties
of the operators, proofs of the existence of a unique solution
for the variational problem and for the discretized problem
can be found in [16].

For test purposes we note that interchangingand ,
and in system (5) leads to (6) (the unknowns
are changed to in the process). This allows us to
test the two formulations with the same code (as long as there
are no PEC conditions).
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(a) (b) (c)

Fig. 2. Bistatic RCS of an anisotropic sphere with material characteristics (7). (a) copolarized RCS in the(Z;X) plane. (b) Cross-polarized RCS (Y

component) in the(Z;X) plane, and (c) RCS in the(Y;X) plane.

The results presented hereafter for symmetric formulations
have been obtained with the HEM3D code which implements
formulation (5) discretized with edge elements. The hydrid
dense/sparse linear system is solved with an iterative algorithm
[5], which is efficient for hybrid dense/sparse systems with
multiple right-hand sides. The HEM3D code runs on parallel
machines or plain workstations. For dense systems it can also
use a parallel out-of-core solver (which has mainly been Intel’s
DES-solver on Paragon so far).

B. Nonsymmetric Formulations

Selecting one partial differential equation [e.g., (1)] with
one integral equation [e.g., (3)] leads to a coupled system of
equations which can be solved in two steps [19], [20]. For
instance solve first for in terms of from (1) (sparse matrix
solution), replace by in (3) and solve for (dense
matrix solution). Then, specific optimized solvers can be used
for each of the linear systems (e.g., sparse solver and dense
out-of-core parallel solver).

Note, that the operators and are not invertible
in the space H(div) (see Appendix B), therefore solving
(3) for , would lead to very poor results. For this reason,
we constructed the formulations with the operator
in off-diagonal blocks.

This difficulty with has lead some authors [21] to
discretize the integral equations with bothand in the space
H(div). In this case the operator is replaced by an
invertible operator. However, this strategy leads to unwanted
field continuity at dielectric interfaces (continuity of normal
component of instead of continuity of the tangential com-
ponent). We will present results using this strategy and, indeed,
observe a strange behavior of the solution at the interfaces.

III. T EST-CASES

A. Anisotropic Sphere

First we study the bistatic RCS of an anisotropic sphere at
whose characteristics are

(7)

Fig. 3. Comparison of the RCS of an isotropic sphere(" = 7; � = 1) with
an anisotropic sphere with characteristics (8). The copolarized RCS in the
(Z;X) plane of [22] is compared to the results of formulation (5) and (6)
discretized with edge or P1 elements.

The wave vector is directed along , the electric field
is directed along . The mesh leads to 1710 surface and 3061
volume unknowns.

In Fig. 2, we plot (a) the copolarized component in the
plane, (b) the cross-polarized component (component in the

plane, and (c) the bistatic RCS in the plane.
We compare formulation (5) and (6), discretized with edge
elements, and formulation (5) and (6), discretized with P1
elements [12], [13]. The anisotropic material gives rise to a
cross-polarization. In addition, in the plane the pattern
is tilted due to the anisotropic material.

The four results are quasiidentical despite (a) the different
discretizations (b) the different formulations. In the P1 dis-
cretization, is enforced via a projection method
for formulation (5), similarly is enforced for (6).

We proceed to test a configuration with an antisymmetric
constitutive tensor without losses, the characteristics of the
sphere are changed to

(8)

This corresponds to a case that has been presented in [22],
where the computation was done with a method of moments
for a volume integral equation. The copolarized bistatic radar
cross section (RCS or) in the plane of incidence is
displayed in Fig. 3. The wave vector, incidence andremain
the same as in the first case. The RCS in the shadow region is
much lower in the anisotropic case than in the isotropic case.
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Fig. 4. Cross-polarized RCS in the(Z;X) plane of an anisotropic sphere
with characteristics (8). The results of [22] are compared to the results of
formulation (5) and (6) discretized with edge or P1 elements.

Fig. 5. Conducting plate coated on one side.

As a result, the component of the RCS in thedirection (cross-
polarized), which is zero in the isotropic case, is of the order of
magnitude of the copolarized RCS (Fig. 4). We compare here
the numerical results of [22] (anisotropic volume method of
moments) with the result of formulation (5) and (6) discretized
with edge elements or P1 elements. The results obtained are
very similar. We do see a little difference between formulation
(5) and formulation (6) in the case of an antisymmetric unlossy
material.

B. Conducting Plate Coated on One Side

We shall now study the monostatic RCS of a coated PEC
plate with grazing incidence (Fig. 5). The grazing incidence
makes it a difficult test-case with low-RCS (the RCS for
normal incidence on the PEC plate is about 4 dB whereas the
average RCS in polarization has a mean value of roughly

40 dB from 10 to 45 ). Also the scattering from edges,
corners and the junction between PEC and dielectric material
must be modeled accurately.

The object is a square metallic plate of size 0.20.2
0.01 m. One face is coated with 3 mm of dielectric material
with , . The frequency is 3.2 GHz.

There are 9175 surface unknowns and 15 079 volume un-
knowns.

In Figs. 6 and 7 we compare measurements made at ON-
ERA and three computational results. The IE/IE computation

Fig. 6. Comparison of measured and computed RCS of a conducting plate
0.2� 0.2� 0.01 m coated on one side with a dielectric. Grazing incidence,
3.2 GHz, �� polarization.

Fig. 7. Comparison of measured and computed RCS of a conducting plate
0.2� 0.2� 0.01 m coated on one side with a dielectric. Grazing incidence,
3.2 GHz,�� polarization.

uses an integral formulation both for the interior and the exte-
rior problem ( and are discretized with H(div) elements).
The IE/PDE edge result uses formulation (5) discretized with
surface and volume elements. The IE/PDE P1 result corre-
sponds to formulation (6) discretized with P1 elements (see
[13]).

The two numerical methods discretized with edge elements
(IE/IE and IE/PDE) lead to similar results which are in agree-
ment with the measurements. Significant differences appear
with the P1 discretization mostly in thepolarization where
the scattering by the corners is important. We see that the
edge elements discretization leads to good results for this low
signature object with important corner diffraction.

C. Anisotropic/Isotropic/Conducting Prism

The next object we shall study, is a cylinder of finite height
composed of three different materials. A cross-sectional view

of the prismatic cylinder is shown in Fig. 8. The cylinder
axis is along , its cross section is in the plane. The
cross section of the cylinder is an isosceles triangle whose
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Fig. 8. Section view of the prism,� polarization.

TABLE I
UNKNOWN COUNT FOR THE THREE MESHES OF THEPRISM

Fig. 9. RCS versus incidence angle of a prism made of three materials
(PEC/isotropic/anisotropic),� polarization.

medians divide it into three domains of different material
characteristics. The first domain is a dielectric with relative
permittivity and permeability and
, respectively. The characteristics of the second dielectric

domain are

The third domain is perfectly conducting. The dimensions
are related to the wavelength by and .
Figs. 9–12 show the RCS of this object versus the angle of
incidence for incident waves with propagation direction in the

plane.

Fig. 10. RCS versus incidence angle of a prism made of three materials
(PEC/isotropic/anisotropic),� polarization.

Three different meshes of increasing density have been used.
We plot normalized monostatic diagrams for po-

larizations and for to . If the two
dielectric materials were identical, we would have symmetric
results, i.e., . The fact that the results are far
from symmetric shows that this test-case is significant for the
inhomogeneous dielectric object case.

The solutions from formulation (5) and the coupling of (1)
and (3) discretized with edge elements compare very well
(Fig. 9 and 10). Both formulations use H(div) elements for

and discretization, H(curl) elements for. The coupled
system (5) is solved in one step. Whereas (1) is solved for
in terms of (sparse system solution), (3) is solved forin
terms of on the PEC part of the outer surface, finally the
system coupling and on the dielectric part of the boundary
is solved. There is no significant difference in using the finer
mesh (mesh 2). We consider one of these solutions (e.g., (5)
with mesh 1) as our reference solution.

We proceed to compare the reference solution with other
ones (Figs. 11 and 12). We note some differences between the
reference solution and the coupling of (2) and (3) when both

and are discretized with H(div) elements. We have also
observed spurious components inat material discontinuities
when plotting on the surface. The main differences in
the RCS appear for polarization around , when
the incident electric field is normal to the dielectric/dielectric
interface. The discretization of (6) with P1 elements also yields
poorer results. This was expected and it confirms that this
test-case is stringent.

IV. CONCLUSION

In this paper, we have presented several formulations of
electromagnetic scattering problems and tested several dis-
cretizations in order to compare them with respect to accuracy.
We have seen that a P1 finite element discretization with
divergence constraints yields very good results, as long as the
scatterer is entirely dielectric. The results were less good when
part of the scatterer’s outer surface was conducting. We have
also seen that the discretization of bothand with H(div)
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Fig. 11. Comparison of the RCS computed for the prism with different
elements (P1 and different edge discretizations),� polarization.

Fig. 12. Comparison of the RCS computed for the prism with different
elements (P1 and different edge discretizations),� polarization.

elements leads to improper modeling of dielectric interfaces
and yielded not very accurate results on multidielectric objects.

We have stressed the fact that H(curl) volume elements
are compatible with H(div) surface elements. In addition, the
discretization of or with H(curl) elements and of and

with H(div) elements leads to correct continuity conditions
on dielectric/dielectric interfaces, PEC/dielectric interfaces and
on the boundary of open PEC surfaces. Consequently, hybrid
IE-PDE formulation with edge element discretization leads to
a powerful general-purpose method.

Several test-cases have emerged with reference solutions
and an idea of the accuracy that should be obtained. We will
be glad to provide the meshes that we have used.

APPENDIX A
TRIANGLE AND TETRAHEDRAL EDGE ELEMENTS

For the discretization process we expand the fields on the
basis functions

Fig. 13. (M1, M2, M3, M4) tetrahedral element and (M1, M2, M3) triangle
element.

the being the surface edge element basis functions on
triangles [7], [6] [or H(div)], and the being the volume edge
element basis fuctions on tetrahedrons [1]–[3] [or H(curl)]. We
need to obtain on the boundary of the scatterer.

The basis function associated with the edge 2–3 of the
tetrahedron is given by

M M

M M M M M M

M M M M M M

M M

The basis function can also be written using the barycentric
coordinates of and their gradients

M M M M

M M M M

We then compute the cross product of the normal to triangle
(M , M , M ) with the basis function, and obtain

M M M M

M M M M

By using the double cross product formula and using

M M M M we obtain

M M M M

M M M M

The quantity M M M M M M can be rewrit-
ten using the surface of the triangle

M M M M M M M M M M M M

M M

M M
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Finally, we obtain

M M M M

If belongs to the triangle , its barycentric

coordinates are , and M M M M

M M. We recognize the Rao–Wilton–Glisson basis function
associated to edge (here the edge has positive
orientation for the Rao–Wilton–Glisson basis function).

This shows that a linear combination of volume edge
elements

has the following trace on the boundary:

The trace is a linear combination of
Rao–Wilton–Glisson basis functions.

The surface unknown associated to edge is the flux

M M M M

which is the circulation of along edge , i.e., the volume
unknown corresponding to edge .

In conclusion, the unknowns on the boundary of the
scatterer are shared by the volume edge element expansion
and the surface edge element expansion.

APPENDIX B

The operator is invertible when discretized with piecewise
constant elements (P0) or with linear nodal elements (P1). But

is not invertible when discretized with H(div) or H(curl)
edge elements. This difficulty stems from the fact that the

operator transforms vectors of H(div,) into vectors of
H(curl, ).

The elementary matrix for for a triangle can be computed
explicitly and is given by

being the lengths of the three edges of the triangle.
This matrix has zero determinant and its columns are
related by . Clearly, this relation between the
columns still holds when a matrix is assembled over a set
of triangles.

An element of the elementary matrix of discretized with
H(div) elements relating two triangles and reads

M M M M

If the integral on is evaluated at the centroid we see that
the columns of the elementary matrix are related by

M G M M

since M G . The columns of are related by the same
relation as the columns of. It follows that the operators ,
and discretized with H(div) elements are not invertible.
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