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FDTD Analysis of Phased Array Antennas
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Abstract—This work presents a new application of the finite- is capable of modeling arbitrary radiator geometries and has

difference time-domain (FDTD) method to the generalized anal- peen effectively combined in hybrid techniques for infinite
ysis of phased array antennas. The generality of the FDTD array analysis [4], [5].

method brings important advantages to the phased array antenna i - . . .
analysis problem, allowing the modeling of complex conductor The finite-difference time-domain (FDTD) method provides

and dielectric geometries with relative ease. Additionally, a new @ completely general formulation. Originally introduced by

broad-band FDTD periodic boundary condition is developed Yee [6], the FDTD method has been applied to a wide variety
which allows the array problem to be simplified to a periodic unit  of problems. Recent advances in FDTD modeling techniques
cell computational domain. This hybrid frequency/time-domain combined with advances in computer technology have ex-

periodic boundary condition enables solution of the periodic .
phased array problem for arbitrary scan conditions in a broad- panded the scope, accuracy, and speed of FDTD modeling to

band fashion. The new method is applied to waveguide and the point where it is the preferred method for many problems
stacked microstrip antenna arrays and the numerical results are involving complex 3-D structures. A unique benefit of the

compared to experimental or analytic solutions, demonstrating FDTD method relative to the MoM and hybrid MoM/FEM

the validity and utility of this method. techniques is the capability for broad-band transient analysis
Index Terms—FDTD, microstrip antennas, phased arrays, which can dramatically increase its efficiency as a radiating
stacked arrays. element design tool.

In this paper, methods for applying the FDTD method to
the analysis of infinite periodic array antennas are described.
, , The result is a completely general and highly efficient method
T HE ADVANCEMENT of enabling technologies hasto modeling active reflection characteristics of array radiating

thrust phased array antennas to the forefront of thgments of arbitrary composition. Two examples are provided
antenna industry, as the features of electronic steerabilififa; yalidate and demonstrate the utility of this approach.
light weight, and conformability make phased arrays thene first compares numerical results to experimentally derived
antenna of choice for many applications. This emergence hasgive reflection coefficients for a stacked microstrip patch
resulted in an increased emphasis on numerical methods ff,y The second example compares numerical results to exact

array radiating element design. Accurate numerical modelig,,| tic expressions for the active reflection coefficient of the
techniques are particularly important for array applications,nonical thin walled waveguide array.
due to the cost and effort associated with breadboard and

development model fabrication and test. Desirable features of
these methods include the generality required to model a wide
range of radiator types and the ab|||ty to accurate|y mode|AfUndamental Simplification for the array radiating element
array environment effects on performance of the individuanalysis is achieved by assuming the array is of infinite extent
radiating elements. along the periodic axes. The infinite array approximation
The predominant technique for array radiating elemeRtovides an accurate prediction for the majority of centrally
analysis is the method of moments (MoM). The MoM idocated elements in a large array. The computational domain
readily adapted to the infinite periodic array case and has bd@h the infinite array analysis is limited to a unit cell of the
proven successful in treating many such problems [1]-[3]. TIféray by applying appropriate boundary conditions normal to
MoM use of analytic Green’s functions provides a techniqu8e periodic axes of the array. The general periodic array
that is well suited to problems consisting of infinite dielectrigeometry is illustrated in Fig. 1.
layers and thin conductors as is the case for many microstriplhe well-known Floquet theorem defines the fields as-
array antennas and frequency selective surfaces. As radiagf§iated with this periodic structure as repeating at spatial
element geometries become more Comp|eX, with |atera"9tervals equivalent to the unit cell dimenSionS, with time shifts
inhomogenous dielectric features and three-dimensional @responding to the angle of incidence, or scan angle in the
D) conductor geometries, the MoM method is less effectigase of a phased array, according to
and a more general approach is required. The finite-element
method (FEM) is one example of a more general approach thd(: ¥, t) = E<$ +mD,, y+nD,, t+
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Fig. 2. lllustration of the wrap-around boundary field update atheand
—x FDTD mesh boundaries.

only an approximation however, and does not provide a true
infinite array representation.

A frequency-domain phase shift alternative to the time shift
axis, respectively. The Floquet theorem allows the fields @éed with the FDTD wrap-around was introduced in [9] and
any position in the periodic structure to be represented Byplied to scattering from periodic structures in [10] and
a time-shifted version of the fields within the unit cell. Théfl]_]_ This frequency-domain periodic FDTD method utilized
implication with regard to the FDTD algorithm is that the fieldiual computational domains with time harmonic sine and
values that lie one-half step outside the unit cell FDTD mesbtpsine excitations, providing a phasor representation of all
required for updating boundary field values, can be represenfidd components at all times. The phase shift required for
by time-shifting field values from within the unit cell FDTDthe periodic boundary wrap-around updates was implemented
mesh. This “wrap-around” boundary field update is illustratdoly combining components of the dual computational domains
in Fig. 2. The tangential electric fields at the periodic boundaty form a phasor field representation, shifting the phase, and
can be updated by using magnetic field values located omedistributing the components to the sine and cosine based
half step inside the opposing boundary, with an appropriad@mains. A significant drawback to this approach is that the
time shift, to represent the magnetic field values one-half stppblem is solved one frequency at a time and the broad-band
outside the local boundary. Tangential electric fields at théDTD capability is not exploited.
opposing boundary are updated by simply performing the timeln this work, the frequency-domain phase shift periodic
shift and wrap-around operations on the previously update@undary methodology is employed to allow arbitrary phased
local boundary fields. array scan conditions to be modeled. In contrast to the previous

The wrap-around boundary technique was used for FDT&amples however, the sine and cosine components are used
analysis of scattering and radiation from infinitely periodi¢® modulate Gaussian pulse excitations. The resulting outputs
arrays in [7]. This formulation used a Gaussian pulse excitatifigm this formulation can be processed to provide broad-
to enable broad-band response characterization. This appfnd response information for a fixed-boundary phase shift
cation was limited to the broadside incidence case howeve@ndition, providing a dramatic increase in efficiency over the
where the wrap-around time shifts are set to zero and FpTHRevious formulations. Additionally, the dual computational-
implementation is relatively straightforward. For the mor€Omain approach is simplified by utilizing complex variables
general formulation, the time shifts that are required to B/élth the regl and imaginary components representing the
applied to field values as they are wrapped around the FDTgsine andsine-based time modes.
grid present some problems to the standard algorithm. While
time delays can be implemented in the FDTD algorithm by lll. FDTD IMPLEMENTATION
storing field values over a series of time steps (at considerablérig. 3 depicts the general setup for the FDTD array radiating
computer memory expense), time advanced field values atement model. Dimensions of the computational domain in
also required and are not feasible within the FDTD scheme.tie » and y axis are chosen to correspond to the infinite
[8], the authors implemented a true time-delay periodic FDTBray unit cell dimension®,, and D,,. Wrap around periodic
formulation by extending the computational domain to thre@oundary conditions are applied to terminate the FDTD mesh
unit cells along the periodic axis and using a preliminary subn the planes normal to the periodic axes. An absorbing
program to generate the time advanced fields. This treatmenb@indary condition is used to terminate the mesh inthe

Fig. 1. General periodic array geometry with unit cell dimensions.
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) - field distribution imposed at excitation plane.
v intersection Periodic boundary

plane conditions applicd
at +x, -x, +y, -y of the transmission line is selected such that the excitation
can be fully launched into the mesh and the excitation plane
Transmission converted to an absorbing boundary prior to the arrival of any
Line Feed reflected voltage. Two runs of the FDTD model are required
Region to calculate the reflection coefficient of the radiating element.

Voltage sampleViererence(t) is recorded as the model is run
with the radiating element portion of the FDTD mesh replaced
excitation ¥ with an absorbing boundary to simulate the feed transmission
plane line connected to a matched load. Voltage saniite () is
recorded with a full model run, including the radiating element.
SinceVgg(t) consists of the superposition of the incident and
reflected voltagesV;ererence(t) Must be subtracted to isolate
direction and the-~ boundary is typically treated as a perfecthe reflected voltage as shown in (3). The reflection coefficient
electrical conductor to represent a ground plane. A feedifgthen calculated as the ratio of the Fourier transforms of the

transmission line intersects the radiating element region jatident and reflected voltage samples as shown in (4)
the ground plane and extends for some distance where it is

Fig. 3. FDTD model for unit cell of an infinite array.

terminated at the excitation plane. Vee(t) = VRE(t) — Vieterence () 3
S{Vae(®)}

1N = . 4

A. Excitation and Feed Modeling () S{ Vieterence () } ()

The excitation is applied to the FDTD grid by setting th(nB Periodic Boundary Conditions

tangential electric field values at the excitation plane according
to Periodic boundary conditions are applied using the wrap-

. —((t—t,)/T)? around technique with a phase shift applied to the complex
Eexe(2, y, 1) = Fz, y)lcos(wt) + j sin(wi)]e - field variables as they are wrapped around the FDTD mesh.
(2) The phase shiftsy, and¥,,, are the steering phases along the

These field values consist of a complex sinusoid modulatiﬁ%aggfyinaex(;si;e?hue'ree%ltf;;’ggg the beam in (& ¢) direction,

a Gaussian pulse, with spatial variatiéf{z, y) correspond- a
ing to the fundamental transmission line propagation mode U — 2r D,
(e.g., TEM for coax or Tk for rectangular waveguide). An *
example of a coaxial feed transmission line FDTD model N 2n D, sin 6 sin ¢ (6)

. . . . . . B y - .
cross-section is illustrated in Fig. 4, along with the electric

field distribution used to approximate the TEM mode. In this Update equations for tangential electric fields at the

example, the coaxial line is modeled using square inner agld —z periodic boundary are provided in (7)-(10). In these

outer conductors of Z 2 and 6x 6 grid cells, respectively. equations, superscript is the time step index and subscripts

The dielectric constant within the coaxial line is set to providg ; andk are the spatial indices corresponding tothey, and

a 50 ©2 impedance. z axes, respectively, (the 1/2 cell spatial offset between electric
A start-up delay ot, = 2.5 T is used so that the excitationand magnetic fields is implicit). The periodic boundaries on the

field values start near zero. Once the pulse is launched intaaxis correspond té = 0 andi = M

the model and the excitation has decayed to a negligible 1 N

level ¢ = 5 T is used in this case), the excitation plane EYi=n, jx = £V, 5 x

sin 4 cos ¢ (5)

is switched to an absorbing boundary to eliminate spurious I At (H$n+l/2 . Hxn+l/2)
reflections from the excitation plane. A voltage sampling eAz M, g, k+l M. j, k

point is chosen at a location on the transmission line that is A (C,j\p,}Hznfl/Q B Hzn+;/2) 7)
relatively close to the radiating element region. The length eAx L,k M, j, &
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Ez 7 iw =Ezy voltage as shown in (12). Note that the Fourier transform is
At (b )2 t1)2 not required since the time samples are strictly time harmonic
tag\e T T Hu T — Huag g
At = VRE(tss) - V}eference(tss) (12)
+1/2 +1/2 = .
- EAy (H$K47j+17 k H-/L';\LL]" k) (8) ‘/reference(tss)
Ezi 2 =B, (9) D. Array Lattice Considerations
Byt =Y By (10) 1t should be noted that the periodic boundary condition

_ _ _ . .. as defined here is specific to a rectangular array lattice. It
Special treatment is required far directed electric field s the authors contention that this boundary condition can be
variables at the corners of the FDTD mesh. In this caseggapted to a nonrectangular lattice by employing a spatial shift
combination wrap around update along both thandy axis  ajong the periodic boundary as the field variables are wrapped
is required as shown in (11) for the= M, j = N corner  4round for the boundary update. This aspect is not explored
Byl _ B any further in this work, however, and is left as an area for
Vi=M, j=N,k "M, N, k further investigation.

At .
— Pz n+1/2 n+1/2
+ N (6 Hyl,N,k - HyM, N,k

At .

— by n+1/2 n+1/2>

—— e Hz — Hz ).
sﬁy( M, 1,k M,N,k

IV. NUMERICAL RESULTS

In this section, examples of numerical results obtained using
(11) the preceding methods are presented. These results validate the
use of the FDTD method for determining phased array radiat-
The remaining equations for the axis periodic boundary at ing element active reflection coefficients. The first example is a
j=0andj = N, and the other grid corners can be similarlyoroad-band analysis of &u-band stacked, circular microstrip
adapted from the standard FDTD update equations. patch array. The radiating element configuration includes
multiple conductor layers and a truncated foam dielectric
C. Special Treatment for Waveguide Radiating Elements ~ supporting the parasitic patch. The FDTD numerical results

The implementation described in the preceding paragrap?wrse compared to experimentally derived reflection coefficients

) I . ; om measured coupling coefficients for a 54-element array.
for broad-band evaluation of radiating elements is applical ; : .
. ; ."The second example is a frequency-domain analysis of the
to a wide range of common array element types includin : . . .
. . ; : . nonical thin walled waveguide array [12]. In this case
conformal microstrip patches and vertical printed dipoles or

flared notches. Difficulties arise however in applying this sanEé‘ merical results are compared to exact analytic expressions,

methodology to another important class of array element; t nethe waveguide array example, the ability of the FDTD

open ended waveguide radiator. The problem stems from {nethod to accurately model surface wave and grating lobe

; . . X .__effects on the active reflection coefficient is demonstrated.
dispersive characteristics of the waveguide feed transmission

line, which will distort the Gaussian pulse as it propagates
to the aperture and is reflected back, rendering the brodt-{u-Band Stacked Patch Array
band transient technique unusable. For waveguide radiatingrhe stacked microstrip patch radiating element consists
elements, it is necessary to modify the preceding technigoka circular patch directly coupled to the center conductor
to a true frequency-domain, point-by-point technique (notf a coaxial feed line and a second circular patch that is
that this treatment is analogous to the original frequencglectromagnetically coupled to the direct fed element. The
domain phase shift periodic boundary condition introducedirect fed patch conductor is printed on a thin substrate layer
in [9] for the case of scattering from periodic structuresjhat is continuous throughout the array and the parasitic patch
In this case, the dramatic efficiency improvement affordéd supported by a relatively thick low dielectric foam layer
by the broad-band FDTD method is sacrificed. The benetfitat is truncated at the perimeter of the patch as shown
of generality of the formulation is maintained, however, anith Fig. 5. The FDTD model used grid cell dimensions of
it would be straightforward to model waveguide arrays withhz = Ay = 0.287 mm and Az = 0.103 mm. A staircase
complex features including tuning irises, dielectric loads, @pproximation was used to model the curved edge of the
radome layers. circular patch conductors. A seven-layer perfectly matched
The frequency domain method for dispersive elements layer (PML) absorbing boundary [13] was used to terminate
implemented by modifying the Gaussian pulse term of thbe +z wall of the FDTD mesh. The feed transmission line
excitation from (2), to a Gaussian ramp-up function thatas modeled as a square TEM line as described previously
maintains a value of unity aftet = ¢,. Calculation of and illustrated in Fig. 4.
the reflection coefficient for the frequency domain FDTD The experimental data used to compare with the FDTD
is simplified relative to the broad-band time-domain caseumerical results was derived from measured mutual coupling
\Voltage samples are required for one time step only and cemefficients for a 54-element array arranged in a rectangular
be taken at any time after the model reaches a steady statdce (six rows, nine columns). A photograph of the experi-
(t = tss). A modified version of (3) and (4) can be used tenental model is provided in Fig. 6. Coupling coefficients from
isolate the reflected voltage and ratio the incident to reflectadcentrally located element (fifth column, third row) to all of
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]
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Fig. 5. Stacked microstrip patch configuratiod), = 16.51 mm, “
Dy = 19.05 mm.

Fig. 6. Stacked microstrip patch array experimental model.

the other elements in the array were measured using a hetwork
analyzer. The active reflection was then calculated by summing 1 -
the measured coupling coefficients with an appropriate phase |
shift according to the scan angle and element location in the

array according to 0%

6
r= Z Z 3 eI (i=5) Ty +(k—3)1y) (13) 0.6
i=1 k=1

where C32 is the coupling coefficient from the element in %4

the fifth column, third row to the element in thith column,
kth row, and¥,, ¥, are the scan dependent steering phases g,
defined in (5) and (6). In general, this type of experimental 105 115 125 135 145
method is subject to error due to the finite size of the array. In
this case, the coupling to elements as close as three cells away
are approximately 30 dB below the dominant self-coupling 90 4 ----------- R R LR TP LR R LR ACRETRELETED
term, indicating a reasonable approximation to the infinite
array environment.

Broad-band numerical results for thEw-band stacked
patch array are compared to experimentally derived active ]
reflection coefficients in Figs. 7 and 8. Fig. 7 shows magnitude °
and phase of the active reflection coefficient as a function
of frequency for the broadside scan conditioh, (= ¥, = -45 4
0). Fig. 8 provides a contour plot of the active reflection
coefficient as a function of frequency and steering phase along,,

ther axis. The contour plot of Fig. 8 exemplifies the efficiency |, 5 115 125 135 145
afforded by the broad-band FDTD method as all of this data GHz
was generated with ten runs of the broad-band FDTD model. (b)

7. Broad-band active reflection coefficient for stacked patch array: (a)

In both cases there is good agreement between the numer,Lq:fl
gnitude and (b) phase: solid—experimental, dashed—FDTD.

and experimental results. Each run took approximately 3 h @
CPU time on a Sun Ultra2 computer server.

. ) results were compared to exact analytic expressions from
B. Thin-Walled Waveguide Array [12]. The canonical thin-walled waveguide array consists of
For the second example, the active reflection coefficiestjuare waveguide apertures, of dimengidit\, separated by
of an infinite waveguide array was determined using FDTInfinitesimally thin walls. The FDTD model for the waveguide
The waveguide array elements mandated the use of the sirgi@y used 24 cells along the and y axis. Along thez
frequency version of the FDTD array technique. Numericalis, the FDTD grid used 100 cells for the open radiating
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Fig. 9. Active reflection coefficient versus H-plane scan for waveguide array:
0.00 . (a) magnitude and (b) phase: — experimental gn&DTD.
11.00 12.00 GHz 13.00 14.00
(b) in Figs. 9 and 10, respectively. Good agreement was obtained
Fig. 8. FDTD active reflection coefficient contour for stacked patch arra{pr bqth of these sc_an Cond'_t'ons 'nCIUdmg the discontinuities
(a) experimental and (b) FDTD. resulting from the introduction of a grating lobe for the H-

plane scan case (ain # = 0.8 in Fig. 9) and surface wave

element portion of the model, and 800 cells to represent t%opagatlon for the quasi E-plane scan casesi@ab = 0.5

feeding waveguide transmission linegAlirected electric field n"Fig. 10).
corresponding to the Tig waveguide mode was imposed on
the excitation plane at the end of the feed transmission line.
A ten-cell PML absorbing boundary was used to terminate theln this paper we have presented techniques for applying
FDTD mesh at thet-z boundary. The efficiency of the FDTDthe FDTD method to the analysis of radiating element active
technique was significantly reduced in this example due to theflection characteristics for phased array antennas. The key to
number of grid cells used to model the waveguide feed in tiigis implementation is the development of periodic boundary
x—y plane and due to the use of the single frequency FDT&nditions that can be applied within the FDTD algorithm.
method. Computer run time was approximately 6 h on a Sdime resulting method provides important advantages over
Ultra2 computer server for each scan condition. other available methods in its ability to model radiators of
Two scan conditions were considered for the thin wallegkbitrary conductor configuration and dielectric homogeneity
waveguide array. The first condition is an H-plane scan alorgupled with unprecedented efficiency for this type of analysis
the —z plane such that, = 11.22sin 6 and ¥, = 0. in most cases due to the inherent broad-band nature of the
The second condition is described in [12] as the quasi EDTD method. Two examples were provided that validated
plane scan where the array is scanned inghe plane with and demonstrated the utility of this technique.
perfect electric walls placed at theaxis periodic boundaries One obvious area for future improvements to this method
such that¥, = = and ¥, = 11.22 sin §. The quasi E-plane is optimization to reduce the relatively large CPU times
scan condition, which was selected because it can be solveduired for the solutions. One aspect of these models that
analytically, results in two beams equally displaced from thdrives CPU time is the high resolution required in the FDTD
y—=z plane that scan parallel to the E-plane. Numerical resulisid to model the fine physical features of the antenna, in
for the H-plane and quasi E-plane scan case are comparegaddicular the coaxial feed for the stacked patch example.
the exact analytic expressions for active reflection coefficieBeveral techniques involving nonuniform grids or subcell grids

V. CONCLUSIONS
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