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Abstract—This work presents a new application of the finite-
difference time-domain (FDTD) method to the generalized anal-
ysis of phased array antennas. The generality of the FDTD
method brings important advantages to the phased array antenna
analysis problem, allowing the modeling of complex conductor
and dielectric geometries with relative ease. Additionally, a new
broad-band FDTD periodic boundary condition is developed
which allows the array problem to be simplified to a periodic unit
cell computational domain. This hybrid frequency/time-domain
periodic boundary condition enables solution of the periodic
phased array problem for arbitrary scan conditions in a broad-
band fashion. The new method is applied to waveguide and
stacked microstrip antenna arrays and the numerical results are
compared to experimental or analytic solutions, demonstrating
the validity and utility of this method.

Index Terms— FDTD, microstrip antennas, phased arrays,
stacked arrays.

I. INTRODUCTION

T HE ADVANCEMENT of enabling technologies has
thrust phased array antennas to the forefront of the

antenna industry, as the features of electronic steerability,
light weight, and conformability make phased arrays the
antenna of choice for many applications. This emergence has
resulted in an increased emphasis on numerical methods for
array radiating element design. Accurate numerical modeling
techniques are particularly important for array applications
due to the cost and effort associated with breadboard and
development model fabrication and test. Desirable features of
these methods include the generality required to model a wide
range of radiator types and the ability to accurately model
array environment effects on performance of the individual
radiating elements.

The predominant technique for array radiating element
analysis is the method of moments (MoM). The MoM is
readily adapted to the infinite periodic array case and has been
proven successful in treating many such problems [1]–[3]. The
MoM use of analytic Green’s functions provides a technique
that is well suited to problems consisting of infinite dielectric
layers and thin conductors as is the case for many microstrip
array antennas and frequency selective surfaces. As radiating
element geometries become more complex, with laterally
inhomogenous dielectric features and three-dimensional (3-
D) conductor geometries, the MoM method is less effective
and a more general approach is required. The finite-element
method (FEM) is one example of a more general approach that
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is capable of modeling arbitrary radiator geometries and has
been effectively combined in hybrid techniques for infinite
array analysis [4], [5].

The finite-difference time-domain (FDTD) method provides
a completely general formulation. Originally introduced by
Yee [6], the FDTD method has been applied to a wide variety
of problems. Recent advances in FDTD modeling techniques
combined with advances in computer technology have ex-
panded the scope, accuracy, and speed of FDTD modeling to
the point where it is the preferred method for many problems
involving complex 3-D structures. A unique benefit of the
FDTD method relative to the MoM and hybrid MoM/FEM
techniques is the capability for broad-band transient analysis
which can dramatically increase its efficiency as a radiating
element design tool.

In this paper, methods for applying the FDTD method to
the analysis of infinite periodic array antennas are described.
The result is a completely general and highly efficient method
for modeling active reflection characteristics of array radiating
elements of arbitrary composition. Two examples are provided
that validate and demonstrate the utility of this approach.
The first compares numerical results to experimentally derived
active reflection coefficients for a stacked microstrip patch
array. The second example compares numerical results to exact
analytic expressions for the active reflection coefficient of the
canonical thin walled waveguide array.

II. FDTD PERIODIC BOUNDARY CONDITIONS

A fundamental simplification for the array radiating element
analysis is achieved by assuming the array is of infinite extent
along the periodic axes. The infinite array approximation
provides an accurate prediction for the majority of centrally
located elements in a large array. The computational domain
for the infinite array analysis is limited to a unit cell of the
array by applying appropriate boundary conditions normal to
the periodic axes of the array. The general periodic array
geometry is illustrated in Fig. 1.

The well-known Floquet theorem defines the fields as-
sociated with this periodic structure as repeating at spatial
intervals equivalent to the unit cell dimensions, with time shifts
corresponding to the angle of incidence, or scan angle in the
case of a phased array, according to

E E

(1)

where and are the periodic cell indexes ranging from
to , and are the unit cell dimensions, and
and are the phase velocities along theand
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Fig. 1. General periodic array geometry with unit cell dimensions.

axis, respectively. The Floquet theorem allows the fields at
any position in the periodic structure to be represented by
a time-shifted version of the fields within the unit cell. The
implication with regard to the FDTD algorithm is that the field
values that lie one-half step outside the unit cell FDTD mesh,
required for updating boundary field values, can be represented
by time-shifting field values from within the unit cell FDTD
mesh. This “wrap-around” boundary field update is illustrated
in Fig. 2. The tangential electric fields at the periodic boundary
can be updated by using magnetic field values located one-
half step inside the opposing boundary, with an appropriate
time shift, to represent the magnetic field values one-half step
outside the local boundary. Tangential electric fields at the
opposing boundary are updated by simply performing the time
shift and wrap-around operations on the previously updated
local boundary fields.

The wrap-around boundary technique was used for FDTD
analysis of scattering and radiation from infinitely periodic
arrays in [7]. This formulation used a Gaussian pulse excitation
to enable broad-band response characterization. This appli-
cation was limited to the broadside incidence case however,
where the wrap-around time shifts are set to zero and FDTD
implementation is relatively straightforward. For the more
general formulation, the time shifts that are required to be
applied to field values as they are wrapped around the FDTD
grid present some problems to the standard algorithm. While
time delays can be implemented in the FDTD algorithm by
storing field values over a series of time steps (at considerable
computer memory expense), time advanced field values are
also required and are not feasible within the FDTD scheme. In
[8], the authors implemented a true time-delay periodic FDTD
formulation by extending the computational domain to three
unit cells along the periodic axis and using a preliminary sub-
program to generate the time advanced fields. This treatment is

Fig. 2. Illustration of the wrap-around boundary field update at the+x and
�x FDTD mesh boundaries.

only an approximation however, and does not provide a true
infinite array representation.

A frequency-domain phase shift alternative to the time shift
used with the FDTD wrap-around was introduced in [9] and
applied to scattering from periodic structures in [10] and
[11]. This frequency-domain periodic FDTD method utilized
dual computational domains with time harmonic sine and
cosine excitations, providing a phasor representation of all
field components at all times. The phase shift required for
the periodic boundary wrap-around updates was implemented
by combining components of the dual computational domains
to form a phasor field representation, shifting the phase, and
redistributing the components to the sine and cosine based
domains. A significant drawback to this approach is that the
problem is solved one frequency at a time and the broad-band
FDTD capability is not exploited.

In this work, the frequency-domain phase shift periodic
boundary methodology is employed to allow arbitrary phased
array scan conditions to be modeled. In contrast to the previous
examples however, the sine and cosine components are used
to modulate Gaussian pulse excitations. The resulting outputs
from this formulation can be processed to provide broad-
band response information for a fixed-boundary phase shift
condition, providing a dramatic increase in efficiency over the
previous formulations. Additionally, the dual computational-
domain approach is simplified by utilizing complex variables
with the real and imaginary components representing the

and -based time modes.

III. FDTD I MPLEMENTATION

Fig. 3 depicts the general setup for the FDTD array radiating
element model. Dimensions of the computational domain in
the and axis are chosen to correspond to the infinite
array unit cell dimensions and . Wrap around periodic
boundary conditions are applied to terminate the FDTD mesh
on the planes normal to the periodic axes. An absorbing
boundary condition is used to terminate the mesh in the
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Fig. 3. FDTD model for unit cell of an infinite array.

direction and the boundary is typically treated as a perfect
electrical conductor to represent a ground plane. A feeding
transmission line intersects the radiating element region at
the ground plane and extends for some distance where it is
terminated at the excitation plane.

A. Excitation and Feed Modeling

The excitation is applied to the FDTD grid by setting the
tangential electric field values at the excitation plane according
to

(2)

These field values consist of a complex sinusoid modulating
a Gaussian pulse, with spatial variation correspond-
ing to the fundamental transmission line propagation mode
(e.g., TEM for coax or TE for rectangular waveguide). An
example of a coaxial feed transmission line FDTD model
cross-section is illustrated in Fig. 4, along with the electric
field distribution used to approximate the TEM mode. In this
example, the coaxial line is modeled using square inner and
outer conductors of 2 2 and 6 6 grid cells, respectively.
The dielectric constant within the coaxial line is set to provide
a 50 impedance.

A start-up delay of T is used so that the excitation
field values start near zero. Once the pulse is launched into
the model and the excitation has decayed to a negligible
level ( T is used in this case), the excitation plane
is switched to an absorbing boundary to eliminate spurious
reflections from the excitation plane. A voltage sampling
point is chosen at a location on the transmission line that is
relatively close to the radiating element region. The length

Fig. 4. Coaxial feed transmission linex–y plane discretization and electric
field distribution imposed at excitation plane.

of the transmission line is selected such that the excitation
can be fully launched into the mesh and the excitation plane
converted to an absorbing boundary prior to the arrival of any
reflected voltage. Two runs of the FDTD model are required
to calculate the reflection coefficient of the radiating element.
Voltage sample is recorded as the model is run
with the radiating element portion of the FDTD mesh replaced
with an absorbing boundary to simulate the feed transmission
line connected to a matched load. Voltage sample is
recorded with a full model run, including the radiating element.
Since consists of the superposition of the incident and
reflected voltages, must be subtracted to isolate
the reflected voltage as shown in (3). The reflection coefficient
is then calculated as the ratio of the Fourier transforms of the
incident and reflected voltage samples as shown in (4)

(3)

(4)

B. Periodic Boundary Conditions

Periodic boundary conditions are applied using the wrap-
around technique with a phase shift applied to the complex
field variables as they are wrapped around the FDTD mesh.
The phase shifts, and , are the steering phases along the

and axis required to scan the beam in the direction,
as defined in the equations

(5)

(6)

Update equations for tangential electric fields at the
and periodic boundary are provided in (7)–(10). In these
equations, superscript is the time step index and subscripts

, and are the spatial indices corresponding to the , and
axes, respectively, (the 1/2 cell spatial offset between electric

and magnetic fields is implicit). The periodic boundaries on the
axis correspond to and

(7)



664 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999

(8)

(9)

(10)

Special treatment is required for directed electric field
variables at the corners of the FDTD mesh. In this case, a
combination wrap around update along both theand axis
is required as shown in (11) for the , corner

(11)

The remaining equations for theaxis periodic boundary at
and , and the other grid corners can be similarly

adapted from the standard FDTD update equations.

C. Special Treatment for Waveguide Radiating Elements

The implementation described in the preceding paragraphs
for broad-band evaluation of radiating elements is applicable
to a wide range of common array element types including
conformal microstrip patches and vertical printed dipoles or
flared notches. Difficulties arise however in applying this same
methodology to another important class of array element; the
open ended waveguide radiator. The problem stems from the
dispersive characteristics of the waveguide feed transmission
line, which will distort the Gaussian pulse as it propagates
to the aperture and is reflected back, rendering the broad-
band transient technique unusable. For waveguide radiating
elements, it is necessary to modify the preceding technique
to a true frequency-domain, point-by-point technique (note
that this treatment is analogous to the original frequency-
domain phase shift periodic boundary condition introduced
in [9] for the case of scattering from periodic structures).
In this case, the dramatic efficiency improvement afforded
by the broad-band FDTD method is sacrificed. The benefit
of generality of the formulation is maintained, however, and
it would be straightforward to model waveguide arrays with
complex features including tuning irises, dielectric loads, or
radome layers.

The frequency domain method for dispersive elements is
implemented by modifying the Gaussian pulse term of the
excitation from (2), to a Gaussian ramp-up function that
maintains a value of unity after . Calculation of
the reflection coefficient for the frequency domain FDTD
is simplified relative to the broad-band time-domain case.
Voltage samples are required for one time step only and can
be taken at any time after the model reaches a steady state
( ). A modified version of (3) and (4) can be used to
isolate the reflected voltage and ratio the incident to reflected

voltage as shown in (12). Note that the Fourier transform is
not required since the time samples are strictly time harmonic

(12)

D. Array Lattice Considerations

It should be noted that the periodic boundary condition
as defined here is specific to a rectangular array lattice. It
is the authors contention that this boundary condition can be
adapted to a nonrectangular lattice by employing a spatial shift
along the periodic boundary as the field variables are wrapped
around for the boundary update. This aspect is not explored
any further in this work, however, and is left as an area for
further investigation.

IV. NUMERICAL RESULTS

In this section, examples of numerical results obtained using
the preceding methods are presented. These results validate the
use of the FDTD method for determining phased array radiat-
ing element active reflection coefficients. The first example is a
broad-band analysis of a -band stacked, circular microstrip
patch array. The radiating element configuration includes
multiple conductor layers and a truncated foam dielectric
supporting the parasitic patch. The FDTD numerical results
are compared to experimentally derived reflection coefficients
from measured coupling coefficients for a 54-element array.
The second example is a frequency-domain analysis of the
canonical thin walled waveguide array [12]. In this case
numerical results are compared to exact analytic expressions.
In the waveguide array example, the ability of the FDTD
method to accurately model surface wave and grating lobe
effects on the active reflection coefficient is demonstrated.

A. -Band Stacked Patch Array

The stacked microstrip patch radiating element consists
of a circular patch directly coupled to the center conductor
of a coaxial feed line and a second circular patch that is
electromagnetically coupled to the direct fed element. The
direct fed patch conductor is printed on a thin substrate layer
that is continuous throughout the array and the parasitic patch
is supported by a relatively thick low dielectric foam layer
that is truncated at the perimeter of the patch as shown
in Fig. 5. The FDTD model used grid cell dimensions of

mm and mm. A staircase
approximation was used to model the curved edge of the
circular patch conductors. A seven-layer perfectly matched
layer (PML) absorbing boundary [13] was used to terminate
the wall of the FDTD mesh. The feed transmission line
was modeled as a square TEM line as described previously
and illustrated in Fig. 4.

The experimental data used to compare with the FDTD
numerical results was derived from measured mutual coupling
coefficients for a 54-element array arranged in a rectangular
lattice (six rows, nine columns). A photograph of the experi-
mental model is provided in Fig. 6. Coupling coefficients from
a centrally located element (fifth column, third row) to all of
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Fig. 5. Stacked microstrip patch configuration,Dx = 16:51 mm,
Dy = 19:05 mm.

the other elements in the array were measured using a network
analyzer. The active reflection was then calculated by summing
the measured coupling coefficients with an appropriate phase
shift according to the scan angle and element location in the
array according to

(13)

where is the coupling coefficient from the element in
the fifth column, third row to the element in theth column,
th row, and , are the scan dependent steering phases

defined in (5) and (6). In general, this type of experimental
method is subject to error due to the finite size of the array. In
this case, the coupling to elements as close as three cells away
are approximately 30 dB below the dominant self-coupling
term, indicating a reasonable approximation to the infinite
array environment.

Broad-band numerical results for the -band stacked
patch array are compared to experimentally derived active
reflection coefficients in Figs. 7 and 8. Fig. 7 shows magnitude
and phase of the active reflection coefficient as a function
of frequency for the broadside scan condition (
). Fig. 8 provides a contour plot of the active reflection

coefficient as a function of frequency and steering phase along
the axis. The contour plot of Fig. 8 exemplifies the efficiency
afforded by the broad-band FDTD method as all of this data
was generated with ten runs of the broad-band FDTD model.
In both cases there is good agreement between the numerical
and experimental results. Each run took approximately 3 h of
CPU time on a Sun Ultra2 computer server.

B. Thin-Walled Waveguide Array

For the second example, the active reflection coefficient
of an infinite waveguide array was determined using FDTD.
The waveguide array elements mandated the use of the single
frequency version of the FDTD array technique. Numerical

Fig. 6. Stacked microstrip patch array experimental model.

(a)

(b)

Fig. 7. Broad-band active reflection coefficient for stacked patch array: (a)
magnitude and (b) phase: solid—experimental, dashed—FDTD.

results were compared to exact analytic expressions from
[12]. The canonical thin-walled waveguide array consists of
square waveguide apertures, of dimension , separated by
infinitesimally thin walls. The FDTD model for the waveguide
array used 24 cells along the and axis. Along the
axis, the FDTD grid used 100 cells for the open radiating
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(a)

(b)

Fig. 8. FDTD active reflection coefficient contour for stacked patch array:
(a) experimental and (b) FDTD.

element portion of the model, and 800 cells to represent the
feeding waveguide transmission line. Adirected electric field
corresponding to the TE waveguide mode was imposed on
the excitation plane at the end of the feed transmission line.
A ten-cell PML absorbing boundary was used to terminate the
FDTD mesh at the boundary. The efficiency of the FDTD
technique was significantly reduced in this example due to the
number of grid cells used to model the waveguide feed in the

– plane and due to the use of the single frequency FDTD
method. Computer run time was approximately 6 h on a Sun
Ultra2 computer server for each scan condition.

Two scan conditions were considered for the thin walled
waveguide array. The first condition is an H-plane scan along
the – plane such that and .
The second condition is described in [12] as the quasi E-
plane scan where the array is scanned in the– plane with
perfect electric walls placed at theaxis periodic boundaries
such that and . The quasi E-plane
scan condition, which was selected because it can be solved
analytically, results in two beams equally displaced from the
– plane that scan parallel to the E-plane. Numerical results

for the H-plane and quasi E-plane scan case are compared to
the exact analytic expressions for active reflection coefficient

(a)

(a)

Fig. 9. Active reflection coefficient versus H-plane scan for waveguide array:
(a) magnitude and (b) phase: — experimental and} FDTD.

in Figs. 9 and 10, respectively. Good agreement was obtained
for both of these scan conditions including the discontinuities
resulting from the introduction of a grating lobe for the H-
plane scan case (at in Fig. 9) and surface wave
propagation for the quasi E-plane scan case (at
in Fig. 10).

V. CONCLUSIONS

In this paper we have presented techniques for applying
the FDTD method to the analysis of radiating element active
reflection characteristics for phased array antennas. The key to
this implementation is the development of periodic boundary
conditions that can be applied within the FDTD algorithm.
The resulting method provides important advantages over
other available methods in its ability to model radiators of
arbitrary conductor configuration and dielectric homogeneity
coupled with unprecedented efficiency for this type of analysis
in most cases due to the inherent broad-band nature of the
FDTD method. Two examples were provided that validated
and demonstrated the utility of this technique.

One obvious area for future improvements to this method
is optimization to reduce the relatively large CPU times
required for the solutions. One aspect of these models that
drives CPU time is the high resolution required in the FDTD
grid to model the fine physical features of the antenna, in
particular the coaxial feed for the stacked patch example.
Several techniques involving nonuniform grids or subcell grids
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(a)

(b)

Fig. 10. Active reflection coefficient versus Quasi E-plane scan for wave-
guide array: (a) magnitude and (b) phase: — experimental and} FDTD.

have been described in the literature that should provide an
effective improvement in this regard. A second factor that
drives CPU time is length of the feed transmission line
required to fully launch the excitation pulse into the model
prior to any reflections from the antenna arriving at the
excitation interface (directly related to the number of time
steps required to capture the model response). In this case there
are alternative schemes that result in a reflectionless excitation
plane, obviating the need for this large distance between feed
plane and antenna.
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