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Dual-Frequency and Broad-Band Antennas
with Stacked Quarter Wavelength Elements

Lakhdar Z&d, Georges Kossiavas, Jean-Yves Dauvignac, Josiane Cazajous, and Albert Papiernik

Abstract—Original lightweight, low-cost, and compact air-filled patterns. Moreover, a broad-band impedance-matching net-
planar antennas with short-circuited elements,_ fed by CO&Xi_&U work can be used as a method for bandwidth improvement of
probe, for dual-frequency (S-antenna) and wide-band appli- - microsirip antennas [7]. Other configurations with enhanced

cations (E-antenna) are investigated. The two-band frequency . . - .
antenna is formed of two stacked quarter-wavelength elements, _bandWIdth have already been investigated. Thus, the input

short-circuited along diametrically opposed planes. This structure impedance bandwidth of a microstrip antenna can be improved
offers two modes with different radiation characteristics. The by using the effect of mutual coupling between stacked [8],

ratio between the two frequencies can be closely controlled within [9] or juxtaposed [10] microstrip patches and sometimes the
a range varying from 1.3-2. A bandwidth of 30% for a VSWR v methods are combined [11]. The juxtaposed configuration

< 2 is demonstrated using two stacked quarter-wavelength ele- . | laci | ¢ h oth led to th
ments short-circuited along the same plane. Numerical simulation 'MVOIVES placing elements near each other, coupled to the

results are compared with experiments and a very good agree- radiating [12] or nonradiating edge [13] but the drawback of
ment is observed. Radiation patterns and input impedance of this kind of arrangement is that it results in a wider structure
both structures are measured and the effects of various physical [14].
parameters are presented. The purpose of this study is to investigate the input
Index Terms—Broad-band antennas, dual frequency anten- impedance, the resonant frequency, the current density maps
nas, microstrip antennas, quarter-wavelength elements, stacked on the surface of each resonator and far field radiation patterns
patches. of these two structures. The different radiating elements
considered are end-shorted along one edge. An end-shorted
element presents the advantage of the smallest size with a
. INTRODUCTION length of \/4, a broad beamwidth and a bandwidth which is
OBILE communications systems have improved maeduced compared with a half element. The dual frequency
bility very considerably, but the antenna still remain$-antenna is made using two stacked quarter-wavelength
a bulky element, and attempts are continually being madedkements short-circuited along diametrically opposed planes,
reduce its size. However, reducing antenna dimensions resulteereas theF-antenna is composed of two stacked quarter-
in a decrease of bandwidth [1] and this effect is independemavelength elements short-circuited along the same plane.
of the technology used. Moreover, microstrip patch antenndsimerical simulation results have been compared with
have inherently narrow bandwidth [2] and in many systemsxperiments and a very good agreement is observed. The
it is necessary to design large bandwidth structures. On thiects of several physical parameters are presented and
other hand, in dual-frequency applications it is very attractivdiscussed.
to be able to cover the transmission and reception bands
simultaneously with one antenna.
In order to obtain a dual-band [3] or a broad-band microstrip II. NUMERICAL SIMULATION

antenna [4], one solution is to use only one element by addingr,o systems Radiated Three-Dimensional (SR3D) simula-
shorting pins and/or etche.d slots on the pafcch. More bandwui_lﬂgh tool which has been developed by France Telecom/CNET
gnhancement can be ach|eve_d by twp main methods. The f[isé], [16] was used to study both antennas. It is based on a
involves the use of an electrically thick element [5] and thg it e finite-element method that solves the electromagnetic
second requires a reduction of substrate permittivity. In fag,q integral equations in the harmonic domain. The code

the inc_regse of substrate thic_kness _has the effect_ of reducligauires all the surfaces of the geometry (patches, ground
the radiation? factor and thus improving the bandwidth. But aplane, coaxial probe) to be divided into triangular cells. When

substrate thickness improvement causes a lack of COMpactngss, qlactric and magnetic current densities are known on

a higher cross-polarization level and increases excitation §f g, rfaces of the antenna, electric fields can be calculated

surface waves [6] that deteriorate the quality of the radiatiodhywhere else. In this way, the input impedance of the antenna,

the current densities map on each resonator and, similarly, near
Manuscript received December 2, 1997; revised January 5, 1999. Tﬁ‘i@d far-field radiation can all be determined. Moreover, the
work was supported by France Telecom/CNET. thickness of the metal layers is also taken into account. The
The authors are with the Laboratoire d’EIeCtrOniqUe, Antennes ?éﬂectlon CoefﬂClent |S Computed |n the Cross Sec“on Of the
Telecommunications, Univergitde Nice-Sophia Antipolis, CNRS UPRESA . . . N .
6071, Valbonne, 06560 France. coaxial probe using guided mode excitation [15]. A coaxial
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Ill. GEOMETRY OF ANTENNAS

The dual-frequency and broad-band antennas are showi
Fig. 1(a) and (b), respectively. Both structures are realiz
with rectangular 0.3-mm copper sheets on air substrate

-40 dB

provide the largest bandwidth for a total heigi s £y mm. T X
. . . ? Lower patch Upper patch

The main geometrical difference between the two antenr

lies in the short-circuit planes. The dual-frequeritantenna Fig = 1.55 GHz

[Fig. 1(a)] is designed with two stacked opposed quarte
wavelength elements and is obtained entirely by folding. Tl
E-antenna [Fig. 1(b)] is manufactured in several steps. Fir
the upper resonator is folded at a right angle, then the low
element is soldered against the vertical short plane and fine
the structure is soldered onto a 180100 mm ground plane
which is identical for each geometry. The widths of bot
structures are equalWs = Wg = 35 mm). The lower
patches are fed by a 5@ coaxial probe at the midpoint
of the longer sideWs g, at a distance of 21 mm and 1&;{
mm from the short-circuit plane for th&-antenna and the
E-antenna, respectively. The diameter of the inner conduc
was chosen slightly larger (1.2 mm) to minimize inductanc Lower patch Upper patch
through the first layerdi; s gy. The location of the feeding Fps = 2.2 GHz
probe is symmetric with respect to theaxis.
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Fig. 3. Current density maps ¢f-antenna at both operating frequencies.

IV. DUAL-FREQUENCY S-ANTENNA are compared to the measured and theoretical data (Fig. 2). We
Fig. 1(a) shows a perspective view of the dual-frequenoptained two working frequency bands centeredigt= 1.55

antenna. TheS-antenna consists of two opposite stacke@Hz and F},s = 2.2 GHz with a bandwidth of eight and
guarter-wavelength elements. The resonant frequency andif% for a VSWR better than two, respectively. A good
put impedance were measured with an HP8720B network aagreement is observed between simulated and experimental
lyzer and the radiation pattern measurements were carried mdults over the broad band and even near the lower levels
with the antenna under test placed inside an anechoic chamlioérVSWR.
The simulated coaxial probe was designed to have{50 According to the electric current density maps of metallic
characteristic impedance. The simulated resonant frequend@gers (Fig. 3), it follows that two different current distri-
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Fig. 6. Measured and simulated VSWR versus frequenck-aintenna.

TABLE |
INPUT IMPEDANCE BANDWIDTH VERSUSHEIGHT OF THE E-ANTENNA
Hc Hae Bandwidth (VSWR<2)
3 mm 5 mm 154 %
3 mm 5.5 mm 18.6 %
4 mm 7 mm 23 %
5.5 mm 10.5 mm 29.5 %

E component in the broadside direction is expected to be
low. Thus a beam shift is observed in principal planes where
the main beam directions dfy are obtained fo¥ = £45°
for scan angleg) = 0 and 90 (Fig. 4). The directivity gain
concerning the lower frequency bafl,s = 1.55 GHz) is also
computed in the maximum direction and gives 2.5 dB, and we
have measured in our anechoic chamber a gain of 1.5 dB.
With regard to the upper band, the longitudinal current
distributions are in phase opposition on the lower metallic
layer and especially near the edges (Fig. 3). The current
vectors are oriented along the same direction on the upper
metallic layer which gives a symmetrical radiation pattern and
a linear polarization along theaxis with a—3-dB beamwidth
of about 75 for ¢ = 90° (Fig. 5). In the same way, the
computed directivity gain is 8 dB in the maximum direction
at f = 2.2 GHz and the measured gain is 7.6 dB for this
frequency.

V. BROAD-BAND E-ANTENNA

A global view of the E-antenna geometry is presented in
Fig. 1(b). For this structure a 10 dB impedance bandwidth
of 25% is achieved. A good agreement is observed between
simulated and experimental results (Fig. 6). Thus, this stacked
configuration gives two resonance modes allowing a wider
band than with one quarter-wavelength element, for the same

butions are observed over each resonator. This phenomegqRkness. Table | shows the bandwidth of tBeantenna for
affects the radiation patterns, also giving different radiaticfifferent heights of radiating elements. In this configuration,
properties at the two working bands. The radiation patternstife two square layers were taken identical Wity = Log =
plane¢ = 0 and 90 of the S-antenna are presented for eacls mm. It is seen that the bandwidth can be varied from 15.4%
matched frequency band in Figs. 4 and 5.
Therefore, the contribution of the current distribution on The far-field radiation patterns in the two principal planes
the upper and lower patches shows that the current densilgre also computed fo’ = 2.35 GHz (Fig. 7) and the
vectors on the metallic layers are in phase opposition at tagreement with the experiment is good, principally o,
lower frequency band (Fig. 3). Consequently, the level of ttend E.,.ss in scan angled = 0 degree. Moreover, the radiation

for 5 mm total height to 30% with 10.5 mm.
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Fig. 9. S-antenna: Variation of both operating frequencies against height.
Other parameters are identical to the ones of Fig. 1.

-8.1dB

-2 dB

-4 a8 microstrip patch can never be obtained. These antennas can be
. jBB classified in the “blurred polarization” family.

. This high level of cross polarization might limit the use of
_1s 5 the E antenna in the directio5° < 6 < 80° for ¢ = 0° and
s a8 180°. But a low level of cross polarizatiofE . qss < — 20

-5 a8 dB) is obtained in the plang = 90 (symmetric plane) and in
e 42 the direction of the maximum beam.

Lower patch X Upper patch The compl_Jted Qirectivity gain in the main beam direction

_ _ (6 = 45°) varies with frequency from 4 dB. We have measured

(F;g 8. Current density maps di-antenna for each resonatoF’ = 2.35 5 mavimum gain of 5.5 dB for the upper frequencies of the
2) bandwidth and it decreases for the low frequencies of the

patterns have the same characteristics (linear polarizat%?'nndw'dth'
along y axis) over the broad band. It should be noted that
there is a beam squint of about& ¢ = 90° plane that VI. PARAMETER STUDY
is explained by the magnitude of current distributions on the In this section, an experimental study of the main parameters
metallic layers which are strong near the short-circuited edgefsthese structures was carried out and the results obtained
of the superposed radiating elements (Fig. 8). are represented in terms of frequency cur¢@santenna) and

We can note a high level of cross polarization-e8 dB real part of the input impedandé -antenna). The resonance
for 8 = 45° in the planep = 0° and 180°. First, it is not in frequency is defined as the maximum of the input resistance.
the direction of the maximum beam. This result was expectedThe S-antenna can easily be matched at two frequencies
in view of the small dimensions of the antenna with respeasing all the main parameters. Moreover, the position of the
to the wavelength. With this kind of antenn& (@nd S), a feeding point strongly affects the input impedance level. In
high purity of polarization as with a horn antenna or classicédct, the latter decreases as the coaxial probe feed moves
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Fig. 10. S-antenna: Variation of both operating frequencies against length.

Other parameters are identical to the ones of Fig. 1. Fig. 11. Real parts of the input impedance Bfantenna as a function of
height patches. Other parameters are identical to the ones Fig. 1.

toward the shorting plane. For antennas having two or more

discrete working bands, it is important to know the effects &1 to 58 mm, the lower frequency changes slightly (300 MHz),
physical parameters on resonant frequencies and especiallywrereas the upper frequency range is four times as large.
the frequency ratidF.s = Fj,s/F;s). Similar variations can  For the firstE-antenna curve, the total height;r = 11.6

be observed for frequency curves (Fig. 9) when the height wim is kept constant for different values Hf g . It is seen that
the lower patchH;s increases from 3—15 mm. A minimumthe real normalized part of the input impedance seems to be
point frequency is observed simultaneously for value#gf proportional toH; g for values ofH;p = 5.5, 7.5, 9, 13 mm
close to 9 mm. The parametéi.s weakly influences the (Fig. 11). The frequency ratioF,.p = Fj.g/Lr) increases
frequency ratio. This ratio varies from 1.4-1.7 with a decreasgth H; g and varies from 1.2 to 1.8. For high values 6fg

of both frequencies wheH,s improves. As regards the lowerthe broad-band aspect is not maintained. With the variation of
patch length, the two resonant frequencies of the anterthe electrical thicknes$l,r (E-antenna) for a given value
are found to decrease with an increase Iafs (Fig. 10). H;rp = 6.8 mm, we can notice a low global decrease of
It is also noted that the lower operating frequency varigesonant frequencies with a slight influence on the frequency
linearly with presented values @f; s. Moreover, the variation ratio (Fig. 11). In this case, the upper resonant peaks for high
between both frequencies is almost constant. The two resoneaities of Hog (17, 19.5 mm) become too important and input
frequencies can be very clogé.s = 1.4) when the upper impedance matching remains difficult to obtain.

patch length{ Lo <) becomes high. This behavior is different for The real part of input impedance for different lengths of
small values ofL-s for which a large frequency ratio aroundthe coupled resonators is plotted in Fig. 12. As the length of
LI.s = 2is obtained. Consequently, the upper element lengthtise lower elemen{L;g) increases from 29 to 38 mm, the
the physical parameter that greatly influences the ratio betwaesonant frequencies shift down whereas the ratio between
the two operating frequencies. For valuedgf varying from them improves slightly. The lower peak magnitude of the
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-
real part increases witll,z whereas the upper magnitude[

peak decreases. The higher frequency is more influenced
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antenna provides two discrete bands with a frequency ratio
that can be adjusted from 1.3 to 2. The resonant modes of the
operating bands give different radiation patterns. The lower
working frequency provides a beam fér = +45° and a
broadside radiation pattern is obtained for the upper operating
frequency. The broad-ban#-antenna provides an optimum
bandwidth of around 30% using thicker elements with a size
of approximately quarter wavelength. The radiation pattern has
the same characteristics over the broad band, with a shift of
45 with regard to the zenith in th&-plane. These original
stacked configurations should find use in applications where
wider impedance bandwidth, dual-band operation and diversity
of radiation properties are needed.
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