1999 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 47 Number 5, May 1999
Table of Contents for this issue
Complete paper in PDF format
Three-Dimensional FDTD Analysis of a
Pulsed Microwave Confocal System for
Breast Cancer Detection:
Design of an Antenna-Array Element
Susan C. Hagness, Member, IEEE, Allen Taflove, Fellow, IEEE, and Jack E. Bridges, Life Fellow, IEEE
Page 783.
Abstract:
We are investigating a new ultrawide-band (UWB) microwave
radar technology to detect and image early-stage malignant breast tumors
that are often invisible to X rays. In this paper, we present the
methodology and initial results of three-dimensional (3-D)
finite-difference time-domain (FDTD) simulations. The discussion
concentrates on the design of a single resistively loaded bowtie antenna
element of a proposed confocal sensor array. We present the reflection,
radiation, and scattering properties of the electromagnetic pulse
radiated by the antenna element within a homogeneous, layered half-space
model of the human breast and the polarization and frequency-response
characteristics of generic tumor shapes. We conclude that the dynamic
range of a sensor array comprised of such elements in conjunction with
existing microwave equipment is adequate to detect small cancerous
tumors usually missed by X-ray mammography.
References
-
J. R. Harris, M. E. Lippman, U. Veronesi, and W. Willett,
"Medical progress: Breast cancer," New Eng.
J. Med., vol. 327, no. 5, pp. 319-328,
1992.
-
C. Boetes, R. D. M. Mus, R. Holland, J. O. Barentsz, S. P. Strijk,
T. Wobbes, J. H. C. L. Hendriks, and S. H. J. Ruys, "Breast
tumors: Comparative accuracy of MR imaging relative to mammography and
U.S. for demonstrating extent,"
Radiol., vol. 197, no. 3, pp.
743-747, 1995.
-
F. M. Hall, J. M. Storella, D. Z. Silverstone, and G. Wyshak,
"Nonpalpable breast-lesions: Recommendation for biopsy based on
suspicion of carcinoma at mammography,"
Radiol., vol. 167, no. 2, pp.
353-358, 1988.
-
J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and
S. W. Fletcher, "Ten-year risk of false positive screening
mammograms and clinical breast examinations," New
Eng. J. Med., vol. 338, no. 16, pp. 1089-1096,
1998.
-
E. D. Staren and T. P. O'Neill, "Breast ultrasound,"
Surgical Clinic North Amer., vol. 78,
no. 2, pp. 219-235, 1998.
-
C. Maestro, F. Cazenave, P. Y. Marcy, J. N. Bruneton, C. Chauvel,
and A. Bleuse, "Systematic ultrasonography in asymptomatic dense
breasts," Eur. J. Radiol., vol.
26, no. 3, pp. 254-256, 1998.
-
G. M. Kacl, P.-F. Liu, J. F. Debatin, E. Garzoli, R. F. Caduff, and
G. P. Krestin, "Detection of breast cancer with conventional
mammography and contrast-enhanced MR imaging,"
Eur. Radiol., vol. 8, no. 2, pp.
194-200, 1998.
-
P. Viehweg, I. Paprosch, M. Strassinopoulou, and S. H.
Heywang-Köbrunner, "Contrast-enhanced magnetic resonance
imaging of the breast: Interpretation guidelines,"
Topical Magn. Resonance Imaging, vol.
9, no. 1, pp. 17-43, 1998.
-
ANSI/IEEE C95.1-1992, American National
Standard--Safety Levels with Respect to Human Exposure to Radio
Frequency Electromagnetic Fields, 3 kHz to 300
GHz.New York: IEEE Press, 1992.
-
J. P. Pawley, Handbook of Biological Confocal
Microscopy, 2nd ed.New York: Plenum,
1995.
-
P. Kearey and M. Brooks, "Seismic reflection
surveying," in Geosci. Texts, Vol. 4: An
Introduction to Geophysical
Exploration.Boston, MA: Blackwell Sci., 1984,
ch. 4.
-
A. W. Preece, H. Johnson, F. L. Green, and M. P. Robinson,
"Dielectric imaging for localization and detection of breast
tumors," in IEEE MTT Int. Microwave Symp.
Dig., 1993, pp. 1145-1146.
-
R. E. Sepponen, "Medical diagnostic microwave scanning
apparatus," U.S. Patent 4641659, Feb. 10,
1987.
-
W. Guo and T. Guo, "Quantitative dielectric imaging
system," U.S. Patent 5363050, Nov. 8,
1994.
-
B. D. Sollish, E. H. Frie, E. Hammerman, S. B. Lang, and M.
Moshitsky, "Microprocessor-assisted screening technique,"
Israel J. Med. Sci., vol. 17, pp.
859-864, 1981.
-
W. C. Chew, "Imaging and inverse problems in
electromagnetics," in Advances in Computational
Electrodynamics: The Finite-Difference Time-Domain
Method, A. Taflove, Ed.Boston, MA: Artech
House, 1998, ch. 12.
-
L. E. Larsen and J. H. Jacobi, Eds., Medical
Applications of Microwave Imaging.New York:
IEEE Press, 1986.
-
J. E. Bridges, "Non-invasive system for breast cancer
detection," U.S. Patent 5704355, Jan. 6,
1998.
-
--, "Breast cancer detection, imaging, and screening
by electromagnetic millimeter waves," U.S. Patent
5807257, Sept. 15, 1998.
-
--, "Microwave method and system to detect and locate
cancer in heterogeneous tissues," U.S. Patent
5829437, Nov. 3, 1998.
-
S. C. Hagness, A. Taflove, and J. E. Bridges, "FDTD analysis
of a pulsed microwave confocal system for breast cancer
detection," in Proc. Int. Conf. IEEE Eng. Med.
Biol. Soc., Chicago, IL, Oct. 1997, pp.
2506-2508.
-
--, "FDTD modeling of a coherent-addition antenna
array for early-stage detection of breast cancer," in
IEEE Antennas Propagat. Soc. Int.
Symp., Atlanta, GA, June 1998, vol. 2, pp.
1220-1223.
-
M. Popovic, S. C. Hagness, A. Taflove, and J. E. Bridges,
"2-D study of fixed-focus elliptical reflector system for breast
cancer detection: Frequency window for optimum operation," in
IEEE Antennas Propagat. Soc. Int.
Symp., Atlanta, GA, June 1998, vol. 4, pp.
1992-1995.
-
S. C. Hagness, A. Taflove, and J. E. Bridges,
"Two-dimensional FDTD analysis of a pulsed microwave confocal
system for breast cancer detection: Fixed-focus and antenna-array
sensors," IEEE Trans. Biomed.
Eng., vol. 45, pp. 1470-1479, Dec. 1998.
-
C. Gabriel, S. Gabriel, and E. Corthout, "The dielectric
properties of biological tissues--I: Literature survey,"
Phys. Med. Biol., vol. 41, no. 11,
pp. 2231-2249, Nov. 1996.
-
S. Gabriel, R. W. Lau, and C. Gabriel, "The dielectric
properties of biological tissues--II: Measurements on the frequency
range 10 Hz to 20 GHz," Phys. Med.
Biol., vol. 41, no. 11, pp. 2251-2269,
Nov.1996.
-
--, "The dielectric properties of biological
tissues--III: Parametric models for the dielectric spectrum of
tissues," Phys. Med. Biol.,
vol. 41, no. 11, pp. 2271-2293, Nov. 1996.
-
K. R. Foster and J. L. Schepps, "Dielectric properties of
tumor and normal tissue at radio through microwave frequency,"
J. Microwave Power, vol. 16, pp.
107-119, 1981.
-
J. A. Rogers, R. J. Shepard, E. H. Grant, N. M. Bleehen, and D. J.
Honess, "The dielectric properties of normal and tumor mouse
tissue between 50 MHz and 10 GHz," British J.
Radiol., vol. 56, pp. 335-338, 1983.
-
R. Peloso, D. Tuma, and R. K. Jain, "Dielectric properties of
solid tumors during normothermia and hyperthermia,"
IEEE Trans. Biomed. Eng., vol. 31,
pp. 725-728, 1984.
-
W. T. Joines, Y. Z. Dhenxing, and R. L. Jirtle, "The measured
electrical properties of normal and malignant human tissues from 50 to
900 MHz," Med. Phys., vol. 21,
pp. 547-550, Apr. 1994.
-
S. S. Chaudhary, R. K. Mishra, A. Swarup, and J. M. Thomas,
"Dielectric properties of normal and malignant human breast
tissues at radiowave and microwave frequencies,"
Indian J. Biochem. Biophys., vol. 21,
pp. 76-79, Feb. 1984.
-
K. R. Foster and H. P. Schwan, "Dielectric properties of
tissues and biological materials: A critical review,"
Critical Rev. Biomed. Eng., vol. 17,
pp. 25-104, 1989.
-
A. M. Campbell and D. V. Land, "Dielectric properties of
female human breast tissues measured in
vitro at 3.2 GHz," Phys. Med.
Biol., vol. 37, no. 1, pp. 193-210, 1992.
-
A. S. Swarup, S. S. Stuchly, and A. Surowiec, "Dielectric
properties of mouse MCA1 fibrosarcoma at different stages of
development," Bioelectromagn.,
vol. 12, pp. 1-8, 1991.
-
A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A. Swarup,
"Dielectric properties of breast carcinoma and the surrounding
tissues," IEEE Trans. Biomed.
Eng., vol. 35, pp. 257-263, Apr. 1988.
-
G. A. Burrell and L. Peters, Jr., "Pulse propagation in lossy
media using the low-frequency window for video pulse radar
application," Proc. IEEE, vol.
67, pp. 981-990, July 1979.
-
J. D. Young and L. Peters, Jr., "Examination of video pulse
radar systems as potential biological exploratory tools," in
Medical Applications of Microwave
Imaging, L. E. Larsen, and J. H. Jacobi,
Eds.New York: IEEE Press, 1986, pp. 82-105.
-
J. G. Maloney and G. S. Smith, "Optimization of a conical
antenna for pulse radiation: An efficient design using resistive
loading," IEEE Trans. Antennas
Propagat., vol. 41, pp. 940-947, July
1993.
-
K. L. Shlager, G. S. Smith, and J. G. Maloney, "Optimization
of bow-tie antennas for pulse radiation," IEEE
Trans. Antennas Propagat., vol. 42, pp. 975-982,
July 1994.
-
S. C. Hagness, A. Taflove, and J. E. Bridges, "Wideband
ultralow reverberation antenna for biological sensing,"
Electron. Lett., vol. 33, no. 19, pp.
1594-1595, 1997.
-
K. S. Kunz and R. J. Luebbers, The Finite
Difference Time Domain Method for
Electromagnetics.Boca Raton, FL: CRC,
1993.
-
A. Taflove, Computational Electrodynamics: The
Finite-Difference Time-Domain Method.Boston,
MA: Artech House, 1995.
-
J. M. Bourgeois and G. S. Smith, "A fully three-dimensional
simulation of a ground-penetrating radar: FDTD theory compared with
experiment," IEEE Trans. Geosci. Remote
Sensing, vol. 34, pp. 36-44, Jan. 1996.
-
M. Piket-May, A. Taflove, and J. Baron, "FD-TD modeling of
digital signal propagation in 3-D circuits with passive and active
loads," IEEE Trans. Microwave Theory
Tech., vol. 42, pp. 1514-1523,
Aug.1994.
-
J.-P. Berenger, "A perfectly matched layer for the absorption
of electromagnetics waves," J. Comput.
Phys., vol. 114, pp. 185-200, Oct. 1994.
-
H. Gray, Anatomy of the Human
Body, C. M. Goss, Ed.Philadelphia, PA: Lea
Febiger, 1949.
-
X. Wu, G. T. Barnes, and D. M. Tucker, "Spectral dependence
of glandular tissue dose in screen-film mammography,"
Radiol., vol. 179, no. 1, pp.
143-148, Apr. 1991.
-
M. Rosenstein, L. W. Andersen, and G. Warner, "Handbook of
glandular tissue doses in mammography," HHS (FDA) Publication No.
858239, U.S. Govt. Printing Office, Washington, DC,
1985.
-
W. H. Parsons, Cancer of the
Breast.Springfield, IL: Charles Thomas,
1959.
-
R. M. Rangayyan, N. M. El-Faramawy, J. E. L. Desautels, and O. A.
Alim, "Measures of acutance and shape for classification of breast
tumors," IEEE Trans. Med.
Imaging, vol. 16, pp. 799-810, Dec. 1997.