1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 5, May 1999

Table of Contents for this issue

Complete paper in PDF format

Three-Dimensional FDTD Analysis of a Pulsed Microwave Confocal System for Breast Cancer Detection: Design of an Antenna-Array Element

Susan C. Hagness, Member, IEEE, Allen Taflove, Fellow, IEEE, and Jack E. Bridges, Life Fellow, IEEE

Page 783.

Abstract:

We are investigating a new ultrawide-band (UWB) microwave radar technology to detect and image early-stage malignant breast tumors that are often invisible to X rays. In this paper, we present the methodology and initial results of three-dimensional (3-D) finite-difference time-domain (FDTD) simulations. The discussion concentrates on the design of a single resistively loaded bowtie antenna element of a proposed confocal sensor array. We present the reflection, radiation, and scattering properties of the electromagnetic pulse radiated by the antenna element within a homogeneous, layered half-space model of the human breast and the polarization and frequency-response characteristics of generic tumor shapes. We conclude that the dynamic range of a sensor array comprised of such elements in conjunction with existing microwave equipment is adequate to detect small cancerous tumors usually missed by X-ray mammography.

References

  1. J. R. Harris, M. E. Lippman, U. Veronesi, and W. Willett, "Medical progress: Breast cancer," New Eng. J. Med., vol. 327, no. 5, pp. 319-328, 1992.
  2. C. Boetes, R. D. M. Mus, R. Holland, J. O. Barentsz, S. P. Strijk, T. Wobbes, J. H. C. L. Hendriks, and S. H. J. Ruys, "Breast tumors: Comparative accuracy of MR imaging relative to mammography and U.S. for demonstrating extent," Radiol., vol. 197, no. 3, pp. 743-747, 1995.
  3. F. M. Hall, J. M. Storella, D. Z. Silverstone, and G. Wyshak, "Nonpalpable breast-lesions: Recommendation for biopsy based on suspicion of carcinoma at mammography," Radiol., vol. 167, no. 2, pp. 353-358, 1988.
  4. J. G. Elmore, M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," New Eng. J. Med., vol. 338, no. 16, pp. 1089-1096, 1998.
  5. E. D. Staren and T. P. O'Neill, "Breast ultrasound," Surgical Clinic North Amer., vol. 78, no. 2, pp. 219-235, 1998.
  6. C. Maestro, F. Cazenave, P. Y. Marcy, J. N. Bruneton, C. Chauvel, and A. Bleuse, "Systematic ultrasonography in asymptomatic dense breasts," Eur. J. Radiol., vol. 26, no. 3, pp. 254-256, 1998.
  7. G. M. Kacl, P.-F. Liu, J. F. Debatin, E. Garzoli, R. F. Caduff, and G. P. Krestin, "Detection of breast cancer with conventional mammography and contrast-enhanced MR imaging," Eur. Radiol., vol. 8, no. 2, pp. 194-200, 1998.
  8. P. Viehweg, I. Paprosch, M. Strassinopoulou, and S. H. Heywang-Köbrunner, "Contrast-enhanced magnetic resonance imaging of the breast: Interpretation guidelines," Topical Magn. Resonance Imaging, vol. 9, no. 1, pp. 17-43, 1998.
  9. ANSI/IEEE C95.1-1992, American National Standard--Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.New York: IEEE Press, 1992.
  10. J. P. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed.New York: Plenum, 1995.
  11. P. Kearey and M. Brooks, "Seismic reflection surveying," in Geosci. Texts, Vol. 4: An Introduction to Geophysical Exploration.Boston, MA: Blackwell Sci., 1984, ch. 4.
  12. A. W. Preece, H. Johnson, F. L. Green, and M. P. Robinson, "Dielectric imaging for localization and detection of breast tumors," in IEEE MTT Int. Microwave Symp. Dig., 1993, pp. 1145-1146.
  13. R. E. Sepponen, "Medical diagnostic microwave scanning apparatus," U.S. Patent 4641659, Feb. 10, 1987.
  14. W. Guo and T. Guo, "Quantitative dielectric imaging system," U.S. Patent 5363050, Nov. 8, 1994.
  15. B. D. Sollish, E. H. Frie, E. Hammerman, S. B. Lang, and M. Moshitsky, "Microprocessor-assisted screening technique," Israel J. Med. Sci., vol. 17, pp. 859-864, 1981.
  16. W. C. Chew, "Imaging and inverse problems in electromagnetics," in Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, Ed.Boston, MA: Artech House, 1998, ch. 12.
  17. L. E. Larsen and J. H. Jacobi, Eds., Medical Applications of Microwave Imaging.New York: IEEE Press, 1986.
  18. J. E. Bridges, "Non-invasive system for breast cancer detection," U.S. Patent 5704355, Jan. 6, 1998.
  19. --, "Breast cancer detection, imaging, and screening by electromagnetic millimeter waves," U.S. Patent 5807257, Sept. 15, 1998.
  20. --, "Microwave method and system to detect and locate cancer in heterogeneous tissues," U.S. Patent 5829437, Nov. 3, 1998.
  21. S. C. Hagness, A. Taflove, and J. E. Bridges, "FDTD analysis of a pulsed microwave confocal system for breast cancer detection," in Proc. Int. Conf. IEEE Eng. Med. Biol. Soc., Chicago, IL, Oct. 1997, pp. 2506-2508.
  22. --, "FDTD modeling of a coherent-addition antenna array for early-stage detection of breast cancer," in IEEE Antennas Propagat. Soc. Int. Symp., Atlanta, GA, June 1998, vol. 2, pp. 1220-1223.
  23. M. Popovic, S. C. Hagness, A. Taflove, and J. E. Bridges, "2-D study of fixed-focus elliptical reflector system for breast cancer detection: Frequency window for optimum operation," in IEEE Antennas Propagat. Soc. Int. Symp., Atlanta, GA, June 1998, vol. 4, pp. 1992-1995.
  24. S. C. Hagness, A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., vol. 45, pp. 1470-1479, Dec. 1998.
  25. C. Gabriel, S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues--I: Literature survey," Phys. Med. Biol., vol. 41, no. 11, pp. 2231-2249, Nov. 1996.
  26. S. Gabriel, R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues--II: Measurements on the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., vol. 41, no. 11, pp. 2251-2269, Nov.1996.
  27. --, "The dielectric properties of biological tissues--III: Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., vol. 41, no. 11, pp. 2271-2293, Nov. 1996.
  28. K. R. Foster and J. L. Schepps, "Dielectric properties of tumor and normal tissue at radio through microwave frequency," J. Microwave Power, vol. 16, pp. 107-119, 1981.
  29. J. A. Rogers, R. J. Shepard, E. H. Grant, N. M. Bleehen, and D. J. Honess, "The dielectric properties of normal and tumor mouse tissue between 50 MHz and 10 GHz," British J. Radiol., vol. 56, pp. 335-338, 1983.
  30. R. Peloso, D. Tuma, and R. K. Jain, "Dielectric properties of solid tumors during normothermia and hyperthermia," IEEE Trans. Biomed. Eng., vol. 31, pp. 725-728, 1984.
  31. W. T. Joines, Y. Z. Dhenxing, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., vol. 21, pp. 547-550, Apr. 1994.
  32. S. S. Chaudhary, R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian J. Biochem. Biophys., vol. 21, pp. 76-79, Feb. 1984.
  33. K. R. Foster and H. P. Schwan, "Dielectric properties of tissues and biological materials: A critical review," Critical Rev. Biomed. Eng., vol. 17, pp. 25-104, 1989.
  34. A. M. Campbell and D. V. Land, "Dielectric properties of female human breast tissues measured in vitro at 3.2 GHz," Phys. Med. Biol., vol. 37, no. 1, pp. 193-210, 1992.
  35. A. S. Swarup, S. S. Stuchly, and A. Surowiec, "Dielectric properties of mouse MCA1 fibrosarcoma at different stages of development," Bioelectromagn., vol. 12, pp. 1-8, 1991.
  36. A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., vol. 35, pp. 257-263, Apr. 1988.
  37. G. A. Burrell and L. Peters, Jr., "Pulse propagation in lossy media using the low-frequency window for video pulse radar application," Proc. IEEE, vol. 67, pp. 981-990, July 1979.
  38. J. D. Young and L. Peters, Jr., "Examination of video pulse radar systems as potential biological exploratory tools," in Medical Applications of Microwave Imaging, L. E. Larsen, and J. H. Jacobi, Eds.New York: IEEE Press, 1986, pp. 82-105.
  39. J. G. Maloney and G. S. Smith, "Optimization of a conical antenna for pulse radiation: An efficient design using resistive loading," IEEE Trans. Antennas Propagat., vol. 41, pp. 940-947, July 1993.
  40. K. L. Shlager, G. S. Smith, and J. G. Maloney, "Optimization of bow-tie antennas for pulse radiation," IEEE Trans. Antennas Propagat., vol. 42, pp. 975-982, July 1994.
  41. S. C. Hagness, A. Taflove, and J. E. Bridges, "Wideband ultralow reverberation antenna for biological sensing," Electron. Lett., vol. 33, no. 19, pp. 1594-1595, 1997.
  42. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics.Boca Raton, FL: CRC, 1993.
  43. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method.Boston, MA: Artech House, 1995.
  44. J. M. Bourgeois and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 36-44, Jan. 1996.
  45. M. Piket-May, A. Taflove, and J. Baron, "FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1514-1523, Aug.1994.
  46. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetics waves," J. Comput. Phys., vol. 114, pp. 185-200, Oct. 1994.
  47. H. Gray, Anatomy of the Human Body, C. M. Goss, Ed.Philadelphia, PA: Lea Febiger, 1949.
  48. X. Wu, G. T. Barnes, and D. M. Tucker, "Spectral dependence of glandular tissue dose in screen-film mammography," Radiol., vol. 179, no. 1, pp. 143-148, Apr. 1991.
  49. M. Rosenstein, L. W. Andersen, and G. Warner, "Handbook of glandular tissue doses in mammography," HHS (FDA) Publication No. 858239, U.S. Govt. Printing Office, Washington, DC, 1985.
  50. W. H. Parsons, Cancer of the Breast.Springfield, IL: Charles Thomas, 1959.
  51. R. M. Rangayyan, N. M. El-Faramawy, J. E. L. Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumors," IEEE Trans. Med. Imaging, vol. 16, pp. 799-810, Dec. 1997.