1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 5, May 1999

Table of Contents for this issue

Complete paper in PDF format

An Idea for Electromagnetic "Feedforward-Feedbackward" Media

Charles A. Moses, Member, IEEE, and Nader Engheta, Fellow, IEEE

Page 918.

Abstract:

In this paper, an idea for a new class of complex media that we name feedforward-feedbackward (FFFB) media is presented and some of the results of our theoretical work in analyzing plane wave propagation in the axial direction through these media are described. The concept of FFFB media, as introduced here, was inspired by the theoretical research of Saadoun and Engheta on a variation of artificial chiral media. Like chiral media, to our knowledge there are no naturally occurring FFFB media for the microwave frequency band; for this reason we introduce an idea for artificial FFFB media. The focus of this paper is on one conceptualization of such media, namely dipole-dipole FFFB media. First, we present the calculation of the necessary constitutive parameters for studying axial plane wave propagation. Then we solve the macroscopic Maxwell equations in the k domain for axial plane wave propagation in an unbounded source-free crossed-dipole FFFB medium. Finally, we present the dispersion equation for this medium in this case, discuss some of the physical properties of its roots and certain features of the polarization eigenstates, and briefly speculate some of the potential applications of this medium.

References

  1. I. V. Lindell, A. H. Shivola, S. A. Tretyakov, and A. J. Vitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media.Boston, MA: Artech House, 1994.
  2. R. E. Collin, Field Theory of Guided Waves.New York: IEEE Press, 1991.
  3. W. E. Kock, "Metallic delay lenses," Bell Syst. Tech. J., vol. 27, pp. 58-82, 1948.
  4. J. L. Blanchard, E. H. Newman, and M. E. Peters, "Integral equation analysis of artificial media," IEEE Trans. Antennas Propagat., vol. 42, pp. 727-731, May 1994.
  5. J. Brown, "Artificial dielectrics having refractive indices less than unity," Proc. Inst. Elect. Eng., vol. 100, pt. 4, pp. 51-62, May 1953.
  6. A. J. Bahr and K. R. Clausing, "An approximate model for artificial chiral material," IEEE Trans. Antennas Propagat., vol. 42, pp. 1592-1599, Dec. 1994.
  7. D. L. Jaggard, A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Phys., vol. 18, pp. 211-216, 1979.
  8. J. Brown, "Artificial dielectrics," in Progress in Dielectrics, Vol. 2, J. B. Birks and J. H. Schulman, Eds.London, U.K.: Heywood, 1960, pp. 193-225.
  9. R. Luebbers, H. S. Langdon, F. Hunsberger, C. F. Bohren, and S. Yoshikawa, "Calculation and measurement of the effective chirality parameter of a composite chiral material over a wide frequency band," IEEE Trans. Antennas Propagat., vol. 43, pp. 123-129, Feb. 1995.
  10. A. H. Shivola and L. V. Lindell, "Analysis on chiral mixtures," J. Electromagn. Waves Applicat., vol. 6, no. 5/6, pp. 553-572, 1992.
  11. I. P. Theron and J. H. Cloete, "The optical activity of an artificial nonmagnetic uniaxial chiral crystal at microwave frequencies," J. Electromagn. Waves Applicat., vol. 10, no. 4, pp. 539-561, 1996.
  12. S. A. Tretyakov and F. Mariotte, "Maxwell Garnett modeling of uniaxial chiral composites with bianisotropic inclusions," J. Electromagn. Waves Applicat., vol. 9, no. 7/8, pp. 1011-1025, 1995.
  13. K. W. Whites, "Full-wave computation of constitutive parameters for loss-less composites chiral materials," IEEE Trans. Antennas Propagat.., vol. 43, pp. 376-384, Apr. 1995.
  14. F. Mariotte, S. A. Tretyakov, and B. Sauviac, "Modeling effective properties of chiral composites," IEEE Antennas Propagat. Mag., vol. 38, pp. 22-32, Apr. 1996.
  15. S. A. Tretyaov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propagat., vol. 44, pp. 1006-1014, July 1996.
  16. S. I. Pekar, "The theory of electromagnetic waves in a crystal in which excitons are produced," Soviet Phys., JETP, vol. 6, no. 33, pp. 785-796, Apr. 1958.
  17. --, Crystal Optics and Additional Light Waves.Menlo Park, CA: Benjamin/Cummings, 1983.
  18. R. Fuchs and P. Halevi, "Basic concepts and formalism of spatial dispersion," in Spatial Dispersion in Solids and Plasmas, P. Halevi, Ed.New York: North-Holland, 1992.
  19. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves.New York: IEEE Press, 1994.
  20. M. M. I. Saadoun and N. Engheta, "A reciprocal phase shifter using novel pseudochiral or \Omega medium," Microwave and Opt. Technol. Lett., vol. 5, pp. 184-187, 1992.
  21. --, "Theoretical study of electromagnetic properties of nonlocal \Omega media," in Progress in Electromagnetic Research (PIER) Monograph Series Vol. 9 on Bianisotropic and Bi-Isotropic Media and Applications, A. Priou, Ed.Cambridge, MA: EMW, 1994, ch. 15, pp. 351-397.
  22. C. Moses and N. Engheta, "Theoretical electromagnetic modeling of nonlocal-coupled-dipole artificial dielectric--Preliminary results," in Symp. Dig. 14th Annu. Benjamin Franklin Symp. New Frontiers Antenna Microwave Technol., Philadelphia, PA, May 1996, pp. 92-93.
  23. S. N. Karp and F. C. Karal, Jr., "Excitation of surface waves on a unidirectionally conducting screen by a phased line source," IEEE Trans. Antennas Propagat., vol. AP-12, pp. 470-478, July 1964.
  24. S. W. Schneider and B. A. Munk, "The scattering properties of "super dense" arrays of dipoles," IEEE Trans. Antennas Propagat., vol. 42, pp. 463-472, Apr. 1994.
  25. R. W. P. King, The Theory of Linear Antennas.Cambridge, MA: Harvard Univ. Press, 1956.
  26. R. C. Johnson and H. Jasik, Antenna Engineering Handbook, chapter 4.New York: McGraw-Hill, 1984.
  27. R. W. P. King and T. T. Wu, "The cylindrical antenna with arbitrary driving point," IEEE Trans. Antennas Propagat., vol. AP-13, pp. 710-718, Sept. 1965.
  28. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design.New York: Wiley, 1981.
  29. R. W. P. King, Arrays of Cylindrical Antennas.Cambridge, MA: Cambridge Univ. Press, 1968.
  30. S. Silver, "Circuit relations, reciprocity theorems," in Microwave Antenna Theory and Design, S. Silver, Ed.London, U.K.: Peter Peregrinus Ltd., 1984.
  31. J. D. Jackson, Classical Electrodynamics.New York: Wiley, 1975.
  32. W. V. Tilston, T. Tralman, and S. M. Khanna, "A polarization selective surface for circular polarization," in IEEE AP-S Int. Symp., Syracuse, NY, June 1988, vol. II, pp. 762-765.
  33. J. E. Roy and L. Shafai, "Reciprocal circular polarization selective surfaces," IEEE Antennas Propagat. Mag., vol. 38, pp. 18-33, Dec. 1996.
  34. F. Auzanneau and R. W. Ziolowski, "Theoretical study of synthetic bianisotropic materials," J. Electromagn. Waves Applicat., vol. 12, no. 3, pp. 353-370, 1998.