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Abstract— In this paper, we present the formulation of a
finite-element/boundary-integral method for the analysis of
three-dimensional doubly periodic structures based on arbitrary
nonorthogonal lattice configurations. The method starts from
a functional description of the field problem where only a
single unit cell of the array is considered. This unit cell is
meshed with triangular prismatic volume elements and the
electric field intensity is discretized with edge-based expansion
functions. On the sidewalls of the unit cell, phase boundary
conditions are employed to relate the fields on opposing walls
of the unit cell. On the top and/or bottom unit-cell planar
surfaces, the mesh is terminated using a mixed potential
integral equation. The required space-domain periodic Green’s
function is calculated after applying the Ewald transformation
to convert the slowly converging series representation into
two rapidly converging series. The method is validated for
simple slot and strip frequency-selective surfaces as well as
microstrip dipole arrays. More complex geometries investigated
are slot-coupled microstrip patches, photonic bandgap materials,
and the so-called “artificial puck plate” frequency-selective
surface bandpass structure.

Index Terms—Arrays, finite elements, frequency-selective sur-
faces, hybrid methods, integral equations, periodic structures.

I. INTRODUCTION

BY applying appropriate periodicity conditions, the com-
putational domain of infinite periodic structures can be

reduced to a single unit cell. Previous analyses have mainly
been restricted to the application of Floquet’s theorem to
construct periodic Green’s functions in the context of integral
equation formulations. An overview of techniques for the anal-
ysis of single-layer frequency-selective surfaces (FSS’s) based
on spectral-domain integral equation formulations is given in
[1], together with a discussion of cascading approaches for
multilayered structures. Further examples of spectral-domain
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formulations involving the analysis of multilayered planar
structures such as aperture-coupled microstrip patches are
described in [2], [3]. A difficulty with spectral-domain formu-
lations of periodic Green’s functions is the slow convergence
of the Floquet-mode series. Therefore, acceleration techniques
like the method of Singh as applied in [4] or the Shanks
transformation [5] must be used in conjunction with mixed-
potential integral equation (MPIE) formulations. An overview
of acceleration techniques is given in [6]. Improved conver-
gence behavior can be obtained by applying the so-called
Ewald transformation, which was suggested by P. P. Ewald
in his thesis [7] and later extended to deal with skewed three-
dimensional crystal lattices [8]. A numerical implementation
of the Ewald transformation for two-dimensional lattices was
described in [9]. In [10], the Ewald transformation was used
to accelerate convergence for doubly periodic arrays of rectan-
gular apertures in metallic screens. In [11], a volume integral
equation formulation for the analysis of three-dimensional
periodic structures embedded in multilayered media is de-
scribed. The computational complexity of this approach can
be considerable unless advantage is taken of the Toeplitz
properties of the coupling matrices resulting from regular
discretizations.

Fully three-dimensional modeling capabilities can be
achieved by using hybrid finite element (FE)/boundary integral
(BI) methods. However, the formulation is also useful for
the calculation of two-dimensional problems, as shown in
[12], where a two-dimensional FE/BI approach was suggested
for the analysis of plane-wave diffraction by gratings of
arbitrary cross section. Three-dimensional approaches for
the analysis of doubly periodic structures are presented in
[13]–[15]. Both of these methods are based on FE modeling
employing tetrahedral meshes and spectral-domain Floquet-
mode expansions of the BI fields. In this paper, we propose a
hybrid FE/BI method employing distorted triangular prismatic
elements for volume tessellation and an MPIE formulation
in the spatial domain for mesh truncation. The triangular
prismatic elements provide full geometrical adaptability in the
plane of the triangles and structured meshing along the depth
of the cell. Because structured gridding is used for volume
meshing, simple automatic mesh generation can be employed
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Fig. 1. Infinite periodic structure.

for the analysis of multilayered FSS structures. Prismatic
elements facilitate the performance of design studies since
geometry meshing may be accomplished by varying a few
external parameters without the need to manually regrid the
geometry at each design iteration. Another important aspect
of the present approach is the use of the Ewald acceleration
technique for evaluating the periodic Green’s function.

In Section II, the formulation of the method is given start-
ing from a functional description of the field problem. The
majority of this section is devoted to the FE implementation
involving the phase boundary conditions as well as the BI
formulation with the Ewald transformation. Results for a
variety of periodic structures, including antenna arrays and
artificial dielectrics, are presented in Section III.

II. FORMULATION

A. Weak Formulation of the Field Problem

We consider the periodic structure illustrated in Fig. 1 for
time harmonic electromagnetic fields (an time dependence
is assumed and suppressed throughout). The array is assumed
to be periodic in the -plane and the cell of the array
is obtained by shifting the cell through the relation

(1)

Here, are the lattice vectors parallel to the -plane.
For periodic excitation of the array with a linear phase factor,
the fields in the array obey the periodicity conditions

(2)

with

(3)

In (3), is the wavenumber of free space and are
the spherical coordinates corresponding to the scan angles
of a phased array (positive sign) or the arrival angles of
an incident plane wave (negative sign). The pertinent finite-
element functional is

(4)

where is the solution of the adjoint field problem,
denotes an excitation current interior to the FE domain,
represents the bounding surface of the FE domain,is the unit
surface normal directed out of the FE domain, andis the
wave impedance of free space. It is well known that in
the surface integral of (4) must be replaced by an expression
in terms of . This is the process of mesh truncation and,
as noted earlier, the BI will be employed for this purpose.
Restricting ourselves to planar mesh truncation surfaces, the
appropriate BI relation in MPIE form is given by

(5)

where

is the scalar free-space Green’s function and is an exci-
tation field (calculated in the presence of a metallic interface
for a periodic aperture ). Also, denotes the surface
divergence operator. Substituting (5) into (4) and invoking the
divergence theorem results in

(6)

which is the exact functional description of the periodic
field problem. Based on the periodicity condition (2), the
solution domain can be restricted to a single unit cell of the
periodic array. However, by this procedure additional (vertical)
boundaries of the solution domain are created. The phase
boundary conditions (PBC’s), (2), must be employed on these
to obtain a unique solution of the field problem. Moreover, the
free-space Green’s function must be replaced by the
appropriate Green’s function for a periodic array of
-sources in free space.

B. Finite Elements

For the discretization of the volume integrals in (6) we
employ edge-based basis functions on triangular prismatic
elements as described in [16] and [17]. The resulting meshes
give full modeling flexibility in the transverse direction but
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Fig. 2. FE mesh consisting of triangular prisms.

are structured in the direction normal to the triangular cross
sections. As a result, mesh generation with triangular prisms
is much simpler in comparison to tetrahedral meshes and is
well-suited for designing layered periodic structures. As an
example, a simplified FE mesh with triangular prisms for a unit
cell of an infinite periodic array is illustrated in Fig. 2. The
four vertical walls of the FE mesh are designated as, ,

, , where and are assumed to be the sidewalls
opposite to and , respectively. A possible imposition of
the PBC’s on the vertical walls of the FE mesh was discussed
in detail in [14] and [15]. The basic observation in this context
is that the fields on a vertical boundary of the FE mesh are
related to the fields on the opposite boundary by (2) through a
phase relation. If is the unknown field at an edge on one of
the vertical walls, the value of the field at the corresponding
edge on the opposite sidewall is given by

(7)

where or is the vector joining the two edges.
This relation requires that the surface meshes of the opposite
vertical walls be identical, and this is easily satisfied using
prismatic meshes, but not so easily done using tetrahedral
meshes. In our implementation, we eliminate the unknowns
on the surfaces and by relating them to those on

and using (7). For example, in Fig. 2 the unknown
field at edge is replaced by the unknown field at edge

. Similarly, the unknown field at edge is replaced by
the unknown field at edge . For the construction of the
FE system matrix, this means that the corresponding matrix
elements are modified and condensed according to (7) as
described in [14] and [15]. However, in our implementation,
matrix condensation is performed during the generation of the
matrix and not as a second step. This allows for the most
efficient sparse matrix storage.

C. Boundary Integral

The edge-based basis functions for triangular prisms reduce
to Rao–Wilton–Glisson basis functions [18] on the top and
bottom triangular surface meshes of the periodic unit cell.
Therefore, these basis functions are used to represent the field
in the boundary integral in (6). In the spatial domain, the
periodic Green’s function has the form

(8)

where

(9)

In the spectral domain, becomes

(10)

where is the cross-sectional area of the unit cell

(11)

(12)

is the so-called reciprocal lattice vector, and

(13)

where . In many cases, the
spectral-domain representation (10) has satisfactory conver-
gence behavior if applied in a spectral-domain formulation
of the integral equation. However, for arbitrary array config-
urations analyzed in the space domain, having strongly as
well as weakly coupled array elements, it is necessary to
have a representation that converges faster than either (8) or
(10). This can be achieved by employing the so-called Ewald
transformation originally proposed by Ewald for modeling
optical and electrostatic potentials in three-dimensional ion
lattices [7], [8]. An application of the Ewald transformation for
time-harmonic fields of two-dimensional lattices was presented
in [9]. The formulation there is restricted to rectangular
lattices, but the transformation is also applicable to skewed
lattices by employing the reciprocal lattice representation used
here. The Ewald transformation starts from the spatial domain
representation of the periodic Green’s function (8) and makes
use of the identity

(14)

where is a complex variable. In order that the integrand
converges as for a wavenumber with an arbitrary
amount of loss, the path is chosen so that as

. In order to have convergence as , the path
is chosen so that . Next, (14) is
substituted into (8) and the parameteris introduced to split
the integral into two terms, as

(15)

where

(16)

(17)
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Using the identity [19, eq. (7.4.34)]

(18)

where is the complementary error function,
can be written as

(19)

which is essentially a “modified” spatial-domain portion of
the periodic Green’s function. Making use of the Poisson
transformation, or alternatively following the procedure in
[8], [9] employing a transformation formula for the series
expansion of the -function, (16) is finally transformed to

(20)

where is defined immediately after (10). Equation (20) can
be identified as a “modified” spectral domain portion of the
periodic Green’s function. For planar BI surfaces, we can
select , giving the simplified form

(21)

The two expressions (19) and (20) (or (21)) both converge
exponentially (Gaussian convergence) and their computation
is therefore very efficient, requiring only a few terms of the
series. The parameter controls the convergence rate. As
becomes larger, the spatial series (19) converges faster, while
the spectral series (20) or (21) converges slower. The optimum
parameter is that which makes the two series converge at the
same rate, so that equal numbers of terms are required in the
calculation of both series (assuming the same calculation time
for corresponding terms in each of the two series). By analysis
of the asymptotic behavior of the series terms, the optimum
parameter is found to be [9]

(22)

Choosing this value for and adjusting the summation limits
so that the most dominant terms are kept, in almost all practical

Fig. 3. Periodic image sources in triangular BI mesh.

Fig. 4. TM power reflection from a one-layer slot array for a plane wave.
#0 = 0

�; '0 = 0
�.

cases it is sufficient to include only nine summation terms in
(19) and (20) [or (21)] (i.e., the summation limits are from

to ), in which case the error level is usually less
than 0.1%.

For the implementation of the BI portion of the method, we
apply the same phase transformations to the matrix elements
associated with edges on and (see Fig. 2) as done
in the FE portion of the implementation (see Section II-B).
We note that this approach is in contrast to the “overlapping
elements” concept described in [12], [14], and [15]. However,
our approach is advantageous in our spatial-domain MPIE for-
mulation for treating the singularities of the Green’s function.
For our approach, source and test triangles are always inside
the unit cell, therefore guaranteeing that the singularities of
the neighboring array cells are never inside the test triangle.
However, it is still necessary to carefully deal with the
singularities of the neighboring array elements that are close
to the test triangles, as illustrated in Fig. 3. The singularities,
especially those of the self-cell elements, can be integrated
using the formulas given in [20] and [21].

III. RESULTS

For the validation of the method, we first analyzed the two
simple FSS structures illustrated in Figs. 4 and 5. These were
originally considered in [1]. The example in Fig. 4 is a slot
FSS on a dielectric slab where the BI on the top surface is
restricted to the slot aperture. In the diagram, we give the
computed power reflection coefficient of the infinite slot array
for an incident TM plane wave. A method of moments (MoM)
formulation employing a multilayered Green’s function was
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Fig. 5. TE power reflection from a one-layer strip array for a plane wave.
#0 = 0

�; '0 = 0
�.

Fig. 6. TE active reflection coefficient for a microstrip dipole array as
presented in [22].'0 = 0

�.

also developed during this study and is used to compare results
for this and several other cases presented here. The FE/BI
results were obtained using four subdivisions along the width
of the slot and 15 subdivisions along the length of the slot. As
seen, the results in Fig. 4 agree almost exactly with the MoM
data. Compared to the results presented in [1], both curves are
slightly shifted to higher frequencies.

The structure illustrated in Fig. 5 is a strip dipole FSS
embedded in a dielectric layer. Again, our FE/BI results for the
power reflection coefficient are compared to the corresponding
results based on the MoM code for planar structures. In this
case, the incident plane wave was TE polarized, parallel to
the orientation of the strip dipoles. In contrast to the case of
the slot array, the two resonance curves for the strip dipole
array show a slight frequency shift of about 1%. We note that
the FE/BI results were obtained using 16 subdivisons along
the length and eight subdivisions along the width of the strip
dipole. Further increases in the mesh density showed that the
results were converged.

In Fig. 6, the active reflection coeffecient for a microstrip
dipole array is depicted to demonstrate the antenna and scan
modeling capabilities of our FE/BI method. The results com-
pare very well to our own MoM results and those of [22].

Fig. 7. FSS unit cell of aperture coupled microstrip patches as suggested in
[2]. "r = 2:2, d = 1.6 mm,a = 36.07 mm,b = 34.04 mm.

Fig. 8. TE transmission coefficient for the FSS structure in Fig. 7 compared
to reference values from [2].Ls = 12 mm,Ws = 2 mm,Wp = 18 mm,
Lp = 28 mm,'0 = 0

�, #0 varying from 57� to 32� for f varying from 2.5
to 4.0 GHz, according to waveguide measurement setup in [2].

A more complex FSS structure consisting of two slot-
coupled microstrip patches [2] is given in Fig. 7. The modeling
of this structure using MoM-based integral equation analysis is
challenging, involving both coupled electric and magnetic sur-
face current densities in layered media. However, modeling of
the cell in Fig. 7 is a routine task in the FE/BI implementation.
First, the geometric dimensions of the structure in Fig. 7 were
designed to get a transmission coefficient curve with two sepa-
rated resonance peaks as shown in Fig. 8. In [2], MoM results
were compared to measurements; however, the measured reso-
nance curves were obtained for a slot length of 12 mm whereas
in the simulation a slot length of 11.2 mm was used to match
the results. In our FE/BI simulations we found a good match
to the resonance curves using the actual slot dimension of 12
mm. For the results shown in Fig. 9, the geometric dimensions
were selected to obtain bandpass behavior of the transmission
coefficient curve. Again, our FE/BI results are compared to
MoM calculations as well as to measurements published in
[2] and the discrepancies between the different curves are very
small. It should be noted that the results in Figs. 8 and 9 were
both obtained for incidence angles which vary with fre-
quency according to the waveguide measurements performed
in [2].

As another example we consider the dielectric slab in
Fig. 10 with embedded periodic material blocks. These
lattices are often referred to as photonic bandgap materials.
The diagram in Fig. 10 shows the reflection coefficient of
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Fig. 9. TE transmission coefficient for the FSS structure in Fig. 7 compared
to reference values from [2].Ls = 8 mm, Ws = 2 mm, Wp = 28 mm,
Lp = 28 mm,'0 = 0�, #0 varying from 57� to 32� for f varying from 2.5
to 4.0 GHz, according to waveguide measurement setup in [2].

Fig. 10. TM plane wave reflection from a dielectric slab("r = 4) with
planarly embedded periodic material blocks("r = 10) compared to reference
values from [11]. Slab height: 0.2 cm, period: 2� 2 cm, block side length:
1 � 1 cm, '0 = 0�.

plane waves incident on the slab with different incidence
angles. The reflection coefficient curves exhibit the typical
resonances of photonic bandgap materials. Compared to
calculations obtained by a volume integral equation method
[11], the first resonance is slightly shifted to a lower
frequency whereas the frequency shift for the second
resonance is larger. For TM waves with oblique incidence,
the resonances shift to higher frequencies, in agreement
with [11].

As a final example, Fig. 11 shows the unit cell for a so-
called “artificial puck plate” FSS screen which was presented
in [23] and analyzed in [13]. The basic FSS element is
a dielectric-filled cylindrical waveguide with metallic walls
and circular metallic irises in its apertures. On the top and
bottom of the metallic plate, dielectric layers are placed for
the optimization of the frequency behavior of the bandpass
structure. The surface mesh used to grow the prismatic volume
mesh of the unit cell is shown in Fig. 12. Our calculations are
given in Fig. 13 and are compared to MoM data and FE/BI
results based on a tetrahedral mesh published in [13]. As can

Fig. 11. Unit cell of “artificial puck plate” FSS as presented in [13].

Fig. 12. Triangular surface mesh for the structure in Fig. 11.

Fig. 13. TE reflection and transmission coefficients for bandpass structure
in Fig. 11 compared to reference values from [13].#0 = 0�; '0 = 0�.

be seen, our FE/BI curves are closer to the MoM curves than
the FE/BI results from [13]. This is likely due to our higher
mesh density.
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IV. CONCLUSION

In this paper, we presented a hybrid FE/BI method for
the analysis of three-dimensional doubly periodic structures.
The method can handle nonorthogonal (skew) lattices as well
as arbitrary scan directions. The FE portion of the approach
utilizes triangular prismatic volume meshes with edge-based
basis functions for the electric field intensity. This meshing
strategy provides for geometrical flexibility and ease of mesh
generation for layered structures. On the top and/or bottom
boundary planes of the unit cell, the mesh was truncated by
a boundary integral, and a periodic phase boundary condition
was employed on the sidewalls of the unit cell mesh. The BI
was implemented using an MPIE formulation with the periodic
Green’s function in the space domain being computed via the
Ewald acceleration technique, resulting in a rapidly converging
series representation. The method was validated for simple
slot and strip FSS as well as for microstrip dipole antenna
arrays. Further results were shown for slot-coupled microstrip
patches, photonic bandgap arrays, and a bandpass FSS based
on a circular hollow waveguide with dielectric cover layers.
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