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Abstract—In this paper, we present the formulation of a formulations involving the analysis of multilayered planar
finite-element/boundary-integral method for the analysis of structures such as aperture-coupled microstrip patches are
three-dimensional doubly periodic structures based on arbitrary described in [2], [3]. A difficulty with spectral-domain formu-
nonorthogonal lattice configurations. The method starts from . e , . .
a functional description of the field problem where only a lations of periodic Green’s functions is the slow convergence
single unit cell of the array is considered. This unit cell is Of the Floquet-mode series. Therefore, acceleration techniques
meshed with triangular prismatic volume elements and the l|ike the method of Singh as applied in [4] or the Shanks
electric field intensity is discretized with edge-based expansion {yansformation [5] must be used in conjunction with mixed-

functions. On the sidewalls of the unit cell, phase boundar L . . .
conditions are employed to relate the fields Oﬁ opposing Waﬁ’s potential integral equation (MPIE) formulations. An overview

of the unit cell. On the top and/or bottom unit-cell planar Of acceleration techniques is given in [6]. Improved conver-
surfaces, the mesh is terminated using a mixed potential gence behavior can be obtained by applying the so-called
integral equation. The required space-domain periodic Green's Ewald transformation, which was suggested by P. P. Ewald
function is calculated after applying the Ewald transformation i, hig thesis [7] and later extended to deal with skewed three-
to convert the slowly converging series representation into . . i o )
two rapidly converging series. The method is validated for dimensional crystal lattices [8]. A numerical implementation
simple slot and strip frequency-selective surfaces as well asOf the Ewald transformation for two-dimensional lattices was
microstrip dipole arrays. More complex geometries investigated described in [9]. In [10], the Ewald transformation was used
are slot-coupled microstrip patches, photonic bandgap materials, to accelerate convergence for doubly periodic arrays of rectan-
2S?faégeb:r?é;cg£dstrﬁ::ttlg(r:éél puck  plate” frequency-selective gular apertures in metallic screens. In [11], a volume integral
equation formulation for the analysis of three-dimensional

periodic structures embedded in multilayered media is de-
scribed. The computational complexity of this approach can
be considerable unless advantage is taken of the Toeplitz
|. INTRODUCTION properties of the coupling matrices resulting from regular

Y applying appropriate periodicity conditions, the comdiscretizations. _ _ o
putational domain of infinite periodic structures can be Fully three-dimensional modeling capabilities can be
reduced to a single unit cell. Previous analyses have maifghieved by using hybrid finite element (FE)/boundary integral
been restricted to the application of Floquet's theorem {&!) methods. However, the formulation is also useful for
construct periodic Green’s functions in the context of integrffe calculation of two-dimensional problems, as shown in
equation formulations. An overview of techniques for the andfl2], where a two-dimensional FE/BI approach was suggested
ysis of single-layer frequency-selective surfaces (FSS's) badeti the analysis of plane-wave diffraction by gratings of
on spectral-domain integral equation formulations is given gfbitrary cross section. Three-dimensional approaches for
[1], together with a discussion of cascading approaches f6€ analysis of doubly periodic structures are presented in
multilayered structures. Further examples of spectral-doma#s]-[{15]. Both of these methods are based on FE modeling
employing tetrahedral meshes and spectral-domain Floquet-
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where E, is the solution of the adjoint field problend™
denotes an excitation current interior to the FE doman,
represents the bounding surface of the FE donais the unit
X surface normal directed out of the FE domain, afidis the
wave impedance of free space. It is well known thak 7 in
the surface integral of (4) must be replaced by an expression
in terms of E. This is the process of mesh truncation and,
Fig. 1. Infinite periodic structure. as noted earlier, the Bl will be employed for this purpose.
Restricting ourselves to planar mesh truncation surfaces, the
for the analysis of multilayered FSS structures. Prismatippropriate Bl relation in MPIE form is given by
elements facilitate the performance of design studies since

geometry meshing may be accomplished by varying a fe _9j ko / Glr,r,)(E x ) ds

external parameters without the need to manually regrid t e ZO

geometry at each design iteration. Another important aspect

of the present approach is the use of the Ewald acceleration e
technique for evaluating the periodic Green’s function. k2v// r,7)Vs (B xn)ds| + H

In Section I, the formulation of the method is given start-
ing from a functional description of the field problem. The (5)
majority of this section is devoted to the FE implementation
involving the phase boundary conditions as well as the gihere

formulation with the Ewald transformation. Results for a G(r,rs) = exp (—jkolr — rs|)/(4x|r — 7,))
variety of periodic structures, including antenna arrays and
artificial dielectrics, are presented in Section III. is the scalar free-space Green’s function #id* is an exci-
tation field (calculated in the presence of a metallic interface
II. FORMULATION for a periodic apertureS). Also, V,- denotes the surface
divergence operator. Substituting (5) into (4) and invoking the
A. Weak Formulation of the Field Problem divergence theorem results in

We consider the periodic structure illustrated in Fig. 1 fo'(E.q, E)
time harmonic electromagnetic fields (gir* time dependence
is assumed and suppressed throughout). The array is assumed /// [ (V x Eaa) - (V X E)
to be periodic in thery-plane and thém, n) cell of the array

is obtained by shifting th€0, 0) cell through the relation — k2e,Ena - E+ jkoZoEng - Jint:| do

Pmn = MPq +NPy. (1)
Here, p., py are the lattice vectors parallel to the-plane. — 2k3 // // Ts { 7 X Eoa(r)) - (0 x E(r;))

For periodic excitation of the array with a linear phase factor,

the fields in the array obey the periodicity conditions Vs - (it x Eaa(r)V, - (R X E(Ts))} dss ds

: - —2
E(r +mp, + npy) = E(r)e~Foo-(mpetnen) kg
H(r +mpe +npy) = H(r)e— ko (mpatne) () + jkoZo / / (A X Eaa(r)) - H™(r) ds )
with s

which is the exact functional description of the periodic
field problem. Based on the periodicity condition (2), the
= £(ko sin o cos ok + kosindosingoy).  (3)  solution domain can be restricted to a single unit cell of the
In (3), ko is the wavenumber of free space afigh ¢, are periodic array. However, py this prqcedure additional (vertical)
the spherical coordinates corresponding to the scan andi@sndaries of the solution domain are created. The phase
of a phased array (positive sign) or the arrival angles gPundary conditions (PBC's), (2), must be employed on these
an incident plane wave (negative sign). The pertinent finitiR obtain a unique solution of the field problem. Moreover, the

ko0 = KkzooZ + kyool

element functional is free—quce Green’s functiq@(r,rs) must be replgced by the
1 appropriate Green’s functio@,, (r, r,) for a periodic array of
F(E,, E) = /// [—(V x Euq) - (V x E) 6-sources in free space.
thr
v

2B B4 E . g B. Finite Elements
~ Ferbiod - Bt JhoZobed }dv For the discretization of the volume integrals in (6) we

) R employ edge-based basis functions on triangular prismatic
+ jkoZo // Eoa-(Hxn (4)  elements as described in [16] and [17]. The resulting meshes
give full modeling flexibility in the transverse direction but
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In the spectral domairnG,(r,r,) becomes

e~ ikimn-(p—ps)

[e@) [e@)
_ — ik zmn|z—2s]
Gplrrs) = D, 2 g

m=—oo nN=—0o

(10)
Fig. 2. FE mesh consisting of triangular prisms. whereA = |p, % py| is the cross-sectional area of the unit cell
r=p+z2z (11)

are structured in the direction normal to the triangular cross 2w . .

sections. As a result, mesh generation with triangular prisms Kimn = koo + z[m(pb x2)+n(zxp,)] (12)
is much simpler in comparison to tetrahedral meshes and. is . .
well-suited for designing layered periodic structures. As 4R the so-called reciprocal lattice vector, and

example, a simplified FE mesh with triangular prisms for a unit i B \/m 13
cell of an infinite periodic array is illustrated in Fig. 2. The zmn = Ao T Mmn " Remn (13)
four vertical walls of the FE mesh are designated’as[',;, Where Re (komn) > 0, T (kumn) < 0. In many cases, the

Do, T'up, wherel's. andly, are assumed to be the sidewalle o 40020 1o oo sentation (10) has satisfactory conver-
opposite td’,; andI'y;,, respectively. A possible imposition of P P y

the PBC'’s on the vertical walls of the FE mesh was discussgﬁnce behavior if applied in a spectral-domain formulation

in detail in [14] and [15]. The basic observation in this context the integral equation. However, for arbitrary array config-

is that the fields on a vertical boundary of the FE mesh alrjéat'ons analyzed in the space domain, having strongly as

related to the fields on the opposite boundary by (2) througf}"\/e" as weakly coupled array elements, it is necessary to

a ) .
phase relation. I¢,,, is the unknown field at an edge on one o ave a representation that converges faster than either (8) or
the vertical walls, the value, of the field at the corresponding

10). This can be achieved by employing the so-called Ewald
L S transformation originally proposed by Ewald for modeling
edge on the opposite sidewall is given by optical and electrostatic potentials in three-dimensional ion
e, = e,,c kwo-ar (7) lattices [7], [8]. An application of the Ewald transformation for
time-harmonic fields of two-dimensional lattices was presented
where Ar(=p, or p;) is the vector joining the two edges.in [9]. The formulation there is restricted to rectangular
This relation requires that the surface meshes of the opposégices, but the transformation is also applicable to skewed
vertical walls be identical, and this is easily satisfied usingttices by employing the reciprocal lattice representation used
prismatic meshes, but not so easily done using tetrahedtate. The Ewald transformation starts from the spatial domain

meshes. In our implementation, we eliminate the unknowpgpresentation of the periodic Green’s function (8) and makes
on the surfaced’;; and I',,, by relating them to those onyse of the identity

I'e and I'y, using (7). For example, in Fig. 2 the unknown )

field at edgen,, is replaced by the unknown field at edge eIk o _ i/m C—Rfms%% ds (14)

n1,. Similarly, the unknown field at edge:,; is replaced by Rn L

the unknown field at edgen,.. For the construction of the . . .

FE system matrix, this means that the corresponding matW{]eres is a complex variable. In order t_hat the m_tegrand
elements are modified and condensed according to (7) CQQVerges as — 0 for a wavenumberk, with an arbitrary

described in [14] and [15]. However, in our implementationa,‘mou(r)1t IOf Ioss, ihehpath is chosen so thag (s) ; 4 atSh
matrix condensation is performed during the generation of te . > ' Order to have convergence as— oo, the pa
chosen so that-w/4 < arg(s) < w/4. Next, (14) is

matrix and not as a second step. This allows for the magt &€ . ! .
efficient sparse matrix storage. substituted into (8) and the parametferis introduced to split

the integral into two terms, as

C. Boundary Integral GQp(r,r.) = Gpi(r,r.) + Gpalr, 7)) (15)
The edge-based basis functions for triangular prisms reduce
to Rao-Wilton-Glisson basis functions [18] on the top anf{here

bottom triangular surface meshes of the periodic unit cell. ] & 0 N
Therefore, these basis functions are used to represent the field Gp(rrs) = - S Y ke
in the boundary integral in (6). In the spatial domain, the Mm=—00 n=—00
eriodic Green'’s functioriz,,(r,r,) has the form 2 [F ko
p T‘( ’ ) X _/ G—annsz—l—é dS (16)
Gp('r, ,,.S) — C*Jktooﬁmn; (8) 1 00 00 '
- = —jki00Prmn
m=—oon=—oo 471'an,n GT‘Q(T’TS) - A Z Z € 0
m=—oo N=—0
where oo 2
2 k
x / R IRE ds. (17)
Rm,n = |'T' —Ts — prnn|- (9) ﬁ E
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Using the identity [19, eq. (7.4.34)] --—--.image sources ______
2 /'°° R 24k /np\ \

— e Tmn® TEZ (s 3 /3

Vi Ji AV WA

1

—JkoRmnerfel R E — IR
{e eric < mn oF

- 2ann

+ *oBrrerfe( Ry E+ 2= )| (18)
2F
where erfc is the complementary error fUnCtiOIGpQ('T‘,'T‘S) Fig. 3. Periodic image sources in triangular Bl mesh.

can be written as

primary source

e~ 7k100-Pran 1.0

Gpa(r,r,) = Z Z By

m=—oonN=—0o

—iko B erfe( Ry B — 2o
X [e er C< . 2E

0.8

<
=
g
k O 0.6 »H—ie
jkoR Jk g
+ P tmrerfe| Ry + o (29) g x
2 £ 0.4 E
which is essentially a “modified” spatial-domain portion of i‘a ¥
the periodic Green’s function. Making use of the Poisson 2 oM
. . : . = 0. - °
transformation, or alternatively following the procedure in od IE ®® FEBI
[8], [9] employing a transformation formula for the series — 10 mm —>|
expansion of the’-function, (16) is finally transformed to 0'04 6 8 10 12 14 16 18 20 22
) ) ijktmw(p*ps) Frequency (GHz)
Gpi(r,rs) = Z Z 45 Ak, Fig. 4. TM power reflection from a one-layer slot array for a plane wave.
m=—o0o n=—00 zmn Yo = 0°, o = 0°.

X [e‘jkm”lz_“lerfc <‘—7kzmn — |z - Zs|E>
2E cases it is sufficient to include only nine summation terms in
P Tksmn (19) and (20) [or (21)] (i.e., the summation limits are from
+ 7t lerfc< 2F +|Z_ZS|E>} —1 to +1), in which case the error level is usually less
(20) than 0.1%.
] . . ) ] For the implementation of the Bl portion of the method, we
where A is defined immediately after (10). Equation (20) cagpply the same phase transformations to the matrix elements
be _|de_nt|f|ed as a “moqmed" spectral domain portion of thgssociated with edges di; and Iy, (see Fig. 2) as done
periodic Green's function. For planar Bl surfaces, we CaR the FE portion of the implementation (see Section II-B).
selectz = z, = 0, giving the simplified form We note that this approach is in contrast to the “overlapping
o X o—ikimn-(p—ps) 77— elements” concept described in [12], [14], and [15]. However,

Gpi(r,r;) = Z Z 27 Ak erfC( ) our approach is advantageous in our spatial-domain MPIE for-
m=—oon=—oo ~Jmn mulation for treating the singularities of the Green’s function.

(21)  For our approach, source and test triangles are always inside

The two expressions (19) and (20) (or (21)) both conver%é; unit cell, therefore guaranteeing that the singularities of
exponentially (Gaussian convergence) and their computati neighboring array cells are never inside the test triangle.

is therefore very efficient, requiring only a few terms of th lowever, it is sl necessary to carefully deal with the
series. The parametd? controls the convergence rate. 4 singularities of the neighboring array elements that are close

becomes larger, the spatial series (19) converges faster, wf'ﬁ’léhe_teSt triangles, as illustrated in Fig. 3. The smgularltles,

the spectral series (20) or (21) converges slower. The optim ecially those of t_he sglf-cell elements, can be integrated
parameter is that which makes the two series converge at HR"9 the formulas given in [20] and [21].

same rate, so that equal numbers of terms are required in the
calculation of both series (assuming the same calculation time
for corresponding terms in each of the two series). By analysisFor the validation of the method, we first analyzed the two

of the asymptotic behavior of the series terms, the optimusimple FSS structures illustrated in Figs. 4 and 5. These were

lll. RESULTS

parameterk,, is found to be [9] originally considered in [1]. The example in Fig. 4 is a slot
FSS on a dielectric slab where the Bl on the top surface is
Eopy = % (22) restricted to the slot aperture. In the diagram, we give the

computed power reflection coefficient of the infinite slot array
Choosing this value foF and adjusting the summation limitsfor an incident TM plane wave. A method of moments (MoM)
so that the most dominant terms are kept, in almost all practiéatmulation employing a multilayered Green’'s function was
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Frequency (GHz)
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Fig. 5. TE power reflection from a one-layer strip array for a plane wave. =
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2 0.6
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g X + Fig. 8. TE transmission coefficient for the FSS structure in Fig. 7 compared

0.2 to reference values from [2L, = 12 mm, W, = 2 mm, W, = 18 mm,

L, =28 mm,pq = 0°, Yo varying from 57 to 32 for f varying from 2.5
0.0, to 4.0 GHz, according to waveguide measurement setup in [2].
0 10 20 30 40 50 60 70 80 90

Scan Angle U;(degree)

A more complex FSS structure consisting of two slot-
Fig. 6. TE_ active reflection coefficient for a microstrip dipole array a%oupled microstrip patches [2] is given in Fig. 7. The modeling
presented in [22];00 = 0°. . . . . LY
of this structure using MoM-based integral equation analysis is
challenging, involving both coupled electric and magnetic sur-
also developed during this study and is used to compare resigise current densities in layered media. However, modeling of
for this and several other cases presented here. The FE#H cell in Fig. 7 is a routine task in the FE/BI implementation.
results were obtained using four subdivisions along the widHirst, the geometric dimensions of the structure in Fig. 7 were
of the slot and 15 subdivisions along the length of the slot. Alesigned to get a transmission coefficient curve with two sepa-
seen, the results in Fig. 4 agree almost exactly with the MoMted resonance peaks as shown in Fig. 8. In [2], MoM results
data. Compared to the results presented in [1], both curves wa#ere compared to measurements; however, the measured reso-
slightly shifted to higher frequencies. nance curves were obtained for a slot length of 12 mm whereas

The structure illustrated in Fig. 5 is a strip dipole FS& the simulation a slot length of 11.2 mm was used to match
embedded in a dielectric layer. Again, our FE/BI results for thte results. In our FE/BI simulations we found a good match
power reflection coefficient are compared to the corresponditigthe resonance curves using the actual slot dimension of 12
results based on the MoM code for planar structures. In thism. For the results shown in Fig. 9, the geometric dimensions
case, the incident plane wave was TE polarized, parallel w@re selected to obtain bandpass behavior of the transmission
the orientation of the strip dipoles. In contrast to the case obefficient curve. Again, our FE/BI results are compared to
the slot array, the two resonance curves for the strip dipdiéoM calculations as well as to measurements published in
array show a slight frequency shift of about 1%. We note thEg] and the discrepancies between the different curves are very
the FE/BI results were obtained using 16 subdivisons alosgall. It should be noted that the results in Figs. 8 and 9 were
the length and eight subdivisions along the width of the strigoth obtained for incidence anglés which vary with fre-
dipole. Further increases in the mesh density showed that theency according to the waveguide measurements performed
results were converged. in [2].

In Fig. 6, the active reflection coeffecient for a microstrip As another example we consider the dielectric slab in
dipole array is depicted to demonstrate the antenna and s€&n 10 with embedded periodic material blocks. These
modeling capabilities of our FE/BI method. The results confattices are often referred to as photonic bandgap materials.
pare very well to our own MoM results and those of [22]. The diagram in Fig. 10 shows the reflection coefficient of
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planarly embedded periodic material blogks = 10) compared to reference

values from [11]. Slab height: 0.2 cm, period:x22 cm, block side length: . N
1x 1cm,ypo = 0°. Fig. 12. Triangular surface mesh for the structure in Fig. 11.

plane waves incident on the slab with different incidence 0 Transmission
angles. The reflection coefficient curves exhibit the typical _

resonances of photonic bandgap materials. Compared to2 -5
calculations obtained by a volume integral equation method .

SI0n

[11], the first resonance is slightly shifted to a lower £ .10
frequency whereas the frequency shift for the second £
resonance is larger. For TM waves with oblique incidence, % 15
the resonances shift to higher frequencies, in agreementg
with [11]. < — ,
@ oM, Schmier
As a final example, Fig. 11 shows the unit cell for a so- % 20|l ¢ o FE/BL this methoa Reflection
called “artificial puck plate” FSS screen which was presented A A FE/BL Lucasetal [ 2 4
in [23] and analyzed in [13]. The basic FSS element is -25 " = v vs prs =0

a dielectric-filled cylindrical waveguide with metallic walls
and circular metallic irises in its apertures. On the top and
bottom of the metallic plate, dielectric layers are placed fdtg. 13. TE reflection and transmission coefficients for bandpass structure
the optimization of the frequency behavior of the bandpas™d 11 compared to reference values from 1. = 0, zo = 0°.
structure. The surface mesh used to grow the prismatic volume

mesh of the unit cell is shown in Fig. 12. Our calculations aitge seen, our FE/BI curves are closer to the MoM curves than
given in Fig. 13 and are compared to MoM data and FE/Bhe FE/BI results from [13]. This is likely due to our higher

results based on a tetrahedral mesh published in [13]. As gaesh density.

Frequency (GHz)
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IV. CONCLUSION [16]

In this paper, we presented a hybrid FE/BI method for
the analysis of three-dimensional doubly periodic structured?]
The method can handle nonorthogonal (skew) lattices as well
as arbitrary scan directions. The FE portion of the approagis)
utilizes triangular prismatic volume meshes with edge-based
basis functions for the electric field intensity. This meshingq
strategy provides for geometrical flexibility and ease of mesh
generation for layered structures. On the top and/or bottda?!
boundary planes of the unit cell, the mesh was truncated by
a boundary integral, and a periodic phase boundary condition
was employed on the sidewalls of the unit cell mesh. The
was implemented using an MPIE formulation with the periodic
Green'’s function in the space domain being computed via tte]
Ewald acceleration technique, resulting in a rapidly convergi %]
series representation. The method was validated for sim?)e
slot and strip FSS as well as for microstrip dipole antenna
arrays. Further results were shown for slot-coupled microstrin
patches, photonic bandgap arrays, and a bandpass FSS b
on a circular hollow waveguide with dielectric cover layers.
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