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Higher Order Interpolatory Vector
Bases on Pyramidal Elements

Roberto D. Graglia,Fellow, IEEE, and Ioan-L. Gheorma

Abstract—In the numerical solution of three-dimensional (3-D)
electromagnetic field problems, the regions of interest can be
discretized by elements having tetrahedral, brick or prismatic
shape. However, such different shape elements cannot be linked
to form a conformal mesh; to this purpose pyramidal elements are
required. In this paper, we define interpolatory higher order curl-
and divergence-conforming vector basis functions on pyramidal
elements, with extension to curved pyramids, and discuss their
completeness properties. A general procedure to obtain vector
bases of arbitrary polynomial order is given and bases up to
second order are explicitly reported. These new elements ensure
the continuity of the proper vector components across adjacent
elements of equal order but different shape. Results to confirm
the faster convergence of higher order functions on pyramids are
presented.

Index Terms—Electromagnetic fields, finite-element methods,
higher order vector elements, method of moments, numerical
analysis, pyramidal elements.

I. INTRODUCTION

I NTERPOLATORY higher order vector basis functions of
the Nedelec variety [1] have been recently defined in a

unified and consistent manner for the most common element
shapes [2], [3]. Three-dimensional (3-D) structures can be
discretized by elements having tetrahedral, brick, or prismatic
shape. However, in general, elements of different shape cannot
be used together to form a 3-D conformal mesh without
introducing pyramidal elements. Hence, the new element at
issue, which has the shape of a pyramid with quadrilateral
base, most times is useful as afiller; for example, it is
required when one has to link a coarse to a dense mesh
of bricks, as schematically depicted in Fig. 1. Few previous
works considered pyramidal elements [4], [5] and did not
addressed the issue of general construction of higher order
forms on pyramids or the issue of the existence of spurious
modes when using pyramidal elements. In this work, for
pyramidal elements, we consider both curl- and divergence-
conforming bases, which have continuous tangential or normal
components, respectively, across adjacent elements. The basis
functions we present here are of interpolatory kind and ensure
the continuity of the proper components across adjacent ele-
ments of equal order but different shape (tetrahedrons, bricks,
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(a) (b)

Fig. 1. (a) Onebuffer layer of mixed-shape elements (bricks, tetrahedrons,
prisms, and pyramids) is used to link two brick meshes (b) having different
mesh-size. In the buffer region, pyramidal elements are required to obtain a
conformal mesh.

prisms). Curl-conforming basis functions are appropriate for
discretizing the vector Helmholtz operator, while divergence
conforming functions are appropriate for integral operators
such as the electric field integral equation. These bases avoid
the spurious modes usually encountered when scalar repre-
sentations are used with one of the foregoing equations and
simplify the enforcement of boundary conditions on current or
fields in a numerical approach.

Curved pyramids are obtained by parametrically distorting
a parent pyramidal element. This process requires the intro-
duction ofshapefunctions; the shape functions presented here
ensure mesh conformity when element of different shape are
used in the same mesh. Part of the results reported here were
presented in [6].

II. ELEMENT GEOMETRY REPRESENTATION

In this section, we define normalized parametric coordinates
and related geometrical quantities by assuming rectilinear
pyramidal elements; extension to curvilinear elements is easily
obtained by use of the results of [2, Appendix] together with
(1)–(3) reported below. The geometrical parameters for pyra-
midal elements are shown in Fig. 2. The faces are numbered
to correspond to the indexing of the associated parametric
coordinates; that is, theth face of the pyramid is the zero-
coordinate surface for the normalized coordinate, which
varies linearly across the element, attaining a value of unity
at the node or face opposite the zero-coordinate surface. For
the pyramidal element we choose asindependentcoordinates

and so that is strictly positive,
while and are dependentcoordinates. In this case, the
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(a) (b)

Fig. 2. Pyramidal element. (a) Edge vectors. (b) Height and gradient vectors.

dependency relations are

(1)

The coordinates appearing in each dependency relation
form a group of dependent coordinates. Similarly to what
has been done in [2] and [3], we list the coordinates as

to put in evidence that and are the
independent coordinates while and are dependent; the
indexes corresponding to sampled values of the coordinates
are listed as to put in evidence that and

are dependent indices. The element edges are formed by
intersection of pairs of zero-coordinates surfaces, and the
edge vectors are directed along the cross product of the
associated coordinate gradients. The edges are given a two-
index label deriving from the two coordinate indexes appearing
in this cross product [see Fig. 2(a)]. Theunitary basis vectors

are derivatives of the element position vectorwith
respect to the independent coordinates [2] and determine the
following edge-vectors:

(2)

In the special case where and are constant vectors,
the pyramid is a right pyramid.

The independent gradient vectors , , are de-
rived from [2, eq. (41)]; the remaining coordinate gradients
are determined by applying the gradient operator to (1) as

. In turn, the
gradient vectors yield five height vectors

with [2, Appendix].
For curvilinear elements, all these geometrical quantities,

including the Jacobian , vary with position.
A parametrization of order for a curvilinear pyramid can

be expressed as

(3)

TABLE I
PYRAMID SHAPE FUNCTIONS

(a) (b)

Fig. 3. Parent domain parametrization for a curvilinear pyramid. The pyra-
mid shape functions interpolate 5 and 14 nodes for (a) first- and (b)
second-order parametrization, respectively.

where a quintuplet indexing scheme is used to label the
position vector interpolating the point with normalized
coordinates

. Hence, the shape function is defined
to be unity at and with zeros at the other interpolation
points.

In applications, second order parametrizations usually suf-
fice. Table I reports the first- and second-order shape functions,
while the arrangement of the interpolation points in the parent
domain is shown in Fig. 3; from this figure one infers that
the number of shape functions for ath order pyramid is

[see also (3)].
A very important property of the shape functions regards
their completeness, which requires that allinhomogeneous
monomials of the form with can
be expressed as a linear combination of the shape functions of
order ; it is readily proved that the shape functions of Table I
are complete in this sense (for example, the sum of all the first
and second-order shape functions of Table I is equal to unity).

Also, the shape functions of Table I and their first deriva-
tives are always bounded in the element domain, even at the
tip of the pyramid where because there one has

. The point is a point
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of discontinuity for the Jacobian of the parametrized element
although the Jacobian is bounded at that point.

The factors appearing in the expressions of the
shape functions of Table I are necessary in order to guarantee
element conformity when the pyramidal element of order

is connected to a brick, to a tetrahedron or to a prism
element of the same order. In fact, in the limit for
(or , the shape functions of Table I yield the
triangular shape functions, while they yield the quadrilateral
shape functions in the limit for [2].

III. CURL-CONFORMING BASES ON PYRAMIDS

A. Zeroth-Order Bases

Curl-conforming bases of zeroth order on a pyramid are
defined as

(4)

Notice that the expression of the function and
can be obtained from that of by exploiting the symmetry
of the pyramidal element. In fact by substituting
with in the expression of and by
counting the subscripts modulo 4, one immediately obtains
the expression of for . and
can be similarly obtained byrotating the parent variables (or
the subscripts from 1 to 4) in the expression of . The same
symmetry property has also been used to compactly express
the shape functions of Table I.

simplifies to
on face while

on face . On face one gets
, while on face

. Therefore, by keeping in mind the symmetry of the

curl-conforming functions just discussed, it is apparent that the
bases have a constant tangential (CT) component along each
element edge, which matches with that of the curl-conforming
bases of the adjacent element having brick, tetrahedral, or
prismatic shape (see [2], [3]). The curl of (4) are compactly
written as

(5)

for and by counting the subscripts modulo 4.
The above bases are normalized by ensuring a unit com-

ponent of along at the midpoint of edge
(interpolation point). Hence, the normalized form of the zeroth
order bases (4) is , where at the
corresponding interpolation point.

B. Completeness of Zeroth-Order Bases

Although the bases (4) contain rational terms, their com-
pleteness to zeroth order follows from forming linear combi-
nations that yield three independent constant vectors

(6)

The bases are complete only to zeroth order since they
cannot represent vectors of the form .
Notice that

,
.

Completeness of the curl of the bases to zeroth order follows
from

(7)

On curvilinear elements, completeness is with respect to
these vectors as weighting factors. Byrotating the subscripts

in the last of (7), as discussed following (4), one
also gets

(8)
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TABLE II
INTERPOLATORY POLYNOMIALS FOR FIRST-ORDER CURL-CONFORMING BASES

C. Order Bases

Curl-conforming bases complete to orderare obtained by
forming the product of the zeroth-order curl-conforming bases
with polynomial factors complete toth order. The multiplying
polynomials we use are of interpolatory form. To ensure the
continuity of the tangent component across adjacent elements
of equal order but different shape, the interpolation points on
each face and edge of the pyramid match with those already
reported in [2], [3] for tetrahedrons, bricks, and triangular
prisms. Hence, the polynomial factors associated with the
zeroth order curl-conforming functions become equal
for (or ) to the polynomial factors of the
triangular element when or or or equal
to the polynomial factors of the quadrilateral element for

[2]. As far as interpolation points internal to the
element are concerned, we notice that for the pyramid, these
cannot be obtained by following aLagrangian schemeas done
for tetrahedrons, bricks, and triangular prisms [2], [3]. At any
rate, higher order curl-conforming bases on a pyramid can be
succinctly written as

(9)

where is an interpolatory polynomial, while

is a normalization constant chosen to ensure that

the component of along at the interpolation
point is unity.

Because of the symmetry of the pyramidal element, it is
sufficient to report the expression of the interpolatory poly-
nomials and normalization constants only for and

. The other polynomials and normalization con-
stants are easily obtained byrotating the subscripts
as discussed following (4). Tables II and III report the inter-
polatory multiplying polynomials for first- and second-order
bases, respectively; where is the value of
at the indicated interpolation point ; in the tables we
have omitted the superscript to the normalization
quantities in order to ease the notation.

To clarify the property of our interpolation polynomials
notice, for example, how the factors of Table II
yield for , the first-order multiplying polynomials

, , of the triangular element attached to
face 1 (see [2]).

TABLE III
INTERPOLATORY POLYNOMIALS FOR SECOND-ORDER CURL-CONFORMING BASES

(a) (b)

Fig. 4. Interpolation points for curl-conforming bases of orderp = 1
on pyramidal elements. (a) Nodes in basis subset


34

ik;j`;m(rrr). (b)
Nodes in basis subset


35

ik;j`;m(rrr). The interior interpolation point at
���ik;j`;m = ( 1

3
; 1
3
; 1
3
; 1
3
; 1
3
) is omitted for clarity.

Interpolation points for the bases of the form
and are shown in Fig. 4.

Note that no vertices of the pyramid are interpolated and
only a single basis function interpolates components along a



GRAGLIA AND GHEORMA: HIGHER ORDER INTERPOLATORY VECTOR BASES ON PYRAMIDAL ELEMENTS 779

given edge. For example, with reference to Fig. 4(a), by con-
sidering the node of edge 34 at
one immediately recognizes that there is only one vector
function having a nonvanishing (unit) tangent component
along edge 34 at this node; this function is one of the functions
of the basis subset .

Tangential components at a given interpolation point on
a triangular face are interpolated by three bases containing
zeroth-order basis factors that interpolate the edges of the tri-
angular face; whereas four basis functions produce tangential
components at each interpolation node on the quadrilateral
face. But on a face, only two of these tangential components
can be independent. Hence, only two basis functions at each
interpolation point can be retained; if these contain zeroth-
order basis factors associated with edges of the face that
share a common vertex, they will be independent. Similarly,
on the interior, only three of the eight bases which produce
components at each interior node should be retained to provide
interpolation of the three independent components. These three
should contain zeroth-order basis factors associated with edges
having independent edge vectors.

The dependencies for faces and interior nodes arise from
linear combinations of the bases which contain one of the
following identities as a factor:

(10)

where .

D. Completeness to Order in the Curl

Completeness in the curl to orderis readily proved by
following the same procedure reported in [3, Appendix], which
requires the use of inhomogeneous multiplying polynomi-
als. Curl-completeness is a consequence of the fact that the
zeroth-order curl-conforming functions are able to model the
following linear vectors:

(11)

E. Number of Degrees of Freedom

The number of edge and face degrees-of-freedom (DOF)
for curl-conforming bases of order on a pyramid may be
determined as follows:

• one component DOF’s eight edges
edge DOF;

• two components DOF’s four triangular
faces triangular face DOF;

• two components DOF’s one quadrilateral
face quadrilateral face DOF

for a total of DOF on the pyramid boundary.
Interior DOF’s are necessary for . Unlike other 3-D

elements [2], [3] we have not found a unique way to locate
the interior nodes via a Lagrangian scheme so that the position

of the interior nodes could be changed by changing the
form of the non-Lagrangian interpolating polynomials. The
number of interior DOF could also depend on the order of
the interpolating polynomials one chooses for interior nodes
although, in general, there is no advantage in increasing only
the number of interior DOF because the complexity of the
code, its memory requirements and computation times increase
for increasing number of interior DOF. The interpolating
polynomials reported in Tables II and III yield the minimum
number of DOF while allowing satisfaction of the continuity
condition with adjacent elements of different shape and equal
order; that is, the number of DOF’s related to the polynomials
of Tables II and III cannot be reduced without loosingth-
order completeness. In the case of Tables II and III, the total
number of DOF’s for the curl-conforming bases on a pyramid
is 30 for and 63 for .

IV. DIVERGENCE-CONFORMING BASES ON PYRAMIDS

A. Zeroth-Order Bases

Divergence-conforming bases of zeroth order on a pyramid
are defined as

(12)

Notice how the expressions of the first four
2, 3, 4) agree with therotation of subscriptsrule discussed
following (4). By rewriting the bases as

for (13)

(14)

it is trivial to prove that the bases have a constant normal
(CN) component on each element face which matches with
that of the divergence-conforming bases of adjacent elements
having brick, tetrahedral, or prismatic shape. In (13) index
arithmetic is computed modulo 4 and . The basis
function interpolates the vector component normal to
the centroid of face and is readily normalized by ensuring
a unit component along at the corresponding interpolation
point. The normalized form of the zeroth order bases (12) is

, where is the magnitude of the height
vector at the centroid of face.

Furthermore, it is interesting to observe that the zeroth order
curl-conforming function cannot be obtained from the
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vector product as occurs for brick, tetrahedral,
and prismatic elements whose corners are the intersections
of only three element faces. Thegeometricalreason for the
exception to the rule “ ” is due to
the presence of the tip of the pyramidal element, which is the
point in common to four element faces.

B. Completeness of Zeroth-Order Bases

The bases (12) are complete only to zeroth order. Their
completeness follows from the identities

(15)

On curvilinear pyramids, completeness is with respect to
these vectors as weighting factors. Completeness of the di-
vergence to zeroth order with respect to as a weighting
factor (curvilinear elements) follows from

(16)

C. Order Bases

Divergence-conforming bases complete toth order and
which interpolate a vector on a pyramid can be succinctly
written as

(17)

where is an interpolatory polynomial, while
is a normalization constant chosen to ensure that

the component of along at the interpolation
point is unity.

To ensure the continuity of the normal component across
adjacent elements of equal order but different shape, the
interpolation points on each face of the pyramid match with
those of tetrahedrons, bricks, and triangular prisms. That is
to say that the polynomial factors associated with the zeroth-
order divergence-conforming functions become equal
for to the polynomial factors of the triangular face
of the prism element when or or equal to
the polynomial factors of the quadrilateral face of the prism
element for (see [3, Fig. 3]). As far as interpolation
points internal to the element are concerned, once again we
notice that for the pyramid, these cannot be obtained by
following a Lagrangian schemeas possible for tetrahedrons,
bricks, and triangular prisms.

Because of the symmetry of the pyramidal element, it
is sufficient to report the expression of the interpolatory
polynomials and normalization constants only for
and . The other polynomials and normalization con-
stants are easily obtained byrotating the subscripts

TABLE IV
INTERPOLATORY POLYNOMIALS FOR

FIRST-ORDER DIVERGENCE-CONFORMING BASES

TABLE V
INTERPOLATORY POLYNOMIALS FOR

SECOND-ORDER DIVERGENCE-CONFORMING BASES

as discussed following (4). Tables IV and V report the inter-
polatory multiplying polynomials for first- and second-order
bases, respectively. In these tables is the value of

at the indicated interpolation point ; again,
the notation has been simplified by omitting the superscript

to the normalization quantities .



GRAGLIA AND GHEORMA: HIGHER ORDER INTERPOLATORY VECTOR BASES ON PYRAMIDAL ELEMENTS 781

Notice that no interpolation points lie at vertices or along
edges of the pyramid and that a single basis function interpo-
lates the normal at a point on a given face. At interior points,
however, five bases contribute component at each interpolation
point. Clearly, only three can be independent; these three
should contain zeroth-order basis factors associated with faces
having independent gradient vectors. The dependencies for
interior nodes arise from linear combinations of the bases,
which contain the identities

(18)

as a factor.

D. Completeness to Order in the Divergence

Completeness to order in the divergence is shown using
an inhomogeneous multiplying polynomial of order[2]. In
this case, completeness follows from the fact that terms of
like order are generated. The divergence of the product of the
polynomial and a simple linear combination of the zeroth-order
bases is found to be

(19)

with and and where
and

. For curvilinear pyramids for which is not a
constant, polynomial completeness is with respect to as a
weighting factor. Notice that the first of (19) already suffices
to prove completeness in the divergence.

E. Number of Degrees of Freedom (DOF)

The number ofsurface DOF for divergence-conforming
bases of order on a pyramid may be determined as follows.

• One component DOF’s four
triangular faces plus one component DOF’s

one quadrilateral face face DOF.

Interior DOF’s are necessary for and, once again, their
number depends on the choice of the interpolating polynomials
for interior nodes. By using the interpolating polynomials
reported in Tables IV and V, the total number of DOF for the
divergence-conforming bases on a pyramid is 19 for
and 46 for .

(a) (b)

Fig. 5. (a) Rectangular cavity discretized with 162 pyramidal elements. (b)
Pie-shell cavity discretized with 216 pyramidal elements. The surface of these
two cavities is discretized by quadrilaterals, each quadrilateral is the base of
one pyramid.

V. NUMERICAL RESULTS

Although 3-D structures should not be discretized by us-
ing only pyramidal elements, to illustrate their modeling
capabilities we present some results relative to two resonant
cavities studied by using only pyramidal elements of zeroth

and first order. By showing the modeling
capabilities ofstructured meshesof pyramidal elements we
implicitly prove the usefulness of pyramids as effectivefillers,
although we do not intend to recommend structured meshes
to study general problems; but here we use structured meshes
to perform critical test studies.

The results consider the resonant frequencies of the cavities
obtained by finding the eigenvalues of the discretized vector
Helmholtz equation involving the cavity electric field. As in
[2] and [3], a Galerkin form of the finite-element method was
used to discretize the Helmholtz equation and curl-conforming
bases on pyramids were used to model each cavity; curvilinear
pyramids with quadratic distortion were used when necessary.
The geometry of the two test cases are discretized by first
defining a brick mesh; each brick is then subdivided into six
pyramids by joining the eight corners of the brick to its center.

Fig. 5 represents the two geometries at issue. Fig. 5(a)
shows a discretization of a rectangular cavity of height
and base with sides of lengthand . The mesh of Fig. 5(a)
consists of 162 pyramids and the total number of DOF is
360 and 2124 for and 1, respectively. Since the cavity
walls are of perfect electric conducting material, the number of
unknowns corresponds to the number of interior DOF, which
yield systems of 252 and 1692 unknowns for and 1,
respectively. Fig. 5(b) shows a discretization of the pie-shell
cavity already studied in [3, figs. 9, 10], obtained by using
216 curved pyramids, which yield systems of 340 and 2276
unknowns for and 1, respectively (number of interior
DOF).

The error in the computed resonant frequencies versus the
number of unknowns is reported in Figs. 6 and 7 for the
rectangular and the pie-shell cavity, respectively. The error
is averaged over the first eight eigenfrequencies. For sake of
comparison, Fig. 7 reports also the results obtained by using
zeroth- and first-order prism elements [3, fig. 10]; it can be
observed that pyramidal and prism elements of zeroth and
first order yield results with similar accuracy for the pie-shell



782 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 5, MAY 1999

Fig. 6. Average error in computation of first eight resonant frequencies
versus number of unknowns for a conducting rectangular cavity.

Fig. 7. Average error in computation of first eight resonant frequencies
versus number of unknowns for a conducting pie-shell cavity discretized by
using pyramids and by using prisms.

cavity of Fig. 5(b). Furthermore, these plots already show the
faster convergence of the results for increasing order of the
vector bases. Although no spurious nonzero eigenvalues were
observed, in the cases of Fig. 5 it is rather difficult to get
results with good accuracy using only pyramidal elements for

a limited number of unknowns and increasing order of the
bases. This is due to the fact that we used structured meshes
where the boundary conditions were already constraining the
20% or more of the total number of DOF. As a matter of
fact, pyramidal elements should mainly be used asfillers for
meshes involving elements of different shapes since, usually,
it is not convenient to work only with pyramidal elements to
discretize a given geometry.

VI. CONCLUSIONS

This paper presents a general procedure to obtain higher or-
der interpolatory curl-conforming and divergence-conforming
vector basis functions for pyramidal elements. The functions
can be consistently used to deal with curvilinear elements and
ensure the continuity of the proper vector components across
adjacent elements of equal order but different shape. Properties
of the vector basis functions are discussed in detail. The
reported numerical examples show that higher order functions
provide more accurate results than those obtainable with low-
order elements.
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