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Higher Order Interpolatory Vector
Bases on Pyramidal Elements

Roberto D. GragliaFellow, IEEE and loan-L. Gheorma

Abstract—n the numerical solution of three-dimensional (3-D) Triangular Prisms
electromagnetic field problems, the regions of interest can be ST T 7
discretized by elements having tetrahedral, brick or prismatic Pyramid 7 7
shape. However, such different shape elements cannot be linked
to form a conformal mesh; to this purpose pyramidal elements are
required. In this paper, we define interpolatory higher order curl-
and divergence-conforming vector basis functions on pyramidal
elements, with extension to curved pyramids, and discuss their
completeness properties. A general procedure to obtain vector
bases of arbitrary polynomial order is given and bases up to
second order are explicitly reported. These new elements ensure
the continuity of the proper vector components across adjacent
elements of equal order but different shape. Results to confirm (@) (b)
the faster convergence of higher order functions on pyramids are
presented.

/|- Brick

Fig. 1. (a) Onebufferlayer of mixed-shape elements (bricks, tetrahedrons,

prisms, and pyramids) is used to link two brick meshes (b) having different
Index Terms—Electromagnetic fields, finite-element methods, mesh-size. In the buffer region, pyramidal elements are required to obtain a

higher order vector elements, method of moments, numerical conformal mesh.

analysis, pyramidal elements.

prisms). Curl-conforming basis functions are appropriate for
I. INTRODUCTION discretizing the vector Helmholtz operator, while divergence

NTERPOLATORY higher order vector basis functions OFonforming functions are appropriate for integral operators
I the Nedelec variety [1] have been recently defined in %Jch as the electric field integral equation. These bases avoid
unified and consistent manner for the most common elemélﬁ‘t:’ Spurious modes u§ually encountered vyhen scal_ar repre-
shapes [2], [3]. Three-dimensional (3-D) structures can t§gntat|ons are used with one of the foregoing equations and

discretized by elements having tetrahedral, brick, or prismanPIify the enforcement of boundary conditions on current or

shape. However, in general, elements of different shape can %IPS in a nume_rical approaf:h. . . .
be used together to form a 3-D conformal mesh without Curved pyramids are obtained by parametrically distorting

introducing pyramidal elements. Hence, the new element pa_rent pyramidal el_ement. This Process requires the intro-
issue, which has the shape of a pyramid with quadrilate jiction ofshapefunctions; the shape functions presented here
base, most times is useful as filer; for example, it is ensure mesh conformity when element of different shape are

required when one has to link a coarse to a dense m d in the same mesh. Part of the results reported here were

of bricks, as schematically depicted in Fig. 1. Few previoldesented in [6].
works considered pyramidal elements [4], [5] and did not

addressed the issue of general construction of higher order
forms on pyramids or the issue of the existence of spurious
modes when using pyramidal elements. In this work, for In this section, we define normalized parametric coordinates
pyramidal elements, we consider both curl- and divergenc@d related geometrical quantities by assuming rectilinear
conforming bases, which have continuous tangential or nornfgiramidal elements; extension to curvilinear elements is easily
components, respectively, across adjacent elements. The b@tgined by use of the results of [2, Appendix] together with

functions we present here are of interpolatory kind and ens#é—(3) reported below. The geometrical parameters for pyra-
the continuity of the proper components across adjacent efeidal elements are shown in Fig. 2. The faces are numbered
ments of equal order but different shape (tetrahedrons, brick®,correspond to the indexing of the associated parametric

coordinates; that is, théh face of the pyramid is the zero-
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TABLE |
PYRAMID SHAPE FUNCTIONS

Interpolation Point First Order Shape Functions

base corner (4) 1 i3

tip (1 ]

Second Order Shape Functions

(@ (b) base corner (4) | &bin [(12_5"55 - l) (12 ?*‘5‘5 - 1) -7 5555]
Fig. 2. Pyramidal element. (a) Edge vectors. (b) Height and gradient vectors.base edge midpoint  (4) . %ﬂ_‘@ﬁ & (1_2;%; B 1)
dependency relations are base middle node (1) 16 ffﬁf%‘%
H4+E&+E&=1 lateral edge midpoint  (4) 4 ili_izlgi
L+&+& =1 1) tip (1 €5 (265 — 1)

The coordinates appearing in each dependency relation
form a group of dependent coordinates. Similarly to what
has been done in [2] and [3], we list the coordinates as
{&1,&3;5 &, 845 &} to put in evidence thad;, &; and&; are the
independent coordinates whifg and £, are dependent; the 1 1
indexes corresponding to sampled values of the coordinates
are listed as{i, k;j,#;m} to put in evidence that: and
¢ are dependent indices. The element edges are formed by &, £,
intersection of pairs of zero-coordinates surfaces, and the
edge vectors are directed along the cross product of the
associated coordinate gradients. The edges are given a two-
index label deriving from the two coordinate indexes appearinge 14
in this cross product [see Fig. 2(a)]. Thaitary basis vectors
£+, 2. ¢ are derivatives of the element position vecitowith @ ®

; ; ; i, 3. Parent domain parametrization for a curvilinear pyramid. The pyra-
respect to the Independent coordinates [2] and determine mid shape functions interpolate 5 and 14 nodes for (a) first- and (b)

Subscripts are counted modulo 4, for i = 1,4

s/

following edge-vectors: second-order parametrization, respectively.
by =—Ly; = ¢
R — where a quintuplet indexing scheme is used to label the
b, = positic_m vector ;. j¢.m iNterpolating the point with normalized
5 1 Coordlnatesgik;jé;rn = (517 637 627 647 55) = (Z/Q7 k/Q77/Q7
by =07 — ¢ £/q;m/q). Hence, the shape functidhy. ¢;m (g, &) is defined
by =0 0" ¢ to be unity at;;.;..,, and with zeros at the other interpolation

£, =0 ¢, ) points.
3 In applications, second order parametrizations usually suf-
In the special case whete, £, and#’ are constant vectors, fice. Table | reports the first- and second-order shape functions,
the pyramid is a right pyramid. while the arrangement of the interpolation points in the parent
The independent gradient vectov&, V¢, V&5 are de- domain is shown in Fig. 3; from this figure one infers that
rived from [2, eq. (41)]; the remaining coordinate gradieni§e number of shape functions for @h order pyramid is
are determined by applying the gradient operator to (1) &1 72 = ((¢ + 1)(¢ + 2)(2¢ + 3)/6) [see also (3)].

Vé = -6 - V§, V6 = —VE — V. In tumn, the A very important property of the shape functions regards
gradient vectors yield five height vectors = —hiV&  their completeness, which requires that mhomogeneous
(¢ = 1,2,3,4,5), with h; = 1/|V¢;| [2, Appendix]. monomials of the formeT¢set with 0 < 7 + s +¢ < ¢ can

~ For curvilinear elgments,l aII2the§e geometrical quantitie§e expressed as a linear combination of the shape functions of
including the Jacobiaw/ = £° - £7 x £°, vary with position.  ordery; it is readily proved that the shape functions of Table |
A parametrization of ordeg for a curvilinear pyramid can are complete in this sense (for example, the sum of all the first

be expressed as and second-order shape functions of Table | is equal to unity).
q Also, the shape functions of Table | and their first deriva-

= Z Tikyjtsm Sitsjtsm(q, &) tives are always bounded in the element domain, even at the
i,5,k,€,m=0 tip of the pyramid wheref; = 1, because there one has

i+k+m=3+0+m=q (B) & =& =& = & = 0. The pointé; = 1 is a point
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of discontinuity for the Jacobian of the parametrized elemeatirl-conforming functions just discussed, it is apparent that the

although the Jacobian is bounded at that point. bases have a constant tangential (CT) component along each
The factors(1 — &5)~! appearing in the expressions of theslement edge, which matches with that of the curl-conforming

shape functions of Table | are necessary in order to guaranteses of the adjacent element having brick, tetrahedral, or

element conformity when the pyramidal element of ordgrismatic shape (see [2], [3]). The curl of (4) are compactly

q is connected to a brick, to a tetrahedron or to a prismritten as

element of the same order. In fact, in the limit f6r = 0

(or &3,&3, &4 = 0) the shape functions of Table | yield the V X Qisa1(r) = 2 Gipobii s+ &ioibivos
triangular shape functions, while they yield the quadrilateral ST = T & J
shape functions in the limit fo¢; = 0 [2]. Q.. o

p of, [2] ngis(T):Vx 2,,,4—1(7‘) +€,+27,, 1 (5)

Ill. CURL-CONFORMING BASES ON PYRAMIDS
for i = 1,2, 3,4 and by counting the subscripts modulo 4.

A. Zeroth-Order Bases The above bases are normalized by ensuring a unit com-
Curl-conforming bases of zeroth order on a pyramid aRonent of £2,5(r) along £, at the midpoint of edgeyj
defined as (interpolation point). Hence, the normalized form of the zeroth
Vs — £46:VEs — &85V order bases (4) id.382,5(r), where £,5 = |€,5| at the
215(r) = HOAAYS %5_—53 ST corresponding interpolation point.
£3¢4&s
- (1— 55)2255 B. Completeness of Zeroth-Order Bases
Do (r) = §461VEs — 616588, — §465V Although the bases (4) contain rational terms, their com-
R 1-¢&; pleteness to zeroth order follows from forming linear combi-
46165 ve nations that yield three independent constant vectors
Qau(r) = £16VE — L6V — L16V 6 £255(1) — 245(1) — 2o3(r) — 234(r) =VE
1- 55 ..(135(’!‘) — .915(’!‘) — .934(7‘) — .941(7‘) :VSQ
_ %255 ng(T) + .QQg(T) + ..(234('r) + .Q41(T) IV£5 (6)
V&5 — §38:VE6 — 6V, ,
£24:(r) :SQ&"’—S S?f_ 52 $265¥6s The bases are complete only to zeroth order since they
) ° cannot represent vectors of the fogyV¢, (i = 1,2,3,4).
— &502255 Notice thafV£3 = -V -V = -045("')_..()25(’!')—..()12(’!')—
(1-¢&) Q41 (), Vés = =V — V& = Q15(r) — Q35(r) — Qo3(r) —
Qu5(r) = £263VEL — €364V 6 Q2:5(r).
1-¢ Completeness of the curl of the bases to zeroth order follows
2o (r) = £36uVE — LG VE from
R 1-&
L&iVE — 66 VL 265 [ 28 20,5
Pos(r) = =22 Vo [Qua(r) + oar)] = =2 <= 7) =-=
616V — 66V 2. o2 2, .
55(r) = 1-¢& ' @ VX [£215(r) + 24(r)] = j?w <: 7) - jlo
Notice that the expression of the functié?ys, £234, and £24; 2015 205
can be obtained from that ¢2,, by exploiting the symmetry VX [$235(r) + L245(7)] = 7 <: 7 ) (7)

of the pyramidal element. In fact by substitutifq, &2, &3, &)

With (&, §i+1,6i42, &i43) in the expression of2y, and by On curvilinear elements, completeness is with respect to

counting the subscripts modulo 4, one immediately obtalrﬁ L i )

the exDression of2: .. for i = 2.3.4. e e and £2.- these vectors as weighting factors. Byating the subscripts
Press iitl v TA25, T35 O TS (1,2,3,4) in the last of (7), as discussed following (4), one

can be similarly obtained byotating the parent variables (or also qets

the subscripts from 1 to 4) in the expressionf2f;. The same 9

symmetry property has also been used to compactly express

the shape functions of Table I. V X [R45(7) + 205(r)] = 2623
{215(r) simplifies t0£,V¢; — &V, + €a65(1 — &) 7' VE i

on face¢; = 0, while £2:5(r) = &V — & Vs + E3é5(1 — V X [Q5(r) + 2o (r)] = 2224

&)1 V&, on faceé, = 0. On face¢; = 0 one getsf2,5(r) = J

§2V&y — £4V &y, while £245(r) = £V + £3€4VE;5 on face V X [205(1) + 255(r)] = 2 8)
&5 = 0. Therefore, by keeping in mind the symmetry of the
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TABLE I TABLE Il
INTERPOLATORY POLYNOMIALS FOR FIRST-ORDER CURL-CONFORMING BASES INTERPOLATORY POLYNOMIALS FOR SECOND-ORDER CURL-CONFORMING BASES
interp. point 5 interp. point ; interp. poi
Viam  olhienl®) PP g aln© At b N2 o jeml€) e ot
te -1 (050,53 | 65 Ga-DEG+26-1  (0.151%0) 01 (265 — 1)(4€5 — 1) + €162 (0,1;0.1:3)

Le 36-36-1 0F0FD | G B6-DR&+%-1) 01150 [ (463 ~ 46 — )46 — 1) + 366 (0.4:0.5.3)

3o ¥ GRekh | s w@e6-0 GBERE0 e (2626 -G -16-1)-9%& (0,303

3 2.1 1.1 . _ 11.21.

Fhr 36 0.53.37) | 2bs 26,036 -1) (2.3:5:3:0) 0 461(465 — & - 1) (31045

3¢ 365(1 - 3 03111 :
ghs G- (1 Lk f) ey, 4646 — & — 1) 44034
3¢ 96:£ (3:33.3:3)
° - PIIII 2 2016 - & - 1) (3. 103
e, 46465 — & — 1) 05544
C. Order p Bases e 4E5(4E4 = & = 1) 03140

Curl-conforming bases complete to orgeare obtained by 244 2546 — & — 1) 0.%55h
forming the product of the zeroth-order curl-conforming bases —

: : e Rey, 96,6, G555
with polynomial factors complete tath order. The multiplying ° 31373737,
polypor_nials we use are of interpolatory form. _To ensure the Vi o i mlE) interp. point
continuity of the tangent component across adjacent elements ™ with x2 =& +6&, xa=&+& Sikitm
of equal order but different shape, the interpolation points on B6-1DB6-UEG-VEa=1 (.13,

15 - P] [ eyl

each face and edge of the pyramid match with those already

reported in [2], [3] for tetrahedrons, bricks, and triangular , ~ -G3&=U0Bw-Dite 16 =) 0.1:3.%:0)
prisms. Hence, the polynomial factors associated with the —4( -6 - 1)&
zeroth order curl-conforming functiorf@.s(r) become equal (36 = DBxs ~ D{4xa = 1) (264 = 1) 31
for &, = 0 (or £ = 0) to the polynomial factors of the bis -2 1ot 2 (- £ (035 3:0)
Sy / Es[(4€s — 61— 1) + 2 (46 — & ~ 1))
triangular element when (or 3) = 1,2,3, or 4 or equal 31, 36 (3% - D26 - D& - D466 (53130
to the polynomial factors of the quadrilateral element 4or ; RS
(8) = 5 [2]. As far as interpolation points internal to the 265 3 Gxs - Dite -1 -1)~5086  (3,552,3:0)
element are concerned, we notice that for the pyramid, these 3, _s¢ (3xs - 1)(4vo - D026 - ) =566 (3,33, L0
cannot be obtained by followinglaagrangian schemas done 3, (36 — D26 — D= 1) > 11 3
for tetrahedrons, bricks, and triangular prisms [2], [3]. At any 3% == 3 : (33110
rate, higher order curl-conforming bases on a pyramid can be 30, 36036 - H(4yp - 1)(4& - 1) 3.4:4.50
succinctly written as 2 .
30, _351(361—1)(4§z—1)(2£4«1) 4350
2 i) = N0 s ©Ra () (9) =
S4k,ilm ik, jl,m Wik, j6,m\S /4B %315 16 (-6 - 1) (0,%;%1%;%)
. . . . 4 il (2 3.11.1
where a;’,’fﬂ (&) is an interpolatory polynomial, while 3t s (12 -6 - 1) (035, i)
N],fjé = 1S a normalization constant chosen to ensure that 24s 25 (45 -6 - 1) 05455
the component of)},fjml(r) along ¢, at the interpolation 3005 96,5 dahih

point is unity.

Because of the symmetry of the pyramidal element, it is
sufficient to report the expression of the interpolatory poly-
nomials and normalization constants only Ia},f%m(r) and
123 i, (7). The other polynomials and normalization con-
stants are easily obtained bytating the subscript$l, 2, 3,4)
as discussed following (4). Tables Il and Il report the inter-
polatory multiplying polynomials for first- and second-order @) (b)
bases,.res_pecuvgly; whefgz (£15),|S the valge 0ff.2] (|€1s]) Fig. 4. Interpolation points for curl-conforming bases of orger= 1
at the indicated interpolation poidt, ;, ,,,; in the tables we on pyramidal elements. (a) Nodes in basis subsEY ., (r). (b)
have omitted the superscriptk; 7¢;m) to the normalization Nodes in basis subsef3} ., (r). The interior interpolation point at

20

ik,70,m
guantitiesf;s, £15 in order to ease the notation. Eikjoom = (3,315, 5:1) is omitted for clarity.
To clarify the property of our interpolation polynomials
notice, for example, how the factorsi? , .(¢) of Table Il Interpolation points for the bases of the foy; ;. (r)

yield for & = 0, the first-order multiplying polynomials and ﬂf’,{?’jé’m(r) are shown in Fig. 4.
3¢ — 1, 3¢, — 1, 3& of the triangular element attached to Note that no vertices of the pyramid are interpolated and
face 1 (see [2]). only a single basis function interpolates components along a
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given edge. For example, with reference to Fig. 4(a), by coaf the interior nodes could be changed by changing the
sidering the node of edge 34§, ;, ,,, = (1/3,0;1/3,0;2/3) form of the non-Lagrangian interpolating polynomials. The
one immediately recognizes that there is only one vectoumber of interior DOF could also depend on the order of
function having a nonvanishing (unit) tangent componettte interpolating polynomials one chooses for interior nodes
along edge 34 at this node; this function is one of the functioatthough, in general, there is no advantage in increasing only
of the basis subsaf)f’,fjj&m(r). the number of interior DOF because the complexity of the
Tangential components at a given interpolation point aode, its memory requirements and computation times increase
a triangular face are interpolated by three bases containfiog increasing number of interior DOF. The interpolating
zeroth-order basis factors that interpolate the edges of the gélynomials reported in Tables Il and Il yield the minimum
angular face; whereas four basis functions produce tangentismber of DOF while allowing satisfaction of the continuity
components at each interpolation node on the quadrilatecahdition with adjacent elements of different shape and equal
face. But on a face, only two of these tangential componerntgder; that is, the number of DOF's related to the polynomials
can be independent. Hence, only two basis functions at eadhTables Il and Il cannot be reduced without loosipti-
interpolation point can be retained; if these contain zerotbrder completeness. In the case of Tables Il and llI, the total
order basis factors associated with edges of the face thamber of DOF's for the curl-conforming bases on a pyramid
share a common vertex, they will be independent. Similarlig 30 forp = 1 and 63 forp = 2.
on the interior, only three of the eight bases which produce
components at each interior node should be retained to provide IV. DIVERGENCECONFORMING BASES ON PYRAMIDS
interpolation of the three independent components. These three
should contain zeroth-order basis factors associated with edges Zeroth-Order Bases
having mdependent edge vectors. L . Divergence-conforming bases of zeroth order on a pyramid
. The depe.nde.nmes for faces and mtenor nOQes arise fr%% defined as
linear combinations of the bases which contain one of the

following identities as a factor: Au(r) :%Gg&m b el + & P a&s £1;,>

1-& 1-¢
§id2;5(r) + §ip2f2iq05(r) =0,  i=1.2 1 €4 €385
§92;1(7) + €382 3(r) + &02:5(r) =0, i=24 A(r) =57 <§4£15 Tt T b T §5e25>
..Qi '-Qz 5..QZ 5 = 07 1= 1, 3 10 1 5
E282; 2(1) + £a82; 4 (1) + E502; 5(7) ¢ (10) As(r) = o <§1£25 ety + &1 s+ 13 £35>
J 1-& 1-&
where ..QZ‘J'(T) = —..iji('r). 1 5 5 57
Ay(r) = 27 <52£35 + &8 + 7 2l + 7 Ll f45>
D. Completeness to Orderin the Curl ) & &
Completeness in the curl to orderis readily proved by  As(r) 27(—51323 + &alss — &3t1a). 12)

following the same procedure reported in [3, Appendix], which ) ) _

requires the use of inhomogeneous multiplying polynomi- Notice how the expressions of the first fadf(r) (¢ = 1,
als. Curl-completeness is a consequence of the fact that the3. 4) agree with theotation of subscriptsule discussed
zeroth-order curl-conforming functions are able to model tHgllowing (4). By rewriting the bases as

following linear vectors: Ai(r) = % {55&,#1 N ?J:IEO&O

Ti(r) =6 VE — §VE = (293(r) + 234(7) o

To(r) =6LVE — GV = —0235(r) — £245(r) - <2 —-& - 1f—18>£i+1,5:|7

Ts(r) =& VE — &VE = =241 (r) — 234(r).  (11) fori =1,2,3,4 0 (13)
E. Number of Degrees of Freedom As(r) = %[51525 + Ealss — (1 — &5)L10] (14)

The number of edge and face degrees-of-freedom (DOF)s trivial to prove that the bases have a constant normal
for curl-conforming bases of ordgr on a pyramid may be (cN) component on each element face which matches with
determined as follows: that of the divergence-conforming bases of adjacent elements

+ one componenk (p+1) DOF’s x eight edges= 8(p+1) having brick, tetrahedral, or prismatic shape. In (13) index

edge DOF; arithmetic is computed modulo 4 afds = —£4,. The basis

* two components<(p(p+1))/2 DOF’s x four triangular  function A;(r) interpolates the vector component normal to

faces= 4p(p + 1) triangular face DOF; the centroid of face and is readily normalized by ensuring

* two components<p(p + 1) DOF's x one quadrilateral a unit component along; at the corresponding interpolation

face = 2p(p + 1) quadrilateral face DOF point. The normalized form of the zeroth order bases (12) is
for a total of2(p+ 1)(3p+4) DOF on the pyramid boundary. 7 A;(r)/h;, whereh; = 1/|V¢;| is the magnitude of the height

Interior DOF’s are necessary fgr> 0. Unlike other 3-D vector h; at the centroid of face.
elements [2], [3] we have not found a unique way to locate Furthermore, it is interesting to observe that the zeroth order
the interior nodes via a Lagrangian scheme so that the positmirl-conforming functionf2,3() cannot be obtained from the
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vector productd, (r) x As(r) as occurs for brick, tetrahedral, TABLE IV
and prismatic elements whose corners are the intersections INTERPOLATORY POLYNOMIALS FOR

. FIRST-ORDER DIVERGENCE-CONFORMING BASES
of only three element faces. Thgeometricalreason for the

those of tetrahedrons, bricks, and triangular prisms. That is

exception to the rule £2.5(r) o< A,(r) x Ag(r)” is due to o (6)
the presence of the tip of the pyramidal element, which is the: .. o4 ,..© ‘“t?i"f"‘"‘ Nijem  with xs3=6&+65 ”‘“Z’f'i"‘”“t
e kitm = gt
point in common to four element faces. Xi=bitls
£ oae-a-1 ohbbb | £ Ge-10u-1-36 33150
B. Completeness of Zeroth-Order Bases , R e
) 7111 -6 -1 03557 7115 (36 -1DBxs-1) (3:%:5.3:0)
The bases (12) are complete only to zeroth order. Their; . .
. o L as-a-1 0hLhd | £ Ba-yBu-1 (L
completeness follows from the identities : s 2
0 P »r 36, GELEh | £ Ba-HBe-1 G450
o] P
Ag(‘r) —Al('r) :7<: 7) % 3¢5 (%%,%%%)
2
Ay(r) — Ay(r) = % <: %)
< < TABLE V
> INTERPOLATORY POLYNOMIALS FOR
120 I4
As(r) + Au(r) — As(r) = 7 <: 7) (15) SECOND-ORDER DIVERGENCE-CONFORMING BASES
opr . . . - int . int
On curvilinear pyramids, completeness is with respect to Vi,im i ji.m(€) st
these vectors as weighting factors. Completeness of the dl-% (56 — 1056 — 2)/2 ©0.3:1 L3,
vergence to zeroth order with respectitQ7 as a weighting s 6 e 22 0i3hn
HH 22 = (562 — 1515 5'%
factor (curvilinear elements) follows from 190,‘7 R
3 oy (34 — 156 — 2)/2 (0,3:3.2:3)
V-A(r) = 27 1=1,2,3,4 i (562 ~ 156, — 1) + 256165 — £3)/2 0.5:3,5h
3 i (562~ L)(565 — L] + 561(56; - 2) 0.3:2.4:3)
V- A5(r) = Va (16) e (564 — L)(56 — 1) + 561(56 — 2) 0,314,234
c ord B W 561(56, ~ 1)/2 ¢22.4h
- Lrderp bases iy 56,56 - 2) )
Divergence-conforming bases complete #iln order and 57 56 (56 - 2) G53LY
. . . . 3 '
which interpolate a vector on a pyramid can be succinctly— — P
written as %’glz —561(562 - 2) GEEED
A it (™) =N @ 0 (E) A (1) NSt i e Zeve M
ik,j0m = IVik,j0,m Yk, j0,m v X3TRITEs T TES "
v=1,2,3,4,5 a7 £ 2o-Dex-Dide - D -1)-166) + 26046 - 1) (1.51.50)
. . . . 2xs — 1)(46 — 1) [(4xs — 1)(dxs — 1) — 86 G
where o, ..(€) is an interpolatory polynomial, while hj o 76 Dl ~ it - L
N}, .. IS @ normalization constant chosen to ensure that ki (s 7 Dlitxs ~ D26 — DG — 1) @310
AN . . . 1 1.1 3.
the component ofd}, ;. ..(r) along k, at the interpolation % (861~ D@x — D4 - Db — 1) ~ 863 @350
point is unity. ‘ (46— 1(4& — D (s — D(4xs — 1) - 465] (35350
To ensure the continuity of the normal component across (46 ~ 1)(4xs — 1)(26 ~ 1)(4& — 1) 4.3:3.40
adjacent elements of equal order but different shape, the 7 (26 - D46 — DZxe— Dite— 1) .11 30
interpolation points on each face of the pyramid match with— T
i (26— (A6 — {46 — Dl = 1) G 4440
i b
5
5 b
12,
44
2ylA

ol SR R ool EOCY VDY A I T R

. h . _ 1260 — 1)(AEy — 1.

to say that the polynomial factors associated with the zeroth- (261 — 1K - 126 — )62 — 1) A S
order divergence-conforming function, () become equal 3he 1665(2x3 — 12y — 1) = 465465 — 1) GHih
for £ = 0 to the polynomial factors of the triangular face 37 8E5(4€3 — 1)(2x5 - 1) G335
of the prism element when = 1,2_,3, or 4, or equal to_ 4L 860461 — D(2xa - 1) 3Lz
the polynomial factors of the quadrilateral face of the prism—; i e EREREE
element fory = 5 (see [3, Fig. 3]). As far as interpolation — e

%{Z 265485 - 1) G hiED

points internal to the element are concerned, once again we *s
notice that for the pyramid, these cannot be obtained by
following a Lagrangian schemas possible for tetrahedrons,
bricks, and triangular prisms. as discussed following (4). Tables IV and V report the inter-
Because of the symmetry of the pyramidal element, polatory multiplying polynomials for first- and second-order
is sufficient to report the expression of the interpolatorjases, respectively. In these tabfes (h;) is the value of
polynomials and normalization constants only fb}q@j[?m(r) |h1| (|hs]) at the indicated interpolation poidt, ;; ,,,; again,
andA? (r). The other polynomials and normalization conthe notation has been simplified by omitting the superscript

ik,j€,m
stants are easily obtained bytating the subscript$l,2,3,4) (ik; j¢,m) to the normalization quantitie®, , /5.
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Notice that no interpolation points lie at vertices or along
edges of the pyramid and that a single basis function interpo-
lates the normal at a point on a given face. At interior points,

however, five bases contribute component at each interpolation "\
point. Clearly, only three can be independent; these three! 0.4
should contain zeroth-order basis factors associated with fac |
having independent gradient vectors. The dependencies for1 y 7V
interior nodes arise from linear combinations of the bases, =
which contain the identities
60°”
G+ Eshs + S 5= 0 @ O
& Fi_g. 5 (@ Rectangul_ar cavi_ty discretized_ with 162 pyramidal elements. (b)
Eoly + &AL+ 2 A5 =0. (18) Pie-shell cavity discretized with 216 pyramidal elements. The surface of these
2 two cavities is discretized by quadrilaterals, each quadrilateral is the base of

one pyramid.
as a factor.

V. NUMERICAL RESULTS

D. Completeness to Orderin the Divergence Although 3-D structures should not be discretized by us-

Completeness to orderin the divergence is shown usinging only pyramidal elements, to illustrate their modeling
an inhomogeneous multiplying polynomial of ordef2]. In  capabilities we present some results relative to two resonant
this case, completeness follows from the fact that terms @vities studied by using only pyramidal elements of zeroth
like order are generated. The divergence of the product of the = 0) and first(p = 1) order. By showing the modeling
polynomial and a simple linear combination of the zeroth-ordegpabilities ofstructured meshesf pyramidal elements we
bases is found to be implicitly prove the usefulness of pyramids as effectiiers,

( ; 3)eocle) although we do not intend to recommend structured meshes

V- [€26060 (Aslr) + Au(r))] = a+F+7+3)6E to study general problems; but here we use structured meshes

J ’ to perform critical test studies.
ayBey i i iti
e By _(a+B+7+3)E X8 The results consider the resonant frequencies of the cavities
V- [6x5863 (Aalr) + Aulr))] = 7 obtained by finding the eigenvalues of the discretized vector

(a4 B+ +3)x5x7ed Helmholtz equation involving the cavity electric field. As in
7 [2] and [3], a Galerkin form of the finite-element method was

5 3yyagley used to discretize the Helmholtz equation and curl-conforming

V- [X$E2€2 (As(r) 4 As(r))] = (@+P+7+3X46&  pases on pyramids were used to model each cavity; curvilinear

V- xSXEE (Au(r) + Ax(r))] =

J 5 pyramids with quadratic distortion were used when necessary.
V. (€060 A5 (r)] = (a+B+v+3)E0E X2 The geometry of the two test cases are discretized by first
152 X451 = J defining a brick mesh; each brick is then subdivided into six

(19) pyramids by joining the eight corners of the brick to its center.
Fig. 5 represents the two geometries at issue. Fig. 5(a)
with o, 3,7+ > 0 and 0 < o + 8+ v < p, and where shows a discretization of a rectangular cavity of heigi¥d
x3 = & +& = 1—-&, xa = &+ & = 1 — &, and and base with sides of lengthand1.2d. The mesh of Fig. 5(a)
x5 = 1 — &. For curvilinear pyramids for whicly is not a consists of 162 pyramids and the total number of DOF is
constant, polynomial completeness is with respedt/td as a 360 and 2124 fop = 0 and 1, respectively. Since the cavity
weighting factor. Notice that the first of (19) already sufficewalls are of perfect electric conducting material, the number of
to prove completeness in the divergence. unknowns corresponds to the number of interior DOF, which
yield systems of 252 and 1692 unknowns foe= 0 and 1,
respectively. Fig. 5(b) shows a discretization of the pie-shell
. . cavity already studied in [3, figs. 9, 10], obtained by using
The number ofsurface DOF for divergence-conforming 516 cyrved pyramids, which yield systems of 340 and 2276
bases of ordep on a pyramid may be determined as followsynknowns forp = 0 and 1, respectively (number of interior
+ One componentx((p + 1)(p + 2)/2) DOF's x four DOF).
triangular faces plus one componertp + 1)*> DOF's  The error in the computed resonant frequencies versus the
x one quadrilateral face- (p +1)(3p + 5) face DOF.  number of unknowns is reported in Figs. 6 and 7 for the
Interior DOF's are necessary fgr>0 and, once again, their rectangular and the pie-shell cavity, respectively. The error
number depends on the choice of the interpolating polynomiadsaveraged over the first eight eigenfrequencies. For sake of
for interior nodes. By using the interpolating polynomialsomparison, Fig. 7 reports also the results obtained by using
reported in Tables IV and V, the total number of DOF for theeroth- and first-order prism elements [3, fig. 10]; it can be
divergence-conforming bases on a pyramid is 1940t 1 observed that pyramidal and prism elements of zeroth and
and 46 forp = 2. first order yield results with similar accuracy for the pie-shell

E. Number of Degrees of Freedom (DOF)



782 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 5, MAY 1999

Rectangular cavity a limited number of unknowns and increasing order of the
‘ ' —. p=ol| bases. This is due to the fact that we used structured meshes
" * 1 where the boundary conditions were already constraining the
20% or more of the total number of DOF. As a matter of
* % fact, pyramidal elements should mainly be usediléexs for

o, meshes involving elements of different shapes since, usually,

* it is not convenient to work only with pyramidal elements to
* discretize a given geometry.

0.5 i
0.4} R

03| 1 VI. CONCLUSIONS

#*
oyl
i

+

Average error in %

02 + 1 This paper presents a general procedure to obtain higher or-
der interpolatory curl-conforming and divergence-conforming
o1t : ot 1 vector basis functions for pyramidal elements. The functions
can be consistently used to deal with curvilinear elements and
005 ‘ L . . L ensure the continuity of the proper vector components across
00 200 300 400 500 1000 2000 3000 4000 5000 . . .
Number of unknowns adjacent elements of equal order but different shape. Properties
Fig. 6. Average error in computation of first eight resonant frequenci€f the vector basis functions are discussed in detail. The
versus number of unknowns for a conducting rectangular cavity. reported numerical examples show that higher order functions
provide more accurate results than those obtainable with low-
Pie-shell cavity Ol'del' elements

+
4

5 T
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Fig. 7. Average error in computation of first eight resonant frequencies
versus number of unknowns for a conducting pie-shell cavity discretized by
using pyramids and by using prisms.

Roberto D. Graglia (S'83-M'87-SM'90-F98), for a photograph and biog-
cavity of Fig. 5(b). Furthermore, these plots already show tif@"Y: see p. 314 of the March 1997 issue of tiasacTions
faster convergence of the results for increasing order of the
vector bases. Although no spurious nonzero eigenvalues were

Observed_' in the cases of Fig. 5itis rathe_r difficult to g%an-L. Gheorma, for a biography, see p. 450 of the March 1998 issue of
results with good accuracy using only pyramidal elements foiis TransacTions



