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Phase-Only Shaped Beam Synthesis via
Technique of Approximated Beam Addition

Gregory M. Kautz

Abstract—A new method for phase-only phased-array beam-
pattern synthesis is derived. The method is appropriate for the
synthesis of coverage patterns for satellite communications, where
a minimax goal of maximizing the worst-case beamforming gain
to a set of service locations is desired. The new approach, called
the technique of approximated beam addition, is found to be com-
putationally attractive relative to conventional methods, yet offers
optimal performance. Included are a theoretical consideration of
optimality and simulation examples comparing the computational
complexity and convergence quality to that of proven techniques.

Index Terms— Gradient methods, phased-array antennas,
phase-only beamforming, shaped beams.

I. INTRODUCTION

T HERE are compelling reasons for applying phased-array
technology to commercial satellite communications. First,

the array is easily reconfigured to meet the changing needs of
customers. Second, satellite energy resources are efficiently
used in providing coverage to arbitrarily located ground sta-
tions. The ability to easily adjust the radiation pattern can be
utilized not only to direct energy to customer stations more
efficiently, but also to suppress energy in other directions so
as to meet requirements on out-of-region transmission levels.
The latter allows for the reuse of frequency bands for spatially
displaced customers. Synthesis techniques aimed at solving for
the amplitude and phase distribution across the array aperture
to realize the beamforming goals have been the subject of
many papers [1]–[9].

A real implementation demands efficient use of onboard
energy, requiring that the component amplifiers be driven with
multiple signals toward device saturation. In line with this,
phase-only beamforming applied to transmit is essential, as
amplitude weighting represents a real reduction in energy and
may require the addition of hardware for the removal of the
generated thermal energy.

There is considerably less published material in the area
of phase-only synthesis of shaped beams. Straightforward
application of standard optimization strategies tend to dom-
inate, as seen in [10]–[12]. An interesting technique based
upon a statistical approach for the generation of low sidelobe
(SL) patterns appears in [13]. In general, phase-only methods
perform surprisingly well in achieving arbitrary beamforming
goals relative to those allowing for full-phase and amplitude
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variation [1], [14] despite the loss of half the number of
degrees of freedom.

Phase-only techniques have also been investigated in ap-
plications where nulling in the SL region is desired. Utiliz-
ing first-order approximations for the beamforming weights

and the pattern gain, a computationally
simple method was derived in [15] to produce nulls in the
directions of SL interferers. A closed-form solution for a
phase perturbation given in [16] can be used to shift a null
in the quiescent pattern to the direction of an interferer. The
method assumes the use of arrays with symmetric amplitude
tapers. Haupt [17] considered the application of gradient-based
optimization methods for adjusting the beamforming phases
to induce a common null into existing beams used in con-
ventional monopulse processing. More recently, application of
the genetic algorithm to phase-only SL nulling was considered
in [18]. This method is well-suited for the common scenario
where an analog beamforming network provides only discrete
phase steps. Critical cases include those where a considerably
high degree of nulling is desired or where only a few phase
shifter bits are available so that quantization error is a concern.

In this paper, the synthesis of optimal phase-only beam-
patterns for arbitrary coverage is discussed. As this coverage
pattern is intended to serve multiple customer sites simulta-
neously where each user is as important as the other, the
goal in beampattern synthesis is to maximize the gain at
the worst-case station. We allow for SL constraints in the
form of minimum rejection levels for the application of
frequency reuse or to accommodate a general specification
on spatial emissions. We effectively assume that the degree
of nulling in the SL region is not so severe as to preclude
techniques where the phase settings are computed as the
quantized version of optimized continuous values. This is,
as stated, a constrained minimax formulation. Although the
component gain functions are smooth nonlinear functions, the
minimax cost function is poorly behaved. Nevertheless, robust
implementations of the standard minimax optimization have
been derived [19]–[23]. However, simulations have shown that
these approaches converge slowly in applications of interest
where the arrays possess a ratherlarge number of elements.

An alternative phase-only minimax formulation that proves
to be both computationally efficient and offers optimal results
is developed and described herein. The technique, termed
the approach of approximated beam addition, is based upon
iteratively revising the phase-only beamforming weights in
order to approximate a linear addition of spot-beam com-
ponents. As a result, the optimization procedure relies upon

0018–926X/99$10.00 1999 IEEE



888 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 5, MAY 1999

Fig. 1. Coordinate system.

approximations based in a workspace of only complex
independent variables, where is the combined number of
worst-case ground stations and fraction of SL stations meeting
their corresponding constraint with equality. This contrasts
with the independent variables (phases) of the conventional
approach. Although there may be a large number of ground
stations, only a limited percentage are nearly worst case.
Thus, the optimization is performed over 2independent real
variables where we generally have 2 .

Following a description of the signal model with particu-
lar regard to the motivational example of coverage from a
geosatellite to the U.S. in Section II, a conventional quasi-
Newton approach to phase-only minimax optimization is re-
viewed in Section III. The proposed synthesis technique of
approximated beam addition is described in Section IV and
evaluated, from a theoretical standpoint, in Section V. Simu-
lations in Section VI address both the computational savings
and optimality of the proposed technique relative to that of
the conventional method. Finally, concluding remarks are
offered in Section VII. With regard to notation, bold lower
case letters represent column vectors, bold upper case letters
are matrices, and the superscript “” denotes the conjugate
transpose operation.

II. SIGNAL MODEL AND MOTIVATIONAL EXAMPLE

Appropriate to the intended application, the use of narrow-
band signals at wavelengthis assumed. The reception points
on the earth are located in the far field of the satellite array.
The array is composed of identical antenna elements placed
on a planar array existing in a local– plane as shown in
Fig. 1. Note, however, that the identical nature of elements
and their arrangement on a planar structure is not necessary
for the validity of the results presented herein. As also shown
in the figure, and are defined as the elevation and
azimuth angles, respectively, of a direction of interest relative
to the array.

With these definitions, the beamforming gain can now be
stated. Let denote the transmitted signal from a single
element and represent that which is received on
the ground, where models the transmission path and
is a bulk time delay. Through judicious phasing at each of
the elements, the radiated energy can be tailored to the
spatial distribution of the customers. Assuming negligible
mutual coupling and employing the narrow-band and far-
field assumptions, the signal received at a distant location

is increased over that of a single element by

(1)

Here, is the beamforming phase shift applied to the signal
at the th sensor located at . is the
element factor for the service direction in-space coordinates

, where and .
Given that the antenna gain at a specified numberof

ground stations is of interest, define

(2)

where is the th column of the matrix of steering
vectors , i.e.,

(3)

The symbolic notation is intended to represent the
unit-amplitude beamforming vector where theth row is

.
As an example, consider a coverage region spanning the

United States from a geostationary orbit, as shown in Fig. 2.
Here, service locations corresponding to major
cities in all the 50 states are shown. As the earth comprises
only a small percentage of total space, a six-times spatial
oversampling (3- element spacing) was selected for use. The
on-board phased array is composed of sensors
arranged in a square grid and intended to offer communication
service over band. The desired gain profile

is not uniform; rather, the effects of rainfall
are factored in to provide uniform coverage under worst-case
conditions.

As each customer is equally important, the beamforming
strategy is such that the smallest beamforming excess gain be
maximized. Mathematically, one wishes to solve

subject to: (4)

where SL constraints have been added for the sake of gener-
ality. Here we define an matrix of steering vectors

to the constraint locations. A decibel standard is
assumed for proper translation of results. This applies in the
intended application where there is a constraint on the signal
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Fig. 2. Satellite view of coverage area:�8/4� in azimuth;�6� in elevation.

level at the input to the power amplifiers. Thus, the amplitudes
of the multiple customer signals are individually scaled prior
to combining at the amplifier input.

III. CONVENTIONAL QUASI-NEWTON SYNTHESIS TECHNIQUE

The most general solution approach to (4) involves the
application of readily available tools derived specifically for
the minimax structure, where the independent variables are the
sensor phases. In this section, the generalities of an accepted
method for solving (4) are discussed. Appropriate optimality
conditions are derived so that by comparison, the optimality
of the technique of Section IV may be addressed.

Although the expression for the excess gain at a ground sta-
tion is differentiable, the minimax cost function is a composite
function that is not differentiable. A proven method of solution
[19], [21], [23] is to convert (4) to the nonlinear constrained
optimization structure

subject to:

(5)

where is an introduced dummy variable. Successful gradient-
based solution methods employ active-set strategies [20],
[21] for iteratively solving locally quadratic functions based
upon updated estimates of constraints that are active. The
active constraints correspond to those ground stations which,
at that stage, share the worst-case descriptor status. This
technique forms the basis of the minimax optimization within
MATLAB’s Optimization Toolbox [23].

A set of phases is known to locally solve a con-
strained problem by the satisfaction of the Kuhn–Tucker con-
ditions [19], [24], essentially first (for necessity) and second-
order (sufficiency) derivative conditions of the Lagrangian.

Bandler [25] derived the conditions for the minimax formula-
tion where no SL constraints were defined. Providing for these
additional constraints, a local solution, must satisfy

(6)

(7)

for ,

for , .
(8)

is the number of active converted constraints while is
the number of active SL inequality constraints.and are
the Lagrange multipliers associated with the converted and SL
constraints, respectively. The above conditions are written for
the case where the constraint indices are reordered so that the
first ground station gains and the first SL inequality
constraints are active. Provided the above conditions are met,

is a local solution if appropriate second-order conditions
are satisfied [19], [24].

As needed for comparative purposes later and for use in
optimization algorithms, the gradient and Hessian of theth
ground-station excess gain are, respectively

(9)

(10)

and

(11)

Note that the gradient and Hessian expressions for a SL
constraint have similar forms.

This “conventional” method is applied to a limited set of
problems in the simulation section. There are, however, a few
general comments that are of note. With regard to the general
problem containing nonlinear constraints, computational com-
plexity varies on the order of , as found in [19] and [21].
The variation with respect to the independent variables is
not as well defined. Simulations have shown that the general
minimax problem converges slowly, relative to, for example, a
more well-behaved least-squares cost function. This suggests
that a pipelined optimization structure is most effective, where
intermediate optimization techniques refine the phases that
are used as initial conditions for the final computationally
expensive minimax optimization [26].
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IV. TECHNIQUE OF APPROXIMATED BEAM ADDITION

To motivate the technique of approximated beam addition,
suppose that the phase and amplitude of the beamforming
weights could be freely varied. Let there be combined
worst-case stations and active SL constraints ( )
with associated steering vectors loaded as columns into the

matrix . The complex voltage gains at these
stations, with initially unit-magnitude beamforming weights,
are then

(12)

Now suppose that the beamforming weights are perturbed by
an increment , in general changing the unit-amplitude
nature of the weights. Furthermore, consider the increment
decomposed to the form

(13)

where the columns of are any basis for the subspace
orthogonal to that spanned by the columns of . The
modified station complex gains become

(14)

This implies that tomost efficientlyperturb the gain at a single
station , one should add a component of the steering vector
associated with ground stationto the weight vector. When

stations are considered, the weight vector increment should
lie in the subspace spanned by the associatedsteering
vectors. As the station gains and entries of the steering vectors
are complex numbers, the optimization involves 2real-
valued parameters. In general, the unit-amplitude requirement
of the beamforming weights will not allow an increment
completely limited to the -dimensional subspace. As a
result, the goal is to find a means of adjusting the beamforming
weights to effect a precise change along the desired subspace

with minimal impact along the orthogonal subspace
. Mathematically stated, the form of the iterated

estimate becomes

(15)

where the columns of the orthonormal matrix
form a basis for theeffectivesubspace as spanned by the
columns of , are the independent real
variables to determine, and is a yet unspecified function
to approximate the addition of beamforming components.

Given that is the singular value decomposition of
, may be selected as the first columns of , where

(16)

for some appropriate threshold , e.g., 1% or . The
orthonormal matrix is employed as opposed to the
matrix for two reasons. First, the dimensionality of the
optimization procedure is reduced ( , thus reducing
the computational complexity. Second, a real/imaginary pair

is decoupled from all other pairs via
the orthonormality of .

Perhaps the simplest choice for is the normalization
operation computed as

(17)

Although other similar techniques were examined, it was
determined that this simple normalization operation provided
a highly efficient approach yielding satisfactory performance.

An efficient optimization implementation requires an ex-
pression for the gradient of the excess gains. Defineas the
real vector of independent variables having the form

(18)

The component gradient with respect to the real-valued
requires the evaluation of

(19)

and

(20)

One can show

(21)

(22)

where imply element-wise multiplication/division,
refers to the th column of , and are the prenormalized
weights

(23)

After substituting and repeating for all , one finds that the
gradient with respect to can be expressed as

(24)

where represents an appropriately sized vector of ones. The
expression for the gradients of any SL constraint have the
same general form.

The algorithm is realized as an iterative scheme with a
conventional minimax optimization technique at its core. At
the beginning of each stage, the list of perceived active main-
lobe/SL stations are updated. Here, stations whose associated
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beamforming gains that are “sufficiently” close to the worst-
case mainlobe station or the stated SL constraint specification
are labeled as active. Threshold values that enable/disable a
station’s activity may also consider their status in the previous
stage. As the active list is updated, the matrix of steering
vectors is updated accordingly. The orthonormal matrix

is computed as the principal components of an eigenvector
decomposition of as described in the paragraph surround-
ing (16). Usually, a small number (1–3) of steering vectors
are added or deleted between stages, so the use of an efficient
method of updating without the full recomputation of an
eigenvector decomposition is recommended. At this point,
any standard (minimax) optimization technique is applied to
solve for the vector of scaling coefficients. The selection
of convergence criteria is made to result in rapid overall
convergence. The process is chosen to insure that adjustments
to the list of active stations to provide accelerated optimization
progress is not performed too hastily such that the added
complexity of updating becomes significant.

General comments relative to the efficiency of this technique
can be asserted; verification was addressed through exhaustive
simulation. Note that instead of one optimization with
independent variables as obtained in the conventional approach
of Section III, the above strategy relies upon the solution of
2 working variables, where is the combined number
of worst-case ground stations and active SL constraints. The
reduced variable workspace will affect both computation time
and memory requirements as the sizes of the component
gradients and the Hessian scale with the number of in-
dependent variables. typically increases throughout the
procedure so that the most computationally intensive portion
of the optimization problem exists at the end. As with the
U.S. coverage of Fig. 2, the intended application involves
an array with alarge number of array elements providing
service to an area defined byfewer discrete locations. Thus,
a savings in both computational complexity and working
memory requirements is anticipated.

V. ANALYSIS OF APPROXIMATEDBEAM ADDITION TECHNIQUE

The technique of approximated beam addition as outlined in
Section IV provides an efficient means of solving for phase-
only beamforming weights as a result of operating in an aptly
chosen reduced-dimensional workspace. As there arephases
to evaluate but only 2 working variables at a given
stage, the optimality of the iterated estimate is obviously in
question. However, simulations presented in Section VI will
show that the new technique arrives at a true local solution, as
validated by the post application of the conventional technique
of Section III. To resolve this issue, a theoretical investigation
addressing the subject of optimality is included in this section.

To address the optimality of the beam-addition technique,
one must apply the Kuhn–Tucker conditions. The conven-
tional method of Section III is employed as a reference, so
that optimality for an estimate generated from the beam-
addition technique is validated if the same conditions apply.
Recall from Section III that the necessary conditions for
optimality include both specifications on the values of the

Lagrange multipliers along with a relation involving the gra-
dient of the minimax composite functions. The application of
Kuhn–Tucker to the two optimization strategies is done so at a
common operating point. The “current” beamforming phases
for the competing strategies are so that the techniques
have the same set of active worst-case ground stations. Thus,
one only needs to consider the functional gradients as in
(6). Assume, for simplicity, that there are no additional SL
constraints. From (6) and (9), the operating point satisfies
the first-order necessary conditions for a local solution if

(25)

Using (24), the corresponding relation for the approximate
beam-addition technique is

(26)

By inspection, if an operating point is optimal so that
(25) is satisfied, then (26) is satisfied. This shows that a
true local solution appears as a solution for the approximated
beam addition technique. However, it is also desired that no
false solution could exist in the proposed technique. This is
validated by showing that (26) is only satisfied when (25) is
true. Consider the terminal point in the approximated beam-
addition optimization where we must have . Using the
definition of the weights in (23), one finds

(27)

Now consider the sum-term in (26) which precisely matches
the left-hand side of (25). Observe that in a general sense and
not necessarily at , it lies in a 2 -dimensional subspace

...

... (28)

where denotes the range of the indicated matrix. Note
that is only approximately equivalent to
if one follows the suggested method of selecting only the
prominent spectral components of for . With (27)
in mind, the desired result is proven: a set of phases
satisfies the first-order Kuhn–Tucker necessary conditions for
the proposed method if and only if the respective conditions
for the conventional technique are satisfied.

The operation of the approximated beam-addition technique
is clarified by observing the first-order term in the Taylor series
expansion of (17). Incorporating the gradient expressions of
(21) and (22), one obtains

(29)
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Fig. 3. Geometry of effects of first-order terms.

A geometrical view showing the significance of the two first-
order terms for the arbitraryth sensor weight is shown in
Fig. 3. Essentially, the term provides the desired move-
ment in the complex plane while the term insures,
to first order, that the iterated point stays on the unit circle.
The desired modification of the worst-case station gain from

is realized at the expense of an equi-energy perturbation
from . This perturbation vector lies in the range
space of . As the optimization proceeds, the phases
become scattered over [0, 2) yielding a perturbation vector
not cleanly projected onto the ground-station steering vectors
of interest. As a result, the energy of the second term is spread
randomly and somewhat uniformly over all space.

VI. COMPUTER SIMULATIONS

Two experiments addressing the optimality and compu-
tational efficiency of the proposed synthesis technique of
approximated beam addition are considered in this section.
Experiment 1 represents the intended application to phased-
array phase-only beampattern synthesis for satellite communi-
cation. Here the computational efficiency of the approximated
beam-addition technique, relative to the standard method, is
addressed. Experiment 2 represents a more detailed examina-
tion of optimality and complexity in the comparison of the
two synthesis techniques. Monte Carlo trials are employed in
the empirical comparison to develop statistics on the execution
times as well as to examine the range and relative quality of
local solutions.

Experiment 1: This experiment represents the intended ap-
plication to satellite communication where isotropic
sensors are placed on a square grid of 3spacing. The array
is affixed to a satellite in a geostationary orbit. The desired
coverage pattern consists of city locations in all the
50 states (refer to Fig. 2). The desired gain profile was such
to accommodate worst-case rain levels.

Fig. 4. CONUS minimax optimization timeline—standard method.

Fig. 5. CONUS optimization timeline—approximated beam-addition
method.

MATLAB’s minimax algorithm [23] was employed for
both optimization methods; applied directly for the standard
method of Section III and used as a core utility within the
technique of Section IV. The initial element phases input to
the optimization were derived using a technique similar to
that found in [27] to provide a best-fit rectangular beam
encompassing the region of interest. Over the course of the
two optimization procedures, the iterated deficit at the worst-
case station was tabulated versus the number of floating point
operations. For the case of the conventional optimization
procedure, the results are presented in Fig. 4. Employing
the method of Section IV with the same initial conditions,
the optimization performance timeline shown in Fig. 5 was
obtained.

Confirming the initial expectations, only 37 of the 207
stations were considered “worst-case” at the end so that
the last stage involved an optimization over
variables. This is significantly fewer than the moderately sized
256-element array, which was the number of optimization
variables for the conventional method. The replacement of
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a single large optimization problem with a succession of
smaller optimizations ultimately led to a reduction in both
computational complexity and memory needs. The consider-
able reduction in computational time is apparent by comparing
the results in Figs. 4 and 5.

The new technique iterated to a better solution—namely
0.728-dB excess gain above specifications as compared to
the conventional method where only a 0.343-dB excess was
obtained. Note that a 0.4-dB savings is significant to the appli-
cation of satellite communications. Although this result cannot
be expected in every case, one can conclude that the two
methods can iterate to different local minima with the same
initial conditions. These different solutions may offer widely
varying performance levels. Although a detailed examination
of the -dimensional solution space was not attempted, the
application of a simulated annealing “wrapper” around the
optimization algorithm would be effective in attaining the best
operating configuration.

The shape of the optimization timelines in Figs. 4 and 5
are typical of those seen in exhaustive application of the
two competing algorithms. Regions of rapid convergence are
interlaced with pockets of slowed convergence. To guarantee
convergence to a true local solution, it was determined that
the stopping criteria had to be set very finely in order to
recognize a slight grade in the surface at the expense of
an increased computational complexity. In some cases, this
resulted in substantial decreases in the functional value.

Experiment 2: In the second experiment, optimality, global
convergence, and the relative complexity of the technique
of approximated beam addition is addressed through Monte
Carlo simulation. Here, 500 trials were performed with ran-
dom initial beamforming phases. During each trial the two
techniques were applied and the computation time to various
(gain) milestones were recorded.

To insure that each trial iterated to a true local solution,
a scheme with optimization restarts was adopted. Individ-
ual optimizations were deemed convergent if the iterative
enhancement in the worst-case gain fell below a modest
0.001-dB threshold. The elemental phases were then perturbed
about their iterated value over the interval10 and used
as inputs to a restarted optimization. The algorithms were
restarted until two successive optimizations yielded a worst-
case station gain not significantly better than the current best
case. This strategy was found to be effective in guarding
against the inefficiencies associated with the algorithm stalling
on a plateau. However, the10 randomization factor was
found to be sufficiently small so as not to abort iteration to
the local, perhaps nonglobal, solution.

Two array configurations were used to provide a comparison
in the complexity of the two optimization methodologies. In
the first simulation, an 8 8 square array of /2-spaced
elements was employed with 25 defined service locations
randomly placed in the region ,

. The second scenario involved a 10
10 array with the same elemental spacing. To provide the
same perceived distribution of service locations, the region
containing the 25 service locations was simply
compressed by the factor 8/10 along both dimensions.

Fig. 6. Computation time to milestone for 8� 8 array. Shown are 50 and
90% empirical confidence regions.

Fig. 7. Computation time to milestone for 10� 10 array. Shown are 50 and
90% empirical confidence regions.

Figs. 6 and 7 show the amount of computation to reach
the various gain-milestones for the two competing techniques.
Observe that the base-ten logarithm of the complexity in
MATLAB floating operations (flops) is plotted. The mean
time to milestone is shown by the solid line, while the error
bars indicate the 50th and 90th percentile confidence regions.
Although the shapes of the timelines are similar, there is a
dramatic computational improvement using the new method.

Examination of the averaged timelines show that the com-
plexity associated with the technique of approximated beam
addition relative to the number of array elements is approx-
imately linear, i.e., by the factor (100/64). The complexity
factor associated with the conventional method is more dra-
matic and is approximately (100/64).

The surface containing the multiple local solutions was
somewhat probed by storing statistics on the converged so-
lution. Table I shows the distribution of solution gains of the
500 converged trials for the 8 8 and 10 10 array scenarios
involving the conventional optimization method. Note that
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TABLE I
DISTRIBUTION OF CONVERGED WORST-CASE STATION GAIN FOR EXPERIMENT 2

application of the first-order Kuhn–Tucker conditions verified
that all converged estimates were indeed local solutions.
Inspection of the results show that approximately 95% of the
independent trials with purely random initial phases iterated
to the global solution.

VII. CONCLUSIONS

A method of minimax phase-only beamforming synthesis
was presented. It was shown to be more computationally
efficient and require less working memory than the stan-
dard approach in problems of interest. The optimality of the
technique was verified theoretically via application of the
Kuhn–Tucker optimality conditions and empirically through
Monte Carlo simulation.

The technique allows for iteration within a subspace of
spanned by a set of steering vectors associated with the worst-
case service locations. Although the dimensionality of the
subspace is typically much less than, it was shown that there
are sufficient degrees of freedom to allow effective adjustment
of the beamforming gain at these stations of interest. As
the sizes of variables computed within the gradient-based
optimization procedure scale with the number of variables,
a reduction in both storage and computation are realized with
the new technique.

Although all simulations presented here were without de-
fined SL constraints, such problems were analyzed. An exam-
ple of which is point-to-point communication where optimiza-
tion is needed to reduce the emission over spatially-adjacent
user cells to meet cochannel interference specifications. It was
determined that a feasible solution shouldfirst be obtained
with either an auxiliary optimization technique or an alternate
version of the beam-addition technique designed solely to
accommodate the constraints.
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