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A New Algorithm for the Complex Exponential
Integral in the Method of Moments

Michael S. Kluskens,Member, IEEE

Abstract—This paper presents a new algorithm for the rapid
and accurate calculation of the complex exponential integral
associated with the mutual impedance of sinusoidal basis and
testing functions in the method of moments. The new algorithm
uses Leibniz’s theorem to calculate Taylor series expansions of
the integral instead of integrating expansions of the integrand as
is often done. This results in an algorithm which is twice as fast
as and is valid over a wider range than previous algorithms. This
technique can be applied to many other integrals encountered in
computational electromagnetics as well.

Index Terms—Method of moments.

I. INTRODUCTION

I NTEGRALS involving complex exponentials are common
in electromagnetics. This paper presents a new algorithm

for the rapid and accurate calculation of the exponentially
scaled complex exponential integral over a finite interval, i.e.,

— (1)

The primary area of application is the evaluation of a method
of moments impedance matrix with sinusoidal basis and testing
functions [1]–[14]. Richmond’s thin-wire code [2], [12] and
the ESP4 method of moments code [7] calculate the required
integral as the difference of two evaluations of the complex
exponential integral [15]–[21] with a six-region algorithm
(EXPJ) using the Taylor series expansion of [16, Sec.
5.1.11], Gauss–Laguerre quadratures [16, Table 25.9], and
rational approximations. In addition to the inefficiency of
this approach, the error increases asdecreases due to the
cancellation of the most significant digits in the calculation
of the two integrals. A more efficient algorithm (EPF) using
the Taylor series expansion of for small and a binomial
series of the integrand about an optimal point for largehas
been published recently [10]; however, the forward recurrence
relation used in the latter is numerically unstable.

In this paper, Leibniz’s theorem [16, Sec. 3.3.7] is used
to calculate Taylor series expansions of the integral instead
of integrating expansions of the integrand. This results in a
series which converges uniformly for values ofover the
entire complex plane. To achieve high accuracy and efficiency
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this series is reformulated for and a nearly identical
alternative series is used for The efficiency and
convergence of these series is improved by the fact that the
even-numbered terms are zero. As a result, 0.001% accuracy
can be achieved with only the first seven nonzero terms for

, which corresponds to the practical size limit for
sinusoidal basis functions of

II. THEORY

The mutual impedance of the nonplanar-skew sinusoidal
monopoles and

is given by [8], [14]

—

(2)

for the currents

(3)

(4)

where

(5)

(6)

for and To calculate (2) for the widest
possible range of and using single-precision arithmetic it
is necessary to include the exponential scale factor in
the algorithm used for the integrals since it easily exceeds

for moderate values of and ; for example,
and A Taylor series of is an efficient means
for calculating (2) since the maximum extent of the domain of
integration, , is for sinusoidal basis
functions within the practical size limit of The Taylor
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series

(7)

is generated by applying Leibniz’s theorem to with
respect to giving , for odd and for
even , where and

(8)

The resulting Taylor series is

(9)

Expanding results in the more efficient form given
by

(10)

where and

(11)

Using Aitken’s -process [16, Sec. 3.9.7] the series is useful
down to ; however, the series diverges for

An expansion for which converges uniformly for
values of over the entire complex plane is obtained by
separating the logarithmic term from the integral so that
the remaining function is smooth and continuous
everywhere, i.e.,

— (12a)

(12b)

(12c)

Using Leibniz’s theorem on with respect to gives

(13)

for odd , and for even However, this can be simplified
to , where and

(14)

which differs from only in the starting value of the series.
The resulting expansion is

(15)

As with , a more efficient form is given by

(16)

where and

(17)

Although mathematically this expansion converges uniformly
for all values of , the numerical noise increases in the right
half-plane as increases because of cancellation of the
logarithmic term by the series expansion. In addition, the
number of terms required also increases as increases.
As a result, (10) is more accurate and efficient down to
approximately In addition, the numerical accuracy
of (15) and (16) is reduced as approaches even though

and in the limit. However,
transforming (14) into a backward recursion and setting

gives

(18)

where the recursion is started using for a sufficiently
large The resulting expansion is

(19)

which converges rapidly for

III. ERROR ANALYSIS

The error in a Taylor series is approximately given by the
first neglected term, which in the case of (9) and (10) for

can be approximated as

(20)

where is the highest term calculated. For the
upper limit on the magnitude of the error is approximately

(21)

where is the largest integer smaller than the magnitude of
These approximate error formulas cannot be solved directly

for However, the behavior of their convergence can be
determined from an examination of their parts. In the case
of (20) the magnitude of is maximum near
and is roughly symmetric about this point, therefore, is
proportional to From (21), is approximately proportional
to From this information and actual calculations
over the range of and , the number of
terms required for 0.001% accuracy is approximately given by

(22)

when Aitken’s -process is used with (9) or (10).
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Using that is equal to the first terms
of the Taylor series for in combination with (13), the error
in (15) and (16) is given by

(23)

which for is approximately

(24)

therefore, is proportional to For and
, the error is approximately

(25)

using (13) and (20). Therefore, the convergence of (15) and
(16) is dependent on ; however, the numerical noise
when calculating (15) and (16) restricts them to
where the second term of (25) has little effect. From actual
calculations over the range of and

, the number of terms required for 0.001% accuracy is
approximately

(26)

when Aitken’s -process is used with (15) or (16).
The error in (19) is the same as that for (15) and (16) except

for the additional error in each term from assuming
The total correction for this error is

(27)

where is the value calculated using (18) with
For this formula can be approximated by

(28)

In tests this error was negligible in the region , as would
be expected from (28).

In the final algorithm, referred to below as EXPJ1, (19)
is used for with , while (16) is used for

and (10) is used for The
latter two use Aitken’s -process and Dynamically
determining the number of terms using (22) and (26) produced
a slower algorithm in actual tests due to the small number of
terms and the overhead of a dynamic algorithm.

IV. NUMERICAL RESULTS

The following tables show the accuracy and efficiency of the
EXPJ1 algorithm versus the EXPJ [2], [7], [12] and the EPF2
algorithms (see the Appendix). Both the EXPJ1 and EPF2
algorithms were adjusted to a relative accuracy of for
these tests. The EPF [10] algorithm is not shown in the tables
because of the large error in several regions as discussed in the
Appendix. To minimize the differences between the algorithms

TABLE I
PEAK AND AVERAGE RELATIVE AND ABSOLUTE ERRORS FORj�j � �=2

Peak EXPJ EPF2 EXPJ1

Relative
Absolute

4:6� 10�5

1:6� 10�5
8:2� 10�6

1:6� 10�5
9:9� 10�6

4:6� 10�6

Average (A = 5)

Relative
Absolute

1:1� 10�6

4:3� 10�7
1:3� 10�7

6:7� 10�8
1:3� 10�7

5:7� 10�8

TABLE II
TIME IN SECONDS FOR107 CALCULATIONS FOR j�j � �=2

A = 5 EXPJ EPF2 EXPJ1 Speedup

R10K/195
PPC604e/300
A21064A/275

R4400/250
PPC604/120

53.9
110.1
96.5
149.8
352.4

67.4
134.7
115.7
160.2
325.3

21.5
47.3
51.9
56.1
104.9

151%
133%
86%
167%
210%

A = 75

R10K/195
PPC604e/300
A21064A/275

R4400/250
PPC604/120

61.4
135.5
106.5
167.5
297.5

39.5
103.8
106.1
106.4
233.6

20.1
42.9
46.3
52.0
96.0

97%
142%
129%
105%
143%

and to better reflect the calculation of (2) with realall three
algorithms were internally modified to calculate

— (29)

The reference solution for Table I was generated to a
relative accuracy of using multiple double-precision
Gauss–Legendre quadratures with Aitken’s-process used
to determine convergence. The tables are for calculations
over a test grid where ;

and ; for
and 1. The average error calculations for Table I are for the

test grid only since the error for all the algorithms is
concentrated in this region. Table II shows that the EXPJ1
algorithm is 70 to 200% faster than the fastest of other two
algorithms and averages 170% faster than the commonly used
EXPJ algorithm.

V. CONCLUSIONS

A new algorithm for calculating the complex exponential
integral for sinusoidal basis function method of moments has
been developed using Leibniz’s theorem. This algorithm is
more accurate and averages 170% faster than the commonly
used EXPJ algorithm. The technique used to develop the algo-
rithm can be applied to many other integrals in computational
electromagnetics such as those in [22] and [23].

APPENDIX

The large argument expansion from [10] in terms of (1) can
be written as

(30)

1EXPJ fails catastrophically beyondA = 75:
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where is calculated in [10] using

(31)

and is the optimal point for convergence given in [10] which
can be reduced to

(32)

where is the complex conjugate of and indicates the
imaginary part of the argument. Equation (31) is a forward
recursion relation very similar to that for the Bessel function

and both are unstable for Numerically, the
instability can be avoided if (30) achieves sufficient accuracy
before the divergence of (31) destroys that accuracy and
the number of terms required can be accurately estimated;
however, for this is often not possible. For example,
with and , the single precision calculation
of (30) with (31) converges to two digits of accuracy in 11
terms before diverging rapidly. Solving (31) for the backward
recursion relation produces a stable algorithm, which can be
improved by expanding it into

(33)

where and The EPF2 algorithm
in Tables I and II uses the series expansion [16, Sec. 5.1.11]
for , (33) with Aitken’s -process [16, Sec.
3.9.7] with for , and
(31) with for The instability
of (31) precludes the use of Aitken’s -process to accelerate
convergence of this series.
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