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A New Algorithm for the Complex Exponential
Integral in the Method of Moments

Michael S. KluskensMember, IEEE

Abstract—This paper presents a new algorithm for the rapid this series is reformulated fdu| < |6] and a nearly identical
and accurate calculation of the complex exponential integral alternative series is used fou| > 1.79|6|. The efficiency and
associated with the mutual impedance of sinusoidal basis and convergence of these series is improved by the fact that the

testing functions in the method of moments. The new algorithm bered t A It 0.001%
uses Leibniz's theorem to calculate Taylor series expansions of even-numbered terms are zero. As a resuft, 0. o accuracy

the integral instead of integrating expansions of the integrand as ¢an be achieved with only the first seven nonzero terms for
is often done. This results in an algorithm which is twice as fast |6| < #/2, which corresponds to the practical size limit for
as and is valid over a wider range than previous algorithms. This - sinusoidal basis functions of/4.

technique can be applied to many other integrals encountered in

computational electromagnetics as well.

Index Terms—Method of moments. Il. THEORY

The mutual impedance of the nonplanar-skew sinusoidal
monopoles(0, 0, s;) — (0,0, s2) and (¢; sin<,d, 1 cosy) —

. INTRODUCTION (t2sin4p, d, t2 cos ) is given by [8], [14]
NTEGRALS involving complex exponentials are common
in electromagnetics. This paper presents a new algorit 1 [ e kB
for the rapid and accurate calculation of the exponentialy"™ = 4rwe | jR.n
scaled complex exponential integral over a finite interval, i.e., i
u+d =z 1 _ 1 _
E(u,5) = euy[ e o 4sinfk(so 31)]51n[k(t22 t1)]
u—8 % . Z pq eI KPs2 fmtatesn] Z (1)
The primary area of application is the evaluation of a method pg==%1 i=1
of moments impedance matrix with sinusoidal basis and testing hkBpg+ik[Riz+psitata] —z
functions [1]-[14]. Richmond’s thin-wire code [2], [12] and g Zehk’@” 7[ dZ}
the ESP4 method of moments code [7] calculate the required h==£1 Wk Bpg tik[Ritpsitan] - #
integral as the difference of two evaluations of the complex 2)

exponential integral [15]-[21] with a six-region algorithm
(EXPJ) using the Taylor series expansion «of [16, Sec. for the currents
5.1.11], Gauss—Laguerre quadratures [16, Table 25.9], and [ sin k(s2/m — )

rational approximations. In addition to the inefficiency of " S (52/m — 5m) 3)
this approach, the error increases|élsdecreases due to the sin k(b — )
cancellation of the most significant digits in the calculation ;= 2—/" (4)
of the two integrals. A more efficient algorithm (EPF) using sin k(tz2/n — tn)
the Taylor series expansion of # for small« and a binomial
. . . : where
series of the integrand about an optimal point for laigleas J
been published recently [10]; however, the forward recurrence _
relation used in the latter is numerically unstable. Pra = sinz/;[pcosz/} +d] ®)
In this paper, Leibniz's theorem [16, Sec. 3.3.7] is used Run = V@2 + $2, + £2 — 25,,t,, cos ) (6)

to calculate Taylor series expansions of the integral instead
of integrating expansions of the integrand. This results infer m,n = 1,2 andk = w,/pe. To calculate (2) for the widest
series which converges uniformly for values @fover the possible range off and+ using single-precision arithmetic it
entire complex plane. To achieve high accuracy and efficiengynecessary to include the exponential scale faetbfr« in
. . . the algorithm used for the integrals since it easily exceeds
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series As with a,, a more efficient form is given by
N §n n s N
~ (n) ha U u
E(u,6) ~ E(u,0) +n§:1j EW (y, o)n! (7) E(u,6) = ¢ In T2 n=§1 3:... B, (16)

is generated by applying Leibniz's theorem £{u,6) with \where B, = §(1 — ¢*)/u and
respect tos giving £ (u,0) = 2a,,/u, for odd» and0 for

_ 62 6n72
evenn, wherea; = 1 and B, = (tn—1)+(n—2Bu . (17)
nu? [ (n— 1!
—q n—1 1 n—2 8
tn =1+ u + % In-2- (8) Although mathematically this expansion converges uniformly

for all values ofw, the numerical noise increases in the right

The resulting Taylor series is half-plane asR (u) increases because of cancellation of the

5 N s logarithmic term by the series expansion. In addition, the
BE(u,8) ~ = Z U — - (9) number of terms required also increasesfa@:) increases.
- As a result, (10) is more accurate and efficient down to

. ) o _approximately|lu| = 2/é|. In addition, the numerical accuracy
Expandingz,, 6" /(un!) results in the more efficient form given ¢ (15) and (16) is reduced as approache®) even though

by bp/u = —1/n and B,, = —é™/(nn!) in the limit. However,
N transforming (14) into a backward recursion and settipg-
E(uwé)~2 > A, (10) —uc, gives
n=1,3,---
; ¢ :l<1+L(1+uc 2)) (18)
where A; = §/u and " n+1 ot
§2 §n—2 where the recursion is started using., = 0 for a sufficiently
iy 1)!(“ +n—1)+(n— 2)An—2} (11) largen. The resulting expansion is
N
Using Aitken’s §2-process [16, Sec. 3.9.7] the series is useful u u+6 o"
Eu,é) ~e* 1 -2 n— 19
down to|u| = |é|; however, the series diverges fls] < |6]. (u,8) & e* In u— Z ol (19)

n=1,3,---

Ie)

An expansion forF(u, §) which converges uniformly for
values ofu over the entire complex plane is obtained byhich converges rapidly fofu| < |é|.
separating the logarithmic term from the integral so that
the remaining functionf(u, ) is smooth and continuous IIl. ERROR ANALYSIS

everywhere, i.e., . L . .
yw The error in a Taylor series is approximately given by the

u utd g u utd -z _ first neglected term, which in the case of (9) and (10) for
E(u,6) =e ]{HS p dz +e /ufé 2 dz (122) |u| > N + 2 can be approximated as
! U+ 6 2 6N+2
=c* In + f(uw, 8) (12b) z _
u—24 , u (N +2)! (20)
~e” In 5 + f(u,0) + Z £ (u,0)—. where N is the highest term calculated. Fpr| < N + 2 the
v n=1 v upper limit on the magnitude of the error is approximately
(12c) :
10|U,|LUJ s N+2 o1
Using Leibniz’'s theorem orf (w, ) with respect to5 gives (N +2)|u]!|u (21)
(n) _2 _ (n—1)! , where |u] is the largest integer smaller than the magnitude of
[, 0) = —|axn e (13) : \
U unh- u. These approximate error formulas cannot be solved directly

for N. However, the behavior of their convergence can be
determined from an examination of their parts. In the case
of (20) the magnitude ob”/n! is maximum neam = |4

n—2 and is roughly symmetric about this point, thereforé,is
1+ 9 br—2 (14) proportional tgé]. From (21),N is approximately proportional

to 1/1n |6/u|. From this information and actual calculations

which differs froma,, only in the starting value of the seriesgyer the range of < |u| < 20 and|§| < 7/2, the number of
The resulting expansion is terms required for 0.001% accuracy is approximately given by

for oddn, and0 for evenn. However, this can be simplified
to £ (u,0) = 2b, /u, whereb; = 1 — ¢* and

-1

N
n N=4 216 —3.6/1

u+6+z bn6 ' (15) +3.216] — 3.6/ In |6/u| (22)

u—~6 u 3 n!

n=13, when Aitken’sé2-process is used with (9) or (10).

E(u,8) =e* In
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Using thata,, («"~1)/(n — 1)! is equal to the firsk terms
of the Taylor series foe* in combination with (13), the error

TABLE |
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PEAK AND AVERAGE RELATIVE AND ABSOLUTE ERRORS FOR|6| < 7/2

in (15) and (16) is given by Peak EXPJ EPF2 EXPJ1
] . Relative 46 x107° 8.2 x 107¢ 9.9 x 10=°
5 R ) (23) Absolute | 1.6 x 105 1.6 x 105 46 x 1076
- ] =
N+2 My k! Average (4._ 5)
) ) ) Relative 1.1x107° 1.3 x 1.3 x 1077
which for |u| < N 4 2 is approximately Absolute 4.3 %1077 6.7 x 5.7 x 1078
2 (5N+2
(24)
(N+2) (N+2)! TABLE I
TIME IN SECONDS FOR10" CALCULATIONS FOR |8| < m/2
therefore, N is proportional to|é|. For |u|>N + 2 and A=5 EXPJ EPF2 EXPJ1 Speedup
|ul > 16|, the error is approximately R10K/195 53.9 67.4 215 151%
. Nao PPC604e/300 110.1 134.7 47.3 133%
2 §N+2 2w [\ A21064A/275 96.5 115.7 51.9 86%
gy v d by (25) R4400/250 1498 1602 56.1 167%
w (N +2)! T2a\u PPC604/120 3524 3253 104.9 210%
using (13) and (20). Therefore, the convergence of (15) and A=75
(16) is dependent ok (u); however, the numerical noise R10K/195 61.4 39.5 20.1 97%
when calculating (15) and (16) restricts themftdu) < 2|6 PPC604¢/300 1355 10338 42.9 142%
. A21064A/275 106.5 106.1 46.3 129%
where the second term of (25) has little effect. From actual  Rra400/250 1675 106.4 52.0 105%
calculations over the range @05 < |u| < 7 and |é] < PPC604/120 2975 2336 96.0 143%

7 /2, the number of terms required for 0.001% accuracy is

approximatel
PP y and to better reflect the calculation of (2) with réaall three

(26) algorithms were internally modified to calculate
when Aitken’sé2-process is used with (15) or (16).

D) 7[“'*"5 e’ dz.
The error in (19) is the same as that for (15) and (16) except u—s %
for the additional error in each term from assuming,» = 0. The reference solution for Table | was generated to a
The total correction for this error is relative accuracy oft0=? using multiple double-precision
2N: 1 <6>n Gauss—Legendre quadratures with Aitked%sprocess used
n\u

N =28+3.7/]

(29)

(27) to determine convergence. The tables arelfdr calculations
n=1,3,-- over a test grid whera; = (mA + jnA)/500; m,n =
—500,---,500 and 6 = jpr/20; n = 1,---,10 for A = 5
and75%. The average error calculations for Table | are for the
A = 5 test grid only since the error for all the algorithms is
concentrated in this region. Table Il shows that the EXPJ1
algorithm is 70 to 200% faster than the fastest of other two
algorithms and averages 170% faster than the commonly used
EXPJ algorithm.

(uéy +1—¢*)

where ¢, is the value calculated using (18) withy > = 0.
For |u| < N + 1 this formula can be approximated by

(N +1)! n\u)

n=1,3,

(28)

In tests this error was negligible in the regifn < 6, as would
be expected from (28).

In the final algorithm, referred to below as EXPJ1, (19)
is used for|u| <|§| with N = 11, while (16) is used for A new algorithm for calculating the complex exponential
|6] < |u|<1.79]8] and (10) is used fofu| > 1.79]6]. The integral for sinusoidal basis function method of moments has
latter two use Aitken'ss?-process andV = 13. Dynamically been developed using Leibniz's theorem. This algorithm is
determining the number of terms using (22) and (26) producsetbre accurate and averages 170% faster than the commonly
a slower algorithm in actual tests due to the small number @$ed EXPJ algorithm. The technique used to develop the algo-
terms and the overhead of a dynamic algorithm. rithm can be applied to many other integrals in computational

electromagnetics such as those in [22] and [23].

V. CONCLUSIONS

IV. NUMERICAL RESULTS

APPENDIX
The following tables show the accuracy and efficiency of the

EXPJ1 algorithm versus the EXPJ [2], [7], [12] and the EPF2 The_ large argument expansion from [10] in terms of (1) can
algorithms (see the Appendix). Both the EXPJ1 and EPP£ written as

algorithms were adjusted to a relative accuracyl@f® for 1| N

these tests. The EPF [10] algorithm is not shown in the tables ~ £(u,8) = ~ > an(e,8) = > anle,—6)
because of the large error in several regions as discussed in the n=0
Appendix. To minimize the differences between the algorithms!ExPJ fails catastrophically beyond = 75.

(30)

n=0
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where «,, is calculated in [10] using
ap(c,x) = —(—E)cﬂ”

andc is the optimal point for convergence given in [10] which
can be reduced to

(6]

(31) (7]

(8]

I (6*u) (32)
whereé* is the complex conjugate af and < indicates the
imaginary part of the argument. Equation (31) is a forward
recursion relation very similar to that for the Bessel functioR
J,(c) and both are unstable for > |c|. Numerically, the
instability can be avoided if (30) achieves sufficient accuradyi]
before the divergence of (31) destroys that accuracy and
the number of terms required can be accurately estimateg)
however, for|u| <5 this is often not possible. For example,
with v = 2 and é = jn /2, the single precision calculation (23]
of (30) with (31) converges to two digits of accuracy in 11
terms before diverging rapidly. Solving (31) for the backwart4l
recursion relation produces a stable algorithm, which can be
improved by expanding it into [15]

apn (e, x) = —d, (—£>n67’”

C

(9]

whered,, = ¢(1 — d,,—1)/n andd; = ¢. The EPF2 algorithm [17]
in Tables | and Il uses the series expansion [16, Sec. 5.1.:[_@]
for |c| < 1.3|u+8—c|, (33) with Aitken’s§2-process [16, Sec.
3.9.7]WithN = 5.0—(4.041.1|¢|)/ In |6 /u| for |u| < 4.5, and
(31) with N =1—-11.5/1n |8/¢| for |u| > 4.5. The instability
of (31) precludes the use of Aitken&-process to accelerate[20]
convergence of this series.

[19]
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