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A Two Probes Scanning Phaseless Near-Field
Far-Field Transformation Technique

Rocco Pierri, Giuseppe D’Elia, and Francesco Soldovieri

Abstract—An innovative and effective technique to determine
the far field of a radiating system from near-field intensity data
is introduced, analyzed, and tested. The approach is based on
the simultaneous measurement of the amplitude of the voltages
received by two different probe antennas moving over asingle
scanning surface in near zone and performs the phase retrieval of
the near field by assuming as unknown the plane wave spectrum
of the field. The radiated field is then straightforwardly evaluated.
As compared to the existing phaseless measurement techniques,
the use of two different probes makes it possible to avoid the
need for a second scanning surface and thus allows the use
of smaller (and cheaper) anechoic chambers. Furthermore, the
measurement time is essentially equal to that required by con-
ventional techniques based on the measurement of the complex
near field. The reliability and the effectiveness of the approach
are investigated and discussed and the key factors affecting its
behavior are highlighted. In particular, the relevance of the
difference between the plane wave spectra (PWS) of the two probe
antennas in ensuring an acceptable reliability of the solution, with
respect to the starting point of the procedure, is outlined. Finally,
the effectiveness of the approach is confirmed by an extensive
numerical analysis, which also shows the stability of the solution
against noise on data.

Index Terms—Antenna radiation patterns, far field, near field.

I. INTRODUCTION

A NTENNA diagnostics from (complex) near-field mea-
surements is a well-established technique at microwave

frequencies that is now also becoming increasingly interesting
at millimeter frequencies when testing antennas in radioastro-
nomic and radiometric applications [1].

However, various factors make near-field phase measure-
ments more and more inaccurate with increasing frequency.
These include: probe-positioning errors (especially along the
direction perpendicular to the scanning plane); temperature
changes and the mechanical movement of the cables connect-
ing the probe to the receiver; the relative humidity variation
during the measurements; and the stability and accuracy of
the receiver and transmitter [2].

The use of very sophisticated and, hence, costly measure-
ment equipment is thus obligatory. In particular, the complex-
ity of the measurement facility increases with the working
frequency and the dimension of the antenna being tested
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mainly because of the increasingly stringent requirements on
the translation gears (see [2, table 6.10]) that are dictated by
the phase-measurement accuracy.

To the best of our knowledge, the only available (amplitude
and phase) near-field measurement setup in the millime-
ter range has a 90-cm 90-cm-wide scan area and was
employed for the testing of submillimeter-wave astronomy
satellite (SWAS) antenna with an aperture of 53 cm68
cm and working at 500 Ghz [3].

In order to overcome the problem of inaccuracy in near-field
phase measurements, various near-field far-field transforma-
tion approaches have been recently proposed. At present, the
most promising techniques are microwave holography and the
phase retrieval technique.

Microwave holography [4] is based on Gabor holography
[5] (first introduced in electron microscopy) and exploits the
measurement of the interference intensity pattern between the
antenna under test (AUT) and a transmitted reference wave.
The pattern measured is numerically processed to obtain the
far field radiated by the AUT.

There are a number of drawbacks to this technique. First
of all, to obtain a reasonable scan time, i.e., an acceptable
interval between the measurement points, the measurement
plane must be sufficientlyfar away from the aperture plane.,
i.e., testing a 2-m-diameter antenna at 1000 GHz requires a
measurement plane which is 15 m away from the antenna.
Accordingly, the distance of the measurement surface from
the AUT is greater than that required by conventional near-
field techniques and this results in a significant increase in the
cost of the measurement facility.

In addition, the accuracy of far-field evaluation is closely
related to a precise knowledge of the reference antenna since
the reference wave must be removed from the measured signal
in order to obtain the far-field of the AUT.

Last, the stability of the reference wave must be ensured
during the measurement time; this becomes more and more
vital as the frequency and the dimensions of the AUT increase.

The second technique, i.e., phase retrieval [6], [7] considers
the inverse problem of determining a complex function from
amplitude only data and has met with significant interest, not
just in near-field far-field transformation techniques [8], [9],
but also in antenna metrology and diagnostics [10]–[13].

With this technique, the solution is found as the global min-
imum of a functional whose unknowns best fit the data. Since
the functional is nonquadratic with respect to the unknowns, it
can exhibit local minima where the minimization algorithms
can be trapped.
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In fact, the minimization schemes usually employed are
essentially of a “local” type and only allow us to reach
the minimum closer to the starting point of the iterative
minimization procedure. Accordingly, the solution found can
also correspond to a local minimum (false solution) and can
be completely different to the true solution. Hence, the local
minima problem heavily affects the reliability of the phase
retrieval approaches.

The two main classes of algorithms available in literature
differ mainly in the choice of the objective functional to be
minimized. A first class of phase retrieval algorithms is based
on the minimization of the distance between the amplitude of
the measured and the reconstructed near-field [6], [9], [14] and
handles a highly nonlinear objective functional. The other one
considers the distance between the squared amplitude of the
measured and the reconstructed near field and, thus, formulates
the problem as the inversion of a quadratic operator—a rather
simple nonlinearity [7]. As shown in [15], this choice allows
better performances of the phase retrieval algorithm with
respect to the local minima problem. In addition, it allows us
to analyze the local minima problem thoroughly. In particular,
the analysis performed in [16] has recognized that the ratio
between the amount of independent data and the number of
unknowns is the key factor in avoiding the local minima
problem.

Thus, in order to ensure the reliability of near-field phase-
reconstruction algorithms, the approaches available to date
require a knowledge of the amplitude of the near-field over
two measurement surfaces.

Furthermore, the choice of nonredundant and efficient rep-
resentations of the field, which exploit all the availablea priori
information, is also crucial in avoiding false solutions.

The need for two scanning surfaces can lead to a more
time-consuming measurement procedure with respect to the
conventional one, based on the complex near-field measure-
ment, and can require larger anechoic chambers (thus leading
to a significant increase in the cost of the overall measurement
facility).

However, requiring the smallest possible measurement time
is a more and more stringent need for increasing frequency,
given the rigorous constraints on the stability of the measure-
ment setup needed to ensure the desired measurement accuracy
[2].

A promising approach (at present available only at mi-
crowave frequencies) that reduces the scan time, performs
thermographic measurements of the near field [17] by means
of a resistive sheet that absorbs energy in proportion to the
intensity of the incoming field. A thermal picture of the heat
pattern on the resistive sheet is taken by means of an infrared
imaging camera, which gives the value of the field intensity
at each point on the absorbing sheet. This measurement
technique makes it possible to overcome the problem of probe
position errors and probe correction errors and to perform
near-field measurements in a negligible interval of time. The
measurement data obtained by using termographic technique
have been processed by employing either phase retrieval
method [17] or the holographic approach [18]. However, the
effectiveness of this technique is limited by the low achievable

measurements dynamic range, which, at present, is limited to
about 20 dB.

The aim of this paper is to present a new testing technique
using only near-field intensities, which makes it possible to
overcome the abovementioned drawbacks that are typical of
the phase-retrieval-based approaches available up to now.

The technique exploits the squared amplitude of the voltages
collected by two different probes simultaneously moving over
a singlescanning surface in near zone. The required scan time
is thus equal to that of the conventional complex near-field
measurement.

The results of an extensive numerical analysis suggest that
the difference between the plane wave spectra of the two
probes makes it possible to obtain the required amount of
independent squared-amplitude data

Following [7], [16], [19], the presented approach is based on
the choice of thesquared amplitudeof the voltages received
by the two probes as data of the problem and, thus, involves
the inversion of aquadratic operator.

The paper is organized as follows. In Section II, the far-
field estimation from near-field intensity data is presented
for a planar scanning surface. The near-field phase-retrieval
problem is recast as the inversion of a quadratic operator
and the solution is defined as the global minimum of a
quartic functional with respect to the unknowns. The key
factors affecting the reliability of the near-field phase recovery
approach are analyzed. In Section III, the near-field/far-field
transformation procedure is described and its effectiveness and
stability are numerically shown.

II. THE FORMULATION OF THE PROBLEM

Let us consider a planar focusing source, i.e., a source
radiating nearly all its power within a bounded angular domain
of the visible domain of size and along the - and -axis,
respectively, located on the plane , with a -directed
aperture field.

The transverse component of the near-field over the plane
at is expressed [20] as

(1)

where , , ,
, is the wavelength, is a linear operator [21]

relating the plane wave spectrum (PWS) transverse component
to the near-field transverse component and

an time dependence has been considered and omitted.
By (1), it follows that if the transverse component of the

(complex) near-field is known over the whole
plane, the PWS can be determined. The far field is then
straightforwardly evaluated.

In near-field phaseless technique [7], in order to ensure
the reliable determination of the radiation pattern of the
AUT, at variance with the conventional (phase and amplitude)
measurement technique, a second set of data is required.
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The -component of the near field over a
second scanning plane at is related to through
the linear operator .

It can be seen [7] that when the spacing between the two
planes increases, the role of the “defocussing term”
becomes more relevant in making the two sets of the squared
amplitude data more “different,” with the result that the
information content increases.

In this paper, we will obtain the same effect by considering
a single plane but two different probes.

In fact, let us consider the case of two different probe an-
tennas with a -directed aperture field, simultaneously moving
over the measurement plane at .

The open-circuit voltage received by each probe is ex-
pressed by means of an integral involving the source and the
probe plane wave spectra [20]. In the case considered here,
denoted by and the component of the first
and second probe PWS, respectively, the received voltages
and can be expressed as

(2)

where , is a constant with the dimensions of a
current, is the free-space characteristic impedance, and
is a linear operator relating the PWS transverse component

to the output voltage .
According to (2), the linear operators can be expressed

as . The difference between the
two probe PWS and ensures the required
amount of independent data which, in the approaches available
in literature, are obtained by collecting the data over two
different scanning surfaces [7].

As stated previously, the problem under consideration in-
volves the determination of the far field radiated by the antenna
being tested from the knowledge of the squared amplitude of
the voltages received by the two probes, say ,

.
Relation (2) leads to the natural choice of as the

unknown of the problem.
The possibility of introducing a finite-dimensional represen-

tation for the PWS can be achieved by exploiting the
a priori information on the AUT.

First, due to the finite extent of the radiating system,
is a bandlimited function, so that it is amenable to a

Shannon sampling series representation involving, in principle,
a nonfinite number of samples [22].

Second, we assume thea priori information on the direction
of the main lobe and the extent of the angular regionof the
visible domain within which is significantly different
from zero. Accordingly, can be approximated by
means of the finite Shannon sampling series involving only
the PWS samples falling within

[7, see (A1)]. Therefore, for the transverse component
of PWS we introduced a finite-dimensional approximation

and the samples become

the actual unknowns of the problem. Defining the vector
we have

so that the problem at hand can be stated as the inversion of
the quadratic operator .

Due to measurement errors and noise, the measured squared
amplitude differ from the ideal ones

and and do not necessarily belong to the range of
the operator , so that the existence of a solution
satisfying (3) is not ensured. The problem considered here
is thus an ill-posed one and will be solved by introducing a
“quasi-solution” as theglobal minimum of the functional

(4)

where is the quadratic norm (eventually weighted) in
the space of data. As the functional (4) is defined over
a finite-dimensional space, it admits a minimum by virtue
of the Weierstrass theorem [23], so that the problem under
investigation has a quasi-solution.

When dealing with a nonlinear inverse problem, the first
question to be addressed concerns the uniqueness of the
solution. By following the same arguments presented in [24],
it is possible to show that the availability of the two sets of
data collected by the two different probes makes it possible to
ensure the uniqueness of the solution except for an unessential
constant phase factor.

In particular, these arguments also allow to understand how
the probes must be different. For instance, let us consider the
very simple discrete case of probe voltages given by

(5)

where are the known ratios between the coefficients of
the second and first probe, respectively. It can be shown
by following the same reasonings presented in [24] that the
uniqueness of the solution is ensured when it is possible to
solve the linear system of the equations

with respect to the products and , This is allowed
provided that , which gives a measure of how the
two probes must be different.

Functional (4) is nonquadratic and the main points concern-
ing its minimization must be addressed. As shown in [16], the
local minima problem can be analyzed in a thorough way and
the favorable effect of increasing the ratio between the number
of independent data and the number of unknowns on the local
minima problem can be outlined.

This has been shown in [7], [16] thanks to the definition of
a sufficient condition for the lack of local minima in. The
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definition of this condition is possible since the functional
along a linear variation in the space of the unknowns behaves
as a fourth-order polynomial [16]. This condition makes it
possible to state that collecting as much independent data as
possible plays a key role in overcoming the local minima
problem.

This also occurs in the near-field far-field transformation
from intensity data, where the increase in the amount of
independent data is achieved by means of the addition of a
second scanning surface [7].

In the approach presented here, the required number of
independent near-field intensity data is obtained by considering
a second probe antenna. To ensure an effective increase in the
amount of independent data, the PWS of the two probes must
be as “different” as possible.

Finally, it must be noted that the accuracy of the far-
field estimation also depends on the precision attainable in
evaluating and , which in turn is based on the accuracy
in the knowledge of the probes positions and spectra.

III. N UMERICAL RESULTS

The numerical implementation of the algorithm and its
effectiveness will be presented in this section. In order to
numerically check the algorithm, near-field measured probe-
intensity voltages have been numerically simulated.

As far as the evaluation of the operator is concerned,
it must be noted that the Shannon sampling series repre-
sentation of allows an extensive use of the fast
Fourier transform (FFT) algorithm with a resulting efficient
and computationally low-cost numerical code.

First, the PWS is interpolated from its samples
within the region by a discrete Fourier transform

(DFT), a zero-padding and a subsequent FFT so that the
integral in (2) can be accurately evaluated [25]. From the in-
terpolated function , the voltage spectrum

is then evaluated over a uniform
grid. The sampling grid is determined by the extent of the
measurement domain where the voltages are significantly
different from zero, given the Fourier transform relationship
between the voltage spectrum and the voltages received by
the two probes.

As the PWS is significantly different from zero only
within , the probe voltage can be approximated by means of
a band-limited function, so that the squared amplitude of the
voltage is also amenable to a Shannon sampling representation.
The samples of the squared amplitude can be computed
starting from the voltage spectrum by means of an FFT.

Concerning the minimization of , an iterative procedure
based on the Pollak–Ribiere method [26] was applied. In
particular, the evaluation of the minimization direction requires
the computation of the vector given by

(7)

where and denote the real and imaginary part
of the corresponding complex quantity, respectively.

As shown in the Appendix, one obtains

(8)

where is a complex vector whose components are the
samples ordered in an arbitrary way, is
defined by (A.3), and stands for the adjoint operation [21].
The evaluation of can be basically performed by means
of the FFT.

The evaluation of the optimal step , ensuring the max-
imum decrease of along the updating direction, was per-
formed, in a fast and accurate way by solving a third-degree
algebraic equation [8].

A detailed description of the presented technique is given
by the flow chart shown in Fig. 1.

The effectiveness of the technique can be improved by
introducing suitable weights into the evaluation ofin order
to enhance the information content of the data correspond-
ing to lower voltage intensities [7], [8], [25]. Since the
squared-amplitude distributions can be represented through
their samples, a simple but particularly effective choice of
the weights consists in the inverse of the corresponding
measured intensity voltage samples. Accordingly, the weighted
discretized version of the functional is defined as

(9)

where , , , and are the first and
second probe ideal and measured intensity voltage samples,
respectively.

The accuracy of the results was evaluated by means of the
normalized error defined as

(10)

A square planar source of side with the
aperture field component given by

(11)

was considered. The constants, , and are such that
dB and ,

respectively.
The first probe is given by an -plane sectorial horn with

a 0.8- 5- -wide aperture and with the larger side oriented
along the axis. The component of the probe aperture field
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Fig. 1. Flow chart of the solution algorithm: operations along the dashed line referring to the second probe are equal to those on the parallel branch,
but with G2(u; �v) instead ofG1(u; �v).

is given by

(12)

with and .
The second probe is given by a-plane sectorial horn with

a 5- 0.8- -wide aperture and with the larger side oriented
along the axis. The component of the probe aperture field
is given by

(13)

with and .
The two probes are spaced along a line parallel to the
axis.

The squared amplitude of the voltages received by the
probes were simulated on a grid of 128128 measurement
points, spaced between each other on the plane .

Noise-free data were considered first. The samples
belonging to the square region of the

visible domain of side are the unknowns of the problem.
A completelyrandomset of PWS samples was considered as
the starting point of the iterative minimization procedure.

In the early stages of the minimization procedure, only the
significant samples of were considered. This makes
it possible to perform the beginning of the minimization
procedure with an enlarged ratio between the amount of
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Fig. 2. Comparison between the ideal voltage phase (solid line) and the retrieved phase (dotted line) received by the first probe on the cut line
x = 0 for the first test case.

independent data and the number of unknowns so that a
favorable effect on the local minima is obtained [7]. In fact,
an approximated reconstruction of falling within the
attraction domain of the global minimum of was obtained.

In particular, at the beginning of the minimization procedure
11 11 samples falling within the central region of the
visible domain were considered. The minimization ofgives
an error dB.

Once the significant samples of were reliably
estimated, the solution was improved by gradually increasing
the number of the unknowns to be searched for until all the
samples falling within are considered. The final estimate of
the unknowns corresponds to dB. Finally, the
accuracy of the result is increased by introducing the weighted
functional that leads to a normalized error dB.

The exact (solid line) and retrieved (dotted line) phase of
the voltage received from the first probe on the cut lines
and , are shown under Figs. 2 and 3, respectively.

The amplitude of the exact (solid line) and estimated (dotted
line) PWS on the cut lines and , are shown
in Figs. 4 and 5, respectively.

The sensitivity of the proposed technique with respect to the
noise on data was tested by superimposing an additional 5%
uniformly distributed noise on the intensity of the voltages of
the previous example.

The error obtained by considering just the 1111 samples
is dB while the final value of , obtained

after the minimization of and by considering all samples
falling within , is dB.

The exact (solid line) and the retrieved (dotted line) phase
of the voltages received by the first probe on the cut lines

and are shown under Figs. 6 and 7, respectively.

The amplitude of the exact (solid line) and estimated (dotted
line) PWS on the cut lines and are shown in
Figs. 8 and 9, respectively.

IV. CONCLUSIONS

A new technique for the antenna diagnostics from near-field
intensity data only has been presented.

This technique takes as data of the problem the squared
amplitude of the voltages received bytwo different probes
over a single planar observation surface in the near-zone of
the antenna. The different behavior of the two PWS probes
plays a decisive role in obtaining the right amount of data,
thus ensuring the reliability of the near-field phase recovery.

The necessity of two scanning surfaces, required by the ex-
isting techniques, is overcome, thus obtaining two significant
advantages.

First, the size of the anechoic chamber is the same as
that required by the conventional near-field measurement
techniques based on the measurement of the complex near
field.

Second, the measurements made by the two probes can be
performed simultaneously so that the measurement time also is
equal to that required by conventional near-field measurement
techniques. As compared to the available intensity near-field-
only techniques, this property leads to very significant advan-
tages when the requirements concerning the stability and the
accuracy of the transmitter and receiver are considered.

Although the technique has been presented for a scalar case
and planar scanning, it can be easily extended to the vectorial
case and/or to different scanning geometries, e.g., cylindrical
geometry.
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Fig. 3. Comparison between the ideal voltage phase (solid line) and the retrieved phase (dotted line) received by the first probe on the cut line
y = 0 for the first test case.

Fig. 4. Comparison between the amplitude of the transverse component of the ideal PWS (solid line) and the estimated PWS (dotted line) on the cut
line u = 0 for the first test case.

Furthermore, the effectiveness of the approach should be
tested also in the case of focusing antennas at millimeter
frequencies.

A further possible application of the approach concerns the
characterization of the quiet zone of a compact test range from
field intensity data only, since the phase measurement becomes
inaccurate as the working frequency increases.

In addition, the basic idea of the approach can also be
applied to the reflector antenna diagnostics from field intensity
data only [13]. This can be made by employing a receiving
feed array under different excitation configurations for col-
lecting the two squared-amplitude measurements of the field
at feed location. This can allow the two sets of the squared
amplitude data to be acquired during a unique rotation of
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Fig. 5. Comparison between the amplitude of the transverse component of the ideal PWS (solid line) and the estimated PWS (dotted line) on the cut
line v = 0 for the first test case.

Fig. 6. Comparison between the ideal voltage phase (solid line) and the retrieved phase (dotted line) received by the first probe on the cut linex = 0

for the noise-data test case.

the antenna being tested, with a reduced sensitivity of the
technique with respect to the instabilities of the signal source
and the atmosphere.

APPENDIX

This appendix is devoted to deriving the expression for the
vector given in (8). To this end, it is useful to give some
definitions.

First, we recall that the PWS transverse component
is approximated in a finite-dimensional space according to

(A.1)
where in the summation only the samples falling within
must be considered and .
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Fig. 7. Comparison between the ideal voltage phase (solid line) and the retrieved phase (dotted line) received by the first probe on the cut liney = 0

for the noise-data test case.

Fig. 8. Comparison between the amplitude of the transverse component of the ideal PWS (solid line) and the estimated PWS (dotted line) on the cut
line u = 0 for the noise-data test case.

Second, we consider the adjoint of the linear operator
, which is given by

(A.2)
where stands for the complex conjugate operation.

Third, we define the operator, which relates the vector,
whose components are the terms with
and and are ordered in an arbitrary way to
the function according to

(A.3)
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Fig. 9. Comparison between the amplitude of the transverse component of the ideal PWS (solid line) and the estimated PWS (dotted line ) on the cut
line v = 0 for the noise-data test case.

Accordingly, the adjoint operator of is defined according to

(A.4)
Now, by substituting the transverse component of the

PWS with its finite-dimensional version (A.1), the voltage
is given by

(A.5)
where is the vector of the samples .

In order to compute the vector , we must evaluate the
partial derivatives of with respect to the real variables

and . To this end, it is useful first of
all to evaluate the partial derivatives of which, after
simple manipulations, are given by

(A.6)
and

(A.7)
respectively.

Accordingly, the partial derivative of with respect to
is evaluated as

(A.8)

where means the scalar product and denotes the
complex conjugate of the addition of the two previous terms.

In a similar way, it is possible to evaluate the partial
derivative of with respect to , which is given by

(A.9)

Finally, the vector (7) given by

can be computed as

(A.10)
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