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A Two Probes Scanning Phaseless Near-Field
Far-Field Transformation Technique

Rocco Pierri, Giuseppe D’Elia, and Francesco Soldovieri

Abstract—An innovative and effective technique to determine mainly because of the increasingly stringent requirements on
the far field of a radiating system from near-field intensity data the translation gears (see [2, table 6.10]) that are dictated by
is introduced, analyzed, and tested. The approach is based ONihe phase-measurement accuracy.

the simultaneous measurement of the amplitude of the voltages . .
received by two different probe antennas moving over asingle To the best of our knowledge, the only available (amplitude

scanning surface in near zone and performs the phase retrieval of and phase) near-field measurement setup in the millime-
the near field by assuming as unknown the plane wave spectrum ter range has a 90-cnx 90-cm-wide scan area and was
of the field. The radiated field is then straightforwardly evaluated. employed for the testing of submillimeter-wave astronomy

As compared to t_he existing phaseless measurement techniquessate”ite (SWAS) antenna with an aperture of 53 6m68
the use of two different probes makes it possible to avoid the

need for a second scanning surface and thus allows the useCM and working at 500 Ghz [3]. _ _ _
of smaller (and cheaper) anechoic chambers. Furthermore, the  In order to overcome the problem of inaccuracy in near-field

measurement time is essentially equal to that required by con- phase measurements, various near-field far-field transforma-
ventional techniques based on the measurement of the complextjgn approaches have been recently proposed. At present, the

near field. The reliability and the effectiveness of the approach . : :
are investigated and discussed and the key factors affecting its most promising techniques are microwave holography and the

behavior are highlighted. In particular, the relevance of the Phase retrieval technique.
difference between the plane wave spectra (PWS) of the two probe  Microwave holography [4] is based on Gabor holography
antennas in ensuring an acceptable reliability of the solution, with [5] (first introduced in electron microscopy) and exploits the
respect to the starting point of the procedure, is outlined. Finally, megsurement of the interference intensity pattern between the
the effectiveness of the approach is confirmed by an extensive .
numerical analysis, which also shows the stability of the solution antenna under test (AU,T) and 6,‘ transmitted reference \(vave.
against noise on data. The pattern measured is numerically processed to obtain the
far field radiated by the AUT.

There are a number of drawbacks to this technique. First
of all, to obtain a reasonable scan time, i.e., an acceptable

|. INTRODUCTION interval between the measurement points, the measurement
NTENNA diagnostics from (complex) near-field meaP'a”e m_ust be suffic_ientljar away from the aperture plan_e.,
surements is a well-established technique at microwal@- t€sting a 2-m-diameter antenna at 1000 GHz requires a
frequencies that is now also becoming increasingly interestifif@surement plane which is 15 m away from the antenna.
at millimeter frequencies when testing antennas in radioastfccordingly, the distance of the measurement surface from
nomic and radiometric applications [1]. the AUT is greater than that required by conventional near-
However, various factors make near-field phase measufigld techniques and this results in a significant increase in the
ments more and more inaccurate with increasing frequen&pst Of the measurement facility. o
These include: probe-positioning errors (especially along the!n addition, the accuracy of far-field evaluation is closely
direction perpendicular to the scanning plane); temperatdfdated to a precise knowledge of the reference antenna since
changes and the mechanical movement of the cables connE@-reference wave must be removed from the measured signal
ing the probe to the receiver; the relative humidity variatioft order to obtain the far-field of the AUT.
during the measurements; and the stability and accuracy of-ast, the stability of the reference wave must be ensured
the receiver and transmitter [2]. during the measurement time; this becomes more and more
The use of very sophisticated and, hence, costly measty#al as the frequency and the dimensions of the AUT increase.
ment equipment is thus obligatory. In particular, the complex- The second technique, i.e., phase retrieval [6], [7] considers
ity of the measurement facility increases with the workinfle inverse problem of determining a complex function from
frequency and the dimension of the antenna being tes@@plitude only data and has met with significant interest, not
just in near-field far-field transformation techniques [8], [9],
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In fact, the minimization schemes usually employed areeasurements dynamic range, which, at present, is limited to
essentially of a “local” type and only allow us to reactabout 20 dB.
the minimum closer to the starting point of the iterative The aim of this paper is to present a new testing technique
minimization procedure. Accordingly, the solution found cansing only near-field intensities, which makes it possible to
also correspond to a local minimum (false solution) and cawvercome the abovementioned drawbacks that are typical of
be completely different to the true solution. Hence, the loctiie phase-retrieval-based approaches available up to now.
minima problem heavily affects the reliability of the phase The technique exploits the squared amplitude of the voltages
retrieval approaches. collected by two different probes simultaneously moving over
The two main classes of algorithms available in literatur@singlescanning surface in near zone. The required scan time
differ mainly in the choice of the objective functional to bds thus equal to that of the conventional complex near-field
minimized. A first class of phase retrieval algorithms is basedeasurement.
on the minimization of the distance between the amplitude of The results of an extensive numerical analysis suggest that
the measured and the reconstructed near-field [6], [9], [14] atiee difference between the plane wave spectra of the two
handles a highly nonlinear objective functional. The other oggobes makes it possible to obtain the required amount of
considers the distance between the squared amplitude of ithdependent squared-amplitude data
measured and the reconstructed near field and, thus, formulatgsollowing [7], [16], [19], the presented approach is based on
the problem as the inversion of a quadratic operator—a ratibe choice of thesquared amplitudef the voltages received
simple nonlinearity [7]. As shown in [15], this choice allowdy the two probes as data of the problem and, thus, involves
better performances of the phase retrieval algorithm withe inversion of aguadratic operator.
respect to the local minima problem. In addition, it allows us The paper is organized as follows. In Section I, the far-
to analyze the local minima problem thoroughly. In particulafield estimation from near-field intensity data is presented
the analysis performed in [16] has recognized that the rafiar a planar scanning surface. The near-field phase-retrieval
between the amount of independent data and the numbeptdblem is recast as the inversion of a quadratic operator
unknowns is the key factor in avoiding the local minima&nd the solution is defined as the global minimum of a
problem. quartic functional with respect to the unknowns. The key
Thus, in order to ensure the reliability of near-field phaséactors affecting the reliability of the near-field phase recovery
reconstruction algorithms, the approaches available to dagproach are analyzed. In Section Ill, the near-field/far-field
require a knowledge of the amplitude of the near-field ovéfansformation procedure is described and its effectiveness and
two measurement surfaces. stability are numerically shown.
Furthermore, the choice of nonredundant and efficient rep-
resentations of the field, which exploit all the availaalgriori
information, is also crucial in avoiding false solutions. Il. THE FORMULATION OF THE PROBLEM

The need for two scanning surfaces can lead to a more et ys consider a planar focusing source, i.e., a source
time-consuming measurement procedure with respect to fagjiating nearly all its power within a bounded angular domain
conventional one, based on the complex near-field measusethe visible domain of sizea and2b along thez- andy-axis,
ment, and can require larger anechoic chambers (thus leadiggpectively, located on the plane= 0, with a y-directed
to a significant increase in the cost of the overall measuremegerture field.
facility). The transversg component of the near-field over the plane

However, requiring the smallest possible measurement tige, — 4 is expressed [20] as
is a more and more stringent need for increasing frequency,
given the rigorous constraints on the stability of the measure-
ment setup needed to ensure the desired measurement accuraéy(z, ¥, d / dv /

[2].

A promising approach (at present available only at mi- =T(E 1)
crowave frequencies) that reduces the scan time, performs
thermographic measurements of the near field [17] by meamkere v = 3 sin 8 cos ¢, v = [ sin 8 sin ¢, w = 3 cos 6,
of a resistive sheet that absorbs energy in proportion to the= 2« /A, X is the wavelength?; is a linear operator [21]
intensity of the incoming field. A thermal picture of the heatelating the plane wave spectrum (PWS) transverse component
pattern on the resistive sheet is taken by means of an infral(l, v) to the near-field transverse componétt:, v, d) and
imaging camera, which gives the value of the field intensin ¢/« time dependence has been considered and omitted.
at each point on the absorbing sheet. This measuremenBy (1), it follows that if the transverse component of the
technique makes it possible to overcome the problem of profmmplex) near-fieldE(z, y, d) is known over the whole
position errors and probe correction errors and to perforplane, the PWS can be determined. The far field is then
near-field measurements in a negligible interval of time. Tharaightforwardly evaluated.
measurement data obtained by using termographic techniquén near-field phaseless technique [7], in order to ensure
have been processed by employing either phase retrietfts@ reliable determination of the radiation pattern of the
method [17] or the holographic approach [18]. However, th&UT, at variance with the conventional (phase and amplitude)
effectiveness of this technique is limited by the low achievabtaeasurement technique, a second set of data is required.

E(u, v)e —i(uztvytwd) 1.
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The y-componentE(z, y, d2) of the near field over a the actual unknowns of the problem. Defining the vector
second scanning plane at= d; is related to£(u, v) through M@ = (M?, M3) we have
the linear operatofly, = 1} e/*(4=d2),

It can be seen [7] that when the spacing between the two

. “ H (d—d ) . .

planes increases, the rol_e of th_e defocussing terf=< so that the problem at hand can be stated as the inversion of
becomes more relevant in making the two sets of the squaiﬁg quadratic operatoB
f‘;\rpplltud_e data more ‘different,” with the result that the Due to measurement errors and noise, the measured squared
Information content increases. . amplitude M® = (M2, M2) differ from the ideal ones

Ir_1 this paper, we will ol_:)taln the same effect by conS|der|nlg/[12 and M2 and do not necessarily belong to the range of
a lsmfgle pllane but tw_(c)j d|ﬁre]rent probfes. diff b the operator3, so that the existence of a solutidf(u, v)

n aCt’. et us consl er the case o tWO lfterent pro e_a'gétisfying (3) is not ensured. The problem considered here
tennas with a-directed aperture field, simultaneously MOVINg thus an ill-posed one and will be solved by introducing a

over the meas'urelment pIaneat:_ d. . “quasi-solution” as theylobal minimum of the functional
The open-circuit voltage received by each probe is ex-

pressed by means of an integral involving the source and the  &(E) = ||B(E) - M@)?

M® = (|LE[, |BEP) = B(E) 3)

probe plane wave spectra [20]. In the case con5|dere_d here, =|[|LE|? - M2|? + || |BE|]? - M2|? (4)
denoted by7, (v, v) andGz(u, v) they component of the first
and second probe PWS, respectively, the received voltdgeswhere || - || is the quadratic norm (eventually weighted) in
andV, can be expressed as the space of data. As the functional (4) is defined over
5 oo oo 5 a finite-dimensional space, it admits a minimum by virtue
Vi(z,y, d) = 8 / dv/ <w — U_> of the Weierstrass theorem [23], so that the problem under
A J oo —o0 w investigation has a quasi-solution.
- E(u, v)Gi(u, —v) e uetvuted) g, When dealing with a nonlinear inverse problem, the first
:Z(E) ) guestion to be addressed concerns the uniqueness of the

solution. By following the same arguments presented in [24],
wherei = 1, 2, v is a constant with the dimensions of dt is possible to show that the availability of the two sets of
current, ¢ is the free-space characteristic impedance, and data collected by the two different probes makes it possible to
is a linear operator relating the PWS transverse componemsure the uniqueness of the solution except for an unessential
E(u, v) to the output voltage);. constant phase factor.

According to (2), the linear operatof can be expressed In particular, these arguments also allow to understand how
as7; = T1G;(u, —v)(w—v?/w). The difference between thethe probes must be different. For instance, let us consider the
two probe PWSG (u, v) and Ga(u, v) ensures the required very simple discrete case of probe voltages given by
amount of independent data which, in the approaches available 1
iq literature, are obtained by collecting the data over two Vi(z) = Z c &
different scanning surfaces [7].

As stated previously, the problem under consideration in- 1
volves the determination of the far field radiated by the antenna Vo(z) = Z tcnedE (5)
being tested from the knowledge of the squared amplitude of

the voltages received by the two probes, s@y = |[V1]?, , .
M2 = W2 where ¢, are the known ratios between the coefficients of

the second and first probe, respectively. It can be shown
by following the same reasonings presented in [24] that the
fniqueness of the solution is ensured when it is possible to
solve the linear system of the equations

n=—1

n=-—

Relation (2) leads to the natural choice Bfu, v) as the
unknown of the problem.

The possibility of introducing a finite-dimensional represe
tation for the PWSE(u, v) can be achieved by exploiting the
a priori information on the AUT. c*1co+cher = Ch

First, due to the finite extent of the radiating system, {

E(u, v) is a bandlimited function, so that it is amenable to a
Shannon sampling series representation involving, in principleith respect to the products ; ¢y and cic;, This is allowed
a nonfinite number of samples [22]. provided that* ; ¢, # tit1, which gives a measure of how the

Second, we assume thepriori information on the direction two probes must be different.
of the main lobe and the extent of the angular redibaf the Functional (4) is nonquadratic and the main points concern-
visible domain within whichZ(«, v) is significantly different ing its minimization must be addressed. As shown in [16], the
from zero. Accordingly,E(u, v) can be approximated bylocal minima problem can be analyzed in a thorough way and
means of the finite Shannon sampling series involving ontige favorable effect of increasing the ratio between the number
the PWS samplest,,,, = E(nw/a, mx/b) faling within of independent data and the number of unknowns on the local
Q [7, see (Al)]. Therefore, for the transverse componentinima problem can be outlined.
of PWS we introduced a finite-dimensional approximation This has been shown in [7], [16] thanks to the definition of

E(u, v) and the samples,,,, = E(nx/a, mn/b) become a sufficient condition for the lack of local minima . The

(6)

t*_1t00*_100 + tétlczcl = Dl
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definition of this condition is possible since the functiodal  As shown in the Appendix, one obtains
along a linear variation in the space of the unknowns behaves B i 9 o

as a fourth-order polynomial [16]. This condition makes it (V@) =4(T.P) (T Pe)(| T Pl _2M1)~]2
possible to state that collecting as much independent data as +ALP) (TP T2Pef* = M5)]  (8)

possible plays a key role in overcoming the local minim@\‘/here ¢ is a complex vector whose components are the

problem. sam - : . :
. . ” . . plesE(nr/a, mm/b) ordered in an arbitrary wayP is
This also occurs in the near-field far-field transformatloa fined by (A.3), and+ stands for the adjoint operation [21].

from intensity data, where the increase in the amount ? uati " be basicall ; db
independent data is achieved by means of the addition of ¢ evaluation oy can be basically performed by means

second scanning surface [7]. of the FFT. ] . .

In the approach presented here, the required number ofl N€ €valuation of the optimal stefy, ensuring the max-
independent near-field intensity data is obtained by considerifgm decrease of along the updating direction, was per-
a second probe antenna. To ensure an effective increase inf@figed, in a fast and accurate way by solving a third-degree
amount of independent data, the PWS of the two probes mafgebraic equation [8].
be as “different” as possible. A detailed description of the presented technique is given

Finally, it must be noted that the accuracy of the famby the flow chart shown in Fig. 1.
field estimation also depends on the precision attainable inThe effectiveness of the technique can be improved by
evaluatingZ; and 7z, which in turn is based on the accuracyntroducing suitable weights into the evaluationd®fin order
in the knowledge of the probes positions and spectra.  tg enhance the information content of the data correspond-
ing to lower voltage intensities [7], [8], [25]. Since the
squared-amplitude distributions can be represented through

_their samples, a simple but particularly effective choice of

The numerical implementation of the algorithm and The weights consists in the inverse of the corresponding

effectiveness will be presented in this section. In order to . : . .
. . ' Mmeasured intensity voltage samples. Accordingly, the weighted
numerically check the algorithm, near-field measured probg.—

intensity voltages have been numerically simulated. iscretized version of the functiondl is defined as

I1l. NUMERICAL RESULTS

As far as the evaluation of the operatBris concerned, (i) = Z ((TLE)y|? — M3;,)? . ((T2E)ij|? — M3;,)?
it must be noted that the Shannon sampling series repre-""/ £ Ml2ij M22ij
sentation of F(u, v) allows an extensive use of the fast " 9
Fourier transform (FFT) algorithm with a resulting efficient (9)
and computationally low-cost numerical code. where|(7, E);;|?, [(T:E);;|?, M, andM3; are the first and

_First, the PWSE(u, v) is interpolated from its samplessecond probe ideal and measured intensity voltage samples,
E,., within the region{ by a discrete Fourier transformrespectively.

(DFT), a zero-padding and a subsequent FFT so that therhe accuracy of the results was evaluated by means of the
integral in (2) can be accurately evaluated [25]. From the ifg malized error defined as
terpolated functior(u, v), the voltage spectrura—7*(w —

(v /w))G(u, —v)E(u, v) is then evaluated over a uniform > ((TLE)ij| — May)?
grid. The sampling grid is determined by the extent of the . — 10 x1log | -2
measurement domain where the voltages are significantly ZMEU
different from zero, given the Fourier transform relationship ij
between the voltage spectrum and the voltages received by Z(|(72 E)z‘*| _ M%,)Q
the two probes. = ! !
As the PWSE (u, v) is significantly different from zero only + 5
within €2, the probe voltage can be approximated by means of Z My
)

a band-limited function, so that the squared amplitude of the
voltage is also amenable to a Shannon sampling representation. (10)
The samples of the squared amplitude can be compulgdsquare planar source of side = 2b = 10\ with the
starting from the voltage spectrum by means of an FFT. aperture fieldy component given by

Concerning the minimization oP, an iterative procedure
based on the Pollak—Ribiere method [26] was applied. In Fap(z, y) = cos[ry/(2a)] exp(—Kz*) exp(—jK127)
particular, the evaluation of the minimization direction requires -exp(—j Koy?) (11)

the computation of the vectdv® given by )
was considered. The constadts K, and K, are such that

E, 0)| = —40 dB and (K;a?) = (K.d?) = 2),
(V(I))nm, = a({) +J a(I)A (7) | P(av_ )|I an ( 1Q ) ( Py ) (7T/ )
ORe(Eppm)  ~ ISM(Erm) respectively.

The first probe is given by a#’-plane sectorial horn with
whereRe{-} and Sm{-} denote the real and imaginary par@é 0.8-\ x 5-A-wide aperture and with the larger side oriented
of the corresponding complex quantity, respectively. along they axis. They component of the probe aperture field
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c'*) (Source spectrum samples)
| -

DFT (2N, +1) « (2M, + 1) points

interpolation of i
Zeropadding to N * N points
the source spectrum
FFT-* N«N points

evaluation of )
on of the Gy (u, —v)(w — v? fw)e~ ¢

voltage received by

the first probe FFT N « N points

-
evaluation of the FFT-* N « N points
|
contribution to V&*! Gi(u, ~v) ('w = v? fw) et
< FFT N + N points
|
Extract the (2N, + 1) * (2M, + 1) central points
|

from the voltage of

the first probe

DFT~! (2N, + 1) » (2M, + 1) points

\
| D
=Q_V_Q_(k)

| Update the minimization direction |

H“"_V_ﬁ‘kl

l Evaluate the optimal step A, ]
Ak

( Compute new estimate of the solutioﬂ
T

k1) = gk} +A,,H(HVQ(“
L

Fig. 1. Flow chart of the solution algorithm: operations along the dashed line referring to the second probe are equal to those on the parallel branch,
but with Go(u, —v) instead of G1(u, —v).

is given by The squared amplitude of the voltages received by the
Eo(x, y) = cos(ra/a') exp[(—jfy?)/(2R 12) Probes were simulated on a grid of 128128 measurement
p(e v) (rrfa') expl(=3By")/(2F)] 12) points, A/4 spaced between each other on the plare 5.

with B, = 12 andd’ = 0.8). . . Noise-free data were considered first. The samples =
The second probe is given byHa-plane sectorial horn with A(

X ! i ; E(nr/5, mm/5) belonging to the square regioft of the
a 5-\ x 0.8-A-wide aperture and with the larger side oriente

. . ~Visible domain of sidé).83 are the unknowns of the problem.
along thex axis. They component of the probe aperture fiel .
is given by A completelyrandomset of PWS samples was considered as

the starting point of the iterative minimization procedure.
Epa(x, y) = cos(mr/a") exp[(=jfz®)/(2R2)]  (13)  In the early stages of the minimization procedure, only the
with Rs = 12X anda” = 5. significant samples oE(u, v) were considered. This makes
The two probes ardX spaced along a line parallel to thet possible to perform the beginning of the minimization
y axis. procedure with an enlarged ratio between the amount of
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Fig. 2. Comparison between the ideal voltage phase (solid line) and the retrieved phase (dotted line) received by the first probe on the cut line
x = 0 for the first test case.

independent data and the number of unknowns so thafTle amplitude of the exact (solid line) and estimated (dotted
favorable effect on the local minima is obtained [7]. In factjne) PWSE on the cut lines: = 0 andv = 0 are shown in
an approximated reconstruction Ef(u, v) falling within the Figs. 8 and 9, respectively.
attraction domain of the global minimum &f was obtained.
In particular, at the beginning of the minimization procedure

11 x 11 samplest,,,, falling within the central region of the IV. CONCLUSIONS
visible domain were considered. The minimizatiordogives A new technique for the antenna diagnostics from near-field
an errorey;, = —42 dB.

L - . intensity data only has been presented.

ane the S|gn|f|gant samples o (u, v) were rghably . _This technique takes as data of the problem the squared
estimated, the solution was improved by gradually ms:reasna%p“tude of the voltages received two different probes
the number of the unknowns to be searched for until all tg,e 5 gingle planar observation surface in the near-zone of
samples falling withirf2 are considered. The final estimate of,o antenna. The different behavior of the two PWS probes
the unknowns corresponds &g, = —47.77 dB. Finally, the 555 5 decisive role in obtaining the right amount of data,
accuracy of the result is increased by introducing the weightgq,s ensuring the reliability of the near-field phase recovery.
functional ¥ that leads to a normalized error; = —70.5dB.  The pecessity of two scanning surfaces, required by the ex-

The exact (solid line) and retrieved (dotted line) phase Qfting techniques, is overcome, thus obtaining two significant
the voltage received from the first probe on the cut lines 0 advantages.
andy = 0, are shown under Figs. 2 and 3, respectively. First, the size of the anechoic chamber is the same as

The amplitude of the exact (solid line) and estimated (dottegat required by the conventional near-field measurement
line) PWS E on the cut linesu = 0 andv = 0, are shown techniques based on the measurement of the complex near
in Figs. 4 and 5, respectively. field.

The sensitivity of the proposed technique with respect to thesecond, the measurements made by the two probes can be
noise on data was tested by superimposing an additional $¥rformed simultaneously so that the measurement time also is
uniformly distributed noise on the intensity of the voltages &qual to that required by conventional near-field measurement
the previous example. techniques. As compared to the available intensity near-field-
_ The error obtained by considering just the 2111 samples only techniques, this property leads to very significant advan-
Enm is ey = —29.2 dB while the final value ot,,, obtained tages when the requirements concerning the stability and the
after the minimization oflr and by considering all samplesaccuracy of the transmitter and receiver are considered.
falling within x, is ep; = —37.75 dB. Although the technique has been presented for a scalar case

The exact (solid line) and the retrieved (dotted line) phaséd planar scanning, it can be easily extended to the vectorial
of the voltages received by the first probe on the cut linease and/or to different scanning geometries, e.g., cylindrical
z = 0 andy = 0 are shown under Figs. 6 and 7, respectivelgeometry.
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Fig. 3. Comparison between the ideal
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Fig. 4. Comparison between the amplitude of the transverse component of the ideal PWS (solid line) and the estimated PWS (dotted line) on the cut
line w = 0 for the first test case.

Furthermore, the effectiveness of the approach should bdn addition, the basic idea of the approach can also be
tested also in the case of focusing antennas at millimetgpplied to the reflector antenna diagnostics from field intensity
frequencies.

data only [13]. This can be made by employing a receiving
A further possible application of the approach concerns tiieed array under different excitation configurations for col-

characterization of the quiet zone of a compact test range frémeting the two squared-amplitude measurements of the field
field intensity data only, since the phase measurement becorae$eed location. This can allow the two sets of the squared
inaccurate as the working frequency increases.

amplitude data to be acquired during a unique rotation of
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Fig. 5. Comparison between the amplitude of the transverse component of the ideal PWS (solid line) and the estimated PWS (dotted line) on the cut
line v = 0 for the first test case.
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Fig. 6. Comparison between the ideal voltage phase (solid line) and the retrieved phase (dotted line) received by the first probe on the=¢ui line
for the noise-data test case.

s
w

the antenna being tested, with a reduced sensitivity of theFirst, we recall that the PWS transverse compod%(m, v)
technique with respect to the instabilities of the signal souréeapproximated in a finite-dimensional space according to

and the atmosphere. . N Mo
E(u,v) = Z Z E(nw/a, mn [b)sinc(au — nw)
APPENDIX n=— N, m=—M,
This appendix is devoted to deriving the expression for the - sinc(bv — mn) (A1)

vector V& given in (8). To this end, it is useful to give somewhere in the summation only the samples falling wittfin
definitions. must be considered andnc(z) = sin(z) /.
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Fig. 7. Comparison between the ideal voltage phase (solid line) and the retrieved phase (dotted line) received by the first probe on the=cuit line
for the noise-data test case.
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Fig. 8. Comparison between the amplitude of the transverse component of the ideal PWS (solid line) and the estimated PWS (dotted line) on the cut
line v = 0 for the noise-data test case.

Second, we consider the adjoifif” of the linear operator ~ Third, we define the operatd?, which relates the vectar,

7;, which is given by whose components are the terdis,, with —N, < n < N,
E(u, v) =TV and—-M, <m < M, and are ordered in an arbitrary way to
{72 02 * oo 0o the function £(«, v) according to
= [(w — —)Gi(u, —v)} / dz / E(u, v) =Pc
1% w oo —oo N, M, .
. V(.I‘, v, d) Cj('ua:—l—'ny—l—wd) dy (AZ) = Z Z Enrn Sinc(au — 7’L7I') SinC(bU — m7r).

n=—N,m=—M,

wherex stands for the complex conjugate operation. (A.3)
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Fig. 9. Comparison between the amplitude of the transverse component of the ideal PWS (solid line) and the estimated PWS (dotted line ) on the cut
line v = 0 for the noise-data test case.

Accordlngly, the adjoint operatordfP is defined according to  Accordingly, the partial derivative oft with respect to

Epm = (P E(u, v)nm Re{E,} is evaluated as
/ du / sinc(aw — nw) 9P
-sine(bv — ma ) E(u, v) dv. (A.4) 89%_6{5?};,} T PT s el
Now, by substituting the transverse component of the { 6{2( L c) (Zy sine(au —nr) Smc_( v —mm))}
PWS £ with its finite-dimensional version (A.1), the voltage [T Pel? — ME) + (2 Re{(Z2Pe)* (T2 sinc(au — nr)
Vi(z, y, z) is given by -sinc(bv — mm))}, [TaPef? — M2) + c.c.
Vi(z, v, d) = AR PTT I Pe(| TP — MP)]
+ PYLILPA| TP — M)} (A.8)
Z Z E(nx/a, mr/b) / du/
n=—N, m=—M, Cﬁ
2 where (-, -} means the scalar product amsd:. denotes the
. <w - —)Gi(u, —v)sinc(au — n) complex conjugate of the addition of the two previous terms.
w , In a similar way, it is possible to evaluate the partial
“sinc(bv — mar) e~ urtvvted) gy derivative of® with respect to3m{ £, }, which is given by
wherec is the vector of the sampleB(nr/a, mn/b). 3‘11 = 4ASm{PH LI [L P Pef? — M2)]
In order to compute the vectof ®, we must evaluate the OSm{E, .}
partial derivatives of® with respect to the real variables + P LPA| TP - Mg]}. (A.9)

Re{Epm ) and Sm{E,,}. To this end, it is useful first of
all to evaluate the partial derivatives {if;Pc|> which, after

simple manipulations, are given by
9|7 Pcf*

Finally, the vector (7) given by

789%@{EA,W} =2Re{(7; Pc)* (Tisinc(au—nm)sinc(bv— mm))} (V) = 8<Ii ny 8<I>A
(A 6) 8 §R6(Enm) a %m(Enrn)
and
AT Pe|? _ _ can be computed as
————=29m{(7;Pc)* (T;sinc(au—nm)sinc(bv—mm)) }
ISM{E .} .
(A7) (V@) =4I P) (L P)(| T Pe|? — MP)]

respectively. + AP (LPe)(| TP — M3)]. (A.10)
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