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Abstract—An efficient scheme is introduced for computing the where
two-dimensional periodic Green'’s function. By using Kummer’s
method to accelerate the Hankel function series, accurate results Gy(z—a',y—v)
can be rapidly obtained when the source and field points coincide + ’ y Y
in the vertical direction. Unlike with the integral acceleration ¢ (kDb —ts)
form, convergence of the series is maintained when the source - g

and field points differ horizontally by a complete period. .
DL+1)u” cog (kAy \/W)
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[. INTRODUCTION AND FORMULATION with by = FA,/D andty = —D(k £+ 3). Note that the

. . ; )

HE computation of the electromagnetic field scatterdfe9rand inG:. decays rapidly only wheh(D — A )u” > 1.
I by a periodic two-dimensional object under plane wavENUS, WhenA, = D the integral converges S'°YVIV'

illumination requires use of the “periodic Green’s function” N this paper, we choose to use Kummer's method [3]

du  (3)

—k
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Index Terms—Green'’s functions, periodic structures. . /
0

(PGF) given by [1] to accelerate the series. This involves subtracting off an
asymptotic form, thus producing a series which is more
Gz —2', y—1v) rapidly convergent. The technique is efficient only when the
0 ' @ asymptotic series can be summed efficiently (preferably in
= > PH; (k\/(Aaz —nD)? + Aﬁ) closed form). Applying this to the Hankel function series in
n=—00 (1) gives
2 > e_jyﬁnAa: e_j(Iﬂ.lAyl
wns — @ Ga-a,y-y)
= B (k /a2 +47)

Here, D is the period length of the object = —% cos ¢y, -
B = p+2n7 /D, k = w /lo€o, ¢o is the angle of plane wave n { |:C—jn,8D H® (k \/(nD AL+ A?)
incidence measured from theaxis, A, = x—2', A, = y—v/, £ 0 Y
and g, = —j /32 — k2. Note that the branch cut is chosen B
so that In{g,} < 0. — A7 (A, Ay)}

The convergence of the Hankel function series in (1) is nBD (2)(‘ 2 2)
quite poor for most values o\, and A,. In contrast, the * [C Hyo{F \/(nD+A’”) Ay
exponential series converges rapidly aftexxceeds values sat- — AN (AL, A }
isfying /2 — k2 A, > 1 due to exponential decay. However, nATE T
when A, is small, the sum may require many terms before = = 4
this condition is met. In particular, whefy,, = 0 (especially + z_:l A (Be, Ay) + z_:l AT (Bas Ay).
important in the case of a flat surface) the exponential series "= "= 4)
is very poorly convergent.

Various techniques to accelerate the c_onverg_ence_of the Pg:iﬁce we seek an expression fde valid for large n, we
have been developed. Often the series is rewritten in the form :

. : assume thatD > A, A, and expand the square root using
of a rapidly convergent integral such as [2] . .
the binomial theorem as
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function [4] 13
5 . 0 . . ] PGFES
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gives the general expression 2 ooor TECrEE W=D
2 3 PGFSA (M=3)
+ %) dikAL ke ~ Emt1/2(Da; Ay) 2 PGFSA (M=4)
AL = 1D © (L) Z iz (7 € o001
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whereZSE = exp{—jkD(1 £ cos ¢o)}. 0.00001 AL L L S AL L
The convergence rate of (4) depends on the number of terms o001 " 0001 O‘OOIAy/[f'O' o 1
M we keep in the expansion (7). The formulasfgﬂ/2
Fig. 1. Dependence of computation time on vertical separation of source and
the first four terms in the expansion are given by field points. D/A = 1, Av/D = 0.5, ¢ = 45°,
51/2 =1 ) ) ]
transcendents involved in the series-accelerated PGF (PGFSA)
53/2 { FA, —JkA2:| (2D)™* are independent ofA, and A,, and thus need only be
computed once (for each value of frequency, incidence angle,
¢E [ 9 T 37 A, 4+ 6A2 — 3A2 and period width). This can result in a very large savings in
2L 8k Tk Y computation time.
. _ Computation of the Lerch transcendditz, s, »/) is fairly
p 2 _ 2 A4 2\—1 2
+ 12jkA- Ay — 2k Ay} (1607 straightforward. Fos > 3/2 the series converges rapidly, and
N 2255 45 60j o 155 ., there is no need to use the integral representations Foi /2
57/2 = [_W 72 A 7 A 7 Ay the integral form is much more efficient to compute. By using
3 5 A2 A2 o a change of variables, the integral can be put into the more
F80A3 + 120A, A7 — —3045kA2A2 + 60jkA, computer-friendly form
165%3
+ 96k2A, AL + J AS|(256D%) 1. (8) 1 1 2z [Yu-1 du
Y O(z,1/2, 1) = —+ — .
-z Jrl—zJy 1—2u/—Inu
The last step is to compufe. AE. The infinite series is in (12)
the form of the “Lerch transcendent®(z, s, ) which also
has an integral representation [5] [I. NUMERICAL IMPLEMENTATION
o 1 oo ys—1 ,—(v—1)t Examples of the time required to compute the PGF to five
Oz, 5,v)=Y (v+n) 2" = I(s) / &, @ significant digits using a 200-MHz Pentium-Pro microcom-
n=0 0 ”

puter are shown in Figs. 1 and 2. Obviously, the time needed to
9) compute the PGFIA integral (3) depends upon the integration
method; in this work, we used the Romberg integration routine
from [6]. Also, since the Lerch transcendent is computed
L 12 kA, once per moment-method solution, its computation time is not
ZA Az, By)= kD © Zo included in the PGFSA results shown in the figures.
M1 Fig. 1 shows that as the vertical separation between the
+ source and field point is reduced, the original exponential-
ZS’"“/? BBy Po(Z55m +1/2, 1) series PGF becomes more time consuming to compute. Nei-
(10) ther the series-accelerated nor integral-accelerated techniques
have this problem, but the series-accelerated technique is
where M is the number of terms kept in the representatiasignificantly faster when the number of terms chosen in
of A%, the asymptotic expansion is greater than two. In the series-
There is a very significant benefit to using the seriesccelerated technique, the vertical distance can be safely set
accelerated PGF (4) in place of either the original exponentiad-zero. It is important to note that when the vertical separation
series PGF (1) or the integral-accelerated PGF (3). Both tisegreater than the periof), the series-accelerated technique
exponential-series PGF (PGFES) and the integral-accelerabedomes unreliable due to roundoff error. However, for values
PGF (PGFIA) are dependent on the source point-field poirdf vertical separation greater than abdui D it is more
differencesA, and A,. When these formulas are used irefficient to use the original exponential series PGF.
moment method-based applications, the series or integral mudhn Fig. 2 it is seen that the integral-accelerated technique
be recomputed as, and A, change. In contrast, the Lerchbecomes very time consuming as the horizontal separation

Using this notation, the series can be written as

n=1

m=0
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Fig. 2. Dependence of computation time on horizontal separation of source

and field pointsD/A =1, A, /D = 0.01, ¢, = 45°.
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approaches the peria. The series-accelerated solution does: J. Rothwell (S'84-M'85-SM'92), for a photograph and biography, see p.
not have this problem 1278 of the September 1998 issue of thsalisSACTIONS
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