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Abstract—An efficient scheme is introduced for computing the
two-dimensional periodic Green’s function. By using Kummer’s
method to accelerate the Hankel function series, accurate results
can be rapidly obtained when the source and field points coincide
in the vertical direction. Unlike with the integral acceleration
form, convergence of the series is maintained when the source
and field points differ horizontally by a complete period.

Index Terms—Green’s functions, periodic structures.

I. INTRODUCTION AND FORMULATION

T HE computation of the electromagnetic field scattered
by a periodic two-dimensional object under plane wave

illumination requires use of the “periodic Green’s function”
(PGF) given by [1]

(1)

Here, is the period length of the object, ,
, , is the angle of plane wave

incidence measured from theaxis, , ,
and . Note that the branch cut is chosen
so that Im .

The convergence of the Hankel function series in (1) is
quite poor for most values of and . In contrast, the
exponential series converges rapidly afterexceeds values sat-
isfying due to exponential decay. However,
when is small, the sum may require many terms before
this condition is met. In particular, when (especially
important in the case of a flat surface) the exponential series
is very poorly convergent.

Various techniques to accelerate the convergence of the PGF
have been developed. Often the series is rewritten in the form
of a rapidly convergent integral such as [2]

(2)
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where

(3)

with and . Note that the
integrand in decays rapidly only when .
Thus, when the integral converges slowly.

In this paper, we choose to use Kummer’s method [3]
to accelerate the series. This involves subtracting off an
asymptotic form, thus producing a series which is more
rapidly convergent. The technique is efficient only when the
asymptotic series can be summed efficiently (preferably in
closed form). Applying this to the Hankel function series in
(1) gives

(4)

Since we seek an expression for valid for large , we
assume that and expand the square root using
the binomial theorem as

(5)

Substituting (5) into the asymptotic expansion of the Hankel
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function [4]

(6)

gives the general expression

(7)

where .
The convergence rate of (4) depends on the number of terms
we keep in the expansion (7). The formulas for for

the first four terms in the expansion are given by

(8)

The last step is to compute . The infinite series is in
the form of the “Lerch transcendent” which also
has an integral representation [5]

(9)

Using this notation, the series can be written as

(10)

where is the number of terms kept in the representation
of .

There is a very significant benefit to using the series-
accelerated PGF (4) in place of either the original exponential-
series PGF (1) or the integral-accelerated PGF (3). Both the
exponential-series PGF (PGFES) and the integral-accelerated
PGF (PGFIA) are dependent on the source point-field point-
differences and . When these formulas are used in
moment method-based applications, the series or integral must
be recomputed as and change. In contrast, the Lerch

Fig. 1. Dependence of computation time on vertical separation of source and
field points.D=� = 1; �x=D = 0:5; �o = 45�.

transcendents involved in the series-accelerated PGF (PGFSA)
are independent of and , and thus need only be
computed once (for each value of frequency, incidence angle,
and period width). This can result in a very large savings in
computation time.

Computation of the Lerch transcendent is fairly
straightforward. For the series converges rapidly, and
there is no need to use the integral representation. For
the integral form is much more efficient to compute. By using
a change of variables, the integral can be put into the more
computer-friendly form

(11)

II. NUMERICAL IMPLEMENTATION

Examples of the time required to compute the PGF to five
significant digits using a 200-MHz Pentium-Pro microcom-
puter are shown in Figs. 1 and 2. Obviously, the time needed to
compute the PGFIA integral (3) depends upon the integration
method; in this work, we used the Romberg integration routine
from [6]. Also, since the Lerch transcendent is computed
once per moment-method solution, its computation time is not
included in the PGFSA results shown in the figures.

Fig. 1 shows that as the vertical separation between the
source and field point is reduced, the original exponential-
series PGF becomes more time consuming to compute. Nei-
ther the series-accelerated nor integral-accelerated techniques
have this problem, but the series-accelerated technique is
significantly faster when the number of terms chosen in
the asymptotic expansion is greater than two. In the series-
accelerated technique, the vertical distance can be safely set
to zero. It is important to note that when the vertical separation
is greater than the period , the series-accelerated technique
becomes unreliable due to roundoff error. However, for values
of vertical separation greater than about it is more
efficient to use the original exponential series PGF.

In Fig. 2 it is seen that the integral-accelerated technique
becomes very time consuming as the horizontal separation
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Fig. 2. Dependence of computation time on horizontal separation of source
and field points.D=� = 1; �y=D = 0:01; �o = 45�.

approaches the period. The series-accelerated solution does
not have this problem.
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