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Faraday Chiral Media Revisited–I:
Fields and Sources

W. S. Weiglhofer and S. O. Hansen

Abstract—Faraday chiral media, previously conceptualized as
chiroplasmas or chiroferrites, are envisioned to combine the
effects of Faraday rotation and chirality. Electromagnetic field
representations for arbitrary sources are derived after the recent
correct characterization of the constitutive relations of such
media. The scalar Hertz potential (SHP) technique is employed
and its applicability is thoroughly investigated. In particular,
it is shown that all field components can be derived from one
scalar Green function (plus so-called auxiliary source potentials)
in source problems, whereas one scalar superpotential suffices for
source-free problems. Expressions pertaining to radiation from
electric and magnetic dipole sources are presented in a simple
and compact form. Further generalizations of the results and the
actual realizability of Faraday chiral media are discussed.

Index Terms—Bianisotropy, Faraday chiral media, Hertz po-
tentials, scalar Green functions, scalar superpotentials.

I. INTRODUCTION

M ACROSCOPIC electromagnetics provides a description
of a certain material medium through constitutive rela-

tions. Once these relations have been formulated (regardless
whether their basis is a concise microscopic theory of matter
or a purely phenomenological construct), the solution of the
electromagnetic field problem is reduced to a more or less
complicated set of partial differential equations with certain
initial/boundary/radiation conditions.

Bianisotropyis undoubtedly one of the catchwords in elec-
tromagnetics research of the present decade. It describes a
type of medium in which the electromagnetic field vectors are
coupled in a more complex way beyond the normal type of
anisotropy[1]. Indeed, the conceptual origin of bianisotropic
media is twofold: generalization of the concept of anisotropy
[2] on the one hand, extension of the magnetoelectric coupling
displayed by isotropic chiral media [3] on the other. Basic
theoretical analyses of bianisotropic media have been available
for some decades [4], [5]. Yet it is only during the last decade
that the rapid advances in materials science—enabling the fab-
rication of increasingly complex materials in the form of thin
films or particulate composites—have generated renewed and
significantly more focussed interest in the electromagnetics of
bianisotropic media. The huge number of entries in a recent
database [6] provides ample proof of these activities with
latest research being presented at annual specialist conferences
[7]–[9].
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In the present paper we consider linear, homogeneous
bianisotropic media described by the frequency-domain con-
stitutive relations1

(1)

(2)

The permittivity dyadic , the permeability dyadic, and the
magnetoelectric dyadics and are functions of the angular
frequency and have the following form:

(3)

(4)

(5)

(6)

It is apparent that these dyadics contain a total of 12, in
general complex-valued, scalar quantities

and which will be assumed unconstrained
for the theoretical analysis to follow.

A note about notational conventions: vectors appear bold
while dyadics are double-underlined; is a unit vector,
symbolizes a dot-product, whereas omission of a symbol
between vectors such as in indicates a dyadic product;
the identity dyadic is written as The vectors to observation
and source points are denoted by and , respectively,
and a harmonic time dependence of is suppressed
throughout wherein is the angular frequency.

All four constitutive dyadics in (3)–(6) have agyrotropic
structure. Dielectric and magnetic gyrotropic anisotropy
(through the permittivity dyadic and the permeability dyadic

are well-known effects and displayed individually by (cold)
magnetically biased plasmas and magnetically biased ferrites
[2]. In addition, gyrotropic-like bianisotropy is present via the
structure of the magnetoelectric dyadicsand 2

At this point the reader may ask what motivates analysis of
media described by the constitutive dyadics given in (3)–(6).
Some years ago, Enghetaet al. [11] studied plane-wave
propagation in materials they calledFaraday chiral media.
Their aim was to investigate the concept of chirality control
by combining the effects of Faraday rotation (as exhibited
by a gyrotropic anisotropic medium) and optical activity (as
displayed by an isotropic chiral medium) in a novel material.
They conceptualized Faraday chiral media in two manifesta-

1As far as frequency-domain analysis is concerned, the use of
fEEE(xxx);HHH(xxx)g or fEEE(xxx); BBB(xxx)g as the fundamental field phasors is equi-
valent. The first option is chosen here for convenience.

2See [10] and [1] for a discussion on why the termbigyrotropic is not
appropriate for the medium considered here.
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tions: achiroplasmaconsisting of chiral objects embedded in
a magnetically biased plasma and achiroferrite consisting of
chiral objects immersed in a magnetically biased ferrite [11].
Subsequently, they delineated constitutive relations for such
a composite medium in a purely phenomenological way by
simply adding the constitutive relations of the two components.
A further generalization was provided by Krowne [12] who
replaced the isotropic chiral medium by a nonreciprocal bi-
isotropic medium.3

As a consequence of these approaches, the constitutive
dyadics in [11] and [12] remain reasonably simple. For the
chiroplasma, the permittivity dyadic is gyrotropic such as
in (3), the permeability dyadic is isotropic, and the magne-
toelectric dyadics are isotropic too, mimicking those of an
isotropic chiral medium (or nonreciprocal bi-isotropic medium
in [12], respectively). Likewise, for the chiroferrite, with only
the structures of the permittivity and permeability dyadics
interchanged from the chiroplasma case.

Since then many applicational studies have been conducted
which were based on the chiroplasma/chiroferrite constitu-
tive relations put forth in [11]: from waveguide applications
[15]–[17] to dipole radiation studies [18] and cylindrical scat-
tering problems [19]; from propagation problems in stratified
geometries [20] to microstrip applications [21]—to provide
only a small but representative cross section of published
research. It goes without saying that the actual values of
the constitutive parameters of these mostly numerical studies
were chosen purely on the grounds of plausibility arguments.
With hindsight, two questions may appropriately be asked: i)
Are the chosen values of the constitutive parametersrealis-
tic in representing chiroplasmas/chiroferrites based on their
conceptualization in [11] as composite media? and ii) is
the actual structure of the constitutive dyadics of chiroplas-
mas/chiroferrites as given in [11] and used henceforth by many
authors appropriate to describe media of that nature?

Contrary to [11] and [12], the constitutive dyadics in (3)–(6)
are considerably more involved. There is no doubt that the
wave propagation studies in [11] broke new ground. However,
the constitutive dyadics at their basis now appear oversim-
plified if indeed Faraday chiral media are conceptualized as
composites via the recipes given previously by Enghetaet al.
and Krowne. A more thorough approach using standard ho-
mogenization techniques for particulate composites has shown
that [22], [23]: i) the definition of constitutive parameters
in [11] is open to misinterpretation, and ii) the constitutive
relations of chiroplasmas and chiroferrites must, in principle,
be of the form (3)–(6). Consequently, on the basis of the
theoretical results in [22] and the numerical studies in [23],
we therefore propose usage of the termFaraday chiral media
for a larger class of materials, described by constitutive dyadics
(3)–(6), all of which have gyrotropic structure.4

3It should be mentioned that there are significant theoretical arguments
against and no experimental evidence in favor of the recognizable existence
of nonreciprocal bi-isotropic media; see [13] and [14] for more detailed
references. Isotropic chiral media exist in abundance, on the other hand [3].

4We note that investigations of more general types of media with gyrotropic
anisotropy and gyrotropic-like bianisotropy have recently become available;
most noticeably optical wave propagation studies in Faraday chiral media with
constitutive dyadics as in (3)–(6) but for the simplification� = �� [24].

Returning now to the mathematical apparatus, we eliminate
and according to (1), (2) from the field equations and

obtain Maxwell’s equations for the complex-valued frequency-
dependent field vectors (phasors, to be exact)and in the
form

(7)

(8)

where and are the electric and magnetic current
densities, respectively.

The partial differential equations (7) and (8) form the basis
of subsequent developments. In Section II, we first provide
a general discussion of the scalar Hertz potential (SHP) tech-
nique. This is followed by deriving the field representation and
its solution in Faraday chiral media. Scalar Green functions are
discussed and the concept of a superpotential is outlined, with
special emphasis on the representation of all electromagnetic
field components in terms of one scalar Green function or one
scalar superpotential. Further generalization of the results, the
merits and disadvantages of the method and the realizability of
Faraday chiral media as particulate composites are discussed in
Section III, followed by conclusions in Section IV. While this
paper provides the theoretical basis for field analysis, future
developments in Part II will be devoted to parametric studies
of propagation and radiation in Faraday chiral media.

II. THE SCALAR HERTZ POTENTIAL TECHNIQUE

A. General Remarks

We now analyze the electromagnetic field equations by
employing the scalar Hertz potential (SHP) technique. Po-
tential functions in general have a long and distinguished
history in electromagnetic theory. Their frequent usage was
(and remains to be) based on the recognition that it is often
more convenient to express the electromagnetic field vectors
in terms of auxiliary functions, scalar and vectorial, and
then solve differential equations for these so-called potentials.
If these formulations depend on scalar functions only, the
potentials are often called (scalar) Hertz potentials (most
textbooks provide a thorough introduction into scalar and
vector potentials; see also [25] for many historically interesting
references).

While original developments pertained to isotropic media
only, the technique of SHP’s was subsequently extended into
the anisotropic and bianisotropic regimes. It appears that no
explicit treatment of the simplest type of anisotropic medium,
the dielectric/magnetic uniaxial medium, with SHP’s has ever
appeared in print. Generalizations beyond isotropy were first
reported for source-free gyrotropic media [26], [27]. These
results were then extended to sources in gyrotropic media [28],
[29], thus for the first time providing a scalarization procedure
for anisotropic media. Media with magnetoelectric coupling
were investigated first by applying scalar Hertz potentials to
homogeneous [30] and nonhomogeneous [31] isotropic chiral
media. More recently, the technique was used to detail the
solution of the field problem in uniaxial bianisotropic media



WEIGLHOFER AND HANSEN: FARADAY CHIRAL MEDIA REVISITED–I 809

[32], [33]. The results of these publications all appear as
special cases of the formulas obtained here.

Special mention should also be made of a simply moving
isotropic medium [2], [1]. This medium is bianisotropic in
a frame of reference moving with a relative uniform velocity
with respect to the medium. Its constitutive relations appear as
special cases of (3)–(6) whereby and
The last of these parameter relations actually permits a field
transformation which completely eliminates the terms in
the magnetoelectric dyadicsand (see [10]).

The key objective of the SHP technique is to obtain an
electromagnetic field representation in terms of a small number
(which in some instances can be just one) of scalar func-
tions—the SHP’s—which are solutions of (systems of) scalar
partial differential equations. It was shown in principle [34]
that, for any linear bianisotropic medium, Maxwell’s equations
can be decomposed with respect to an arbitrarily chosen axis.
This procedure subsequently permits elimination of the field
components parallel to the chosen axis and it, therefore, leads
to a system of differential equations for the four remaining
components of and which are transverse to that direc-
tion. Further progress, i.e., another reduction in the number
of unknowns depends on certain symmetries of the various
constitutive dyadics [34]. The limit of medium complexity for
the application of the SHP technique is reached when all of
the constitutive medium dyadics are of gyrotropic structure.
Therefore, media described by the constitutive dyadics (3)–(6)
are indeed the most general ones which can be handled by
the SHP technique (in the sense that the method is defined in
the literature).5

B. Field Decomposition

The initial step in the field analysis consists of a par-
tial scalarization (see [34] and [35] for more background
information on scalarization of general bianisotropic media)
of the differential equations (7) and (8) with respect to the
direction specified by For all vector quantities we use the
decomposition scheme , where
Thus for the fields we have

(9)

Similarily, for the current densities

(10)

and likewise for the derivative operations
and being shorthand notations for
and , respectively, where . Also used, for
compactness of writing, is the decomposition of the constitu-
tive dyadics according to such that

In the first instance, manipulation of Maxwell’s equations
leads to an expression for the components in terms of

5It may, of course, be the case that the gyrotropic structure of the medium
dyadics is already a simplification obtained by a field transformation (for
example, an affine transformation) itself.

and the current densities in the form6

(11)

where the abbreviation is introduced. An
inversion of (11), to express the transverse components
in terms of plus terms involving the current densities,
is not possible in general. We can, however, derive a system
of differential equations for the transverse components in the
form

(12)

The source terms in (12) are given by

(13)

(14)

It then becomes possible to obtain the following system for
and :

(15)

where are scalar second-order partial differ-
ential operators given by

(16)

Detailed expressions for their coefficients and for the
source terms can be found in the Appendix in (46)–(58)
and (59)–(62), respectively, and in [36].

C. Scalar Hertz Potentials

Instead of solving (12) directly for the fields scalar
potentials may now be introduced by using a two-dimensional
version of Helmholtz’ theorem according to

(17)

(18)

At this stage, one has simply exchanged the four components
of for four scalar functions The crucial
test as to whether a scalar potential formalism is advantageous
to a direct solution of the problem (12) is this: Can
the number of scalar functions defined in (17) and (18) be
reduced so that a complete field representation can still be
found? This question was investigated previously for general,
linear bianisotropic media [34]. Although the actual field
representations were not given at that time, the result emerged
that the most general type of media for which such a reduction
is possible are indeed the Faraday chiral media (3)–(6).

6In the following equations, square brackets exclusively denote matrices,
their respective dimensions defined by the character of their components.
Normal matrix multiplication rules apply.
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Substitution of (17) and (18) into (11) and (12), respectively,
yields expressions for as well as differential equations
in terms of and Subsequent manipulations of
a somewhat tedious nature permit elimination of these four
scalar potentials in favor of only two SHP’s and
in the form

(19)

(20)

(21)

(22)

with The parameters
are given in (63)–(70) of the Appendix and in [36]. The
electromagnetic field representation can then be delineated
completely in terms of We obtain

(23)

for the components of parallel to when (19)–(22) are
substituted into (11). In addition, (17), (18) with (19)–(22)
apply for the components transversal toIt is apparent from
(19) and (21) that two auxiliary functions and
have entered the fray. These may be calledauxiliary source
potentials. Their defining differential equations

(24)

(25)

indicate that they are independent of the medium. Their
existence is only due to the components of the current densities
transverse to These functions arise naturally because of
the choice of a distinguished direction in the mathematical
formalism, see [37] and [33] for a more detailed discussion
of their nature.

What remains to provide is the system of second-order
differential equations for the SHP’s and We obtain

(26)

where the differential operators are as given before in (16)
and the source terms can be found in (71)–(74) in the
Appendix.

At this stage a few comments must be made.

1) The field representation given above is in coordinate-
free form for the components and coordinates transverse
to Combining the expressions (17)–(23) into just one
formula for and each (as is possible for the simpler
types of media treated in references given in Sec-
tion II-A) does not seem possible.

2) The introduction of the scalar Hertz potentials
is not a unique process. New scalar Hertz potentials

may be defined via

(27)

are arbitrary complex constants) if
so desired.

3) The auxiliary source potentials (and equally,
their companion functions and defined in (73)
and (74) which appear implicitly in and in (71)
and (72)) depend only on the given current densities

and not on the medium at all. As such they
are source-specific and do not count as SHP’s. The field
representation above can thus be regarded as one in truly
two SHP’s only. Furthermore, if there is no
requirement to introduce at all and we can,
therefore, set in that case. Equally,

permits the choice

D. Scalar Green Functions and Superpotentials

A set of scalar Green functions
can now be defined corresponding to the

SHP’s Let the scalar Green functions be solutions
of the systems of differential equations

(28)

where and is the Dirac delta function.
The complete solution to (26) can then be given in the form

(29)

where the integration is over the volume in which the
source terms are nonzero.7

The scalar Green functions can now be calculated by solving
(28) directly. However, the SHP technique permits a further
useful simplification and compactification. Define a scalar
Green function and let

(30)

(31)

Substitution of (30) and (31) into (28) (with the first subscript
selected) shows that (28) is identically fulfilled provided

(32)

Equally, we can define

(33)

(34)

such that once again (28) (with the second subscript selected)
is fulfilled provided once again (32) holds. Equation (32)

7This volume may differ from the volume in which the original current
density distributionsJJJe and JJJm are nonzero due to the presence of the
auxiliary source potentials.
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constitutes a scalar Green function equation for a fourth-
order operator. By tracing one’s way backward through the
respective equations, it now becomes apparent that the com-
plete electromagnetic field excited by arbitrary sources in
Faraday chiral media (3)–(6) can be derived solely from
the scalar Green function (and the auxiliary source
potentials). In the absence of sources, is a solution
of the homogeneous form (right side ) of (32) and it
is then called asuperpotential[38]. The name is due to
the observation that all components of and , in the
representation (17)–(23) with all terms arising from sources set
to , can be derived directly from it. One scalar Green function
or one scalar superpotential thus generates the electromagnetic
field representation in the multiparametered Faraday chiral
media, see also [36].

It goes without saying that it is a difficult task to invert a
fourth-order scalar differential operator. For the general case
treated here, no solution to (32) exists in closed form at this
time; for the source-free case, the corresponding homogeneous
version of (32) leads of course to a standard eigenvalue
problem with straightforward algebraic solution. For some
general comments on the solvability of fourth-order differential
operators (in the context of the somewhat simpler uniaxial
bianisotropic media) the reader is referred to [39].

E. Radiation by Axial Sources

It is apparent from the previously presented formulas that
the treatment of problems involving electric and magnetic
current density distributions becomes somewhat unwieldy due
to the presence of the auxiliary source potentials. These
are solely due to (i.e., the components of
transverse to ). Let us, therefore, for the purpose of applying
the SHP technique to a radiation problem, restrict our attention
here to the so-calledaxial sources, i.e,

(35)

In particular, let us first consider an electric dipole source

(36)

Due to the simplification of the source terms in (29) we
immediately obtain

(37)

(38)

In analogy, for a magnetic dipole

(39)

we obtain

(40)

(41)

The expressions (37), (38) and (40), (41) show very instruc-
tively that the SHP’s for the respective dipole sources are
simply linear combinations of the scalar Green functions.

III. D ISCUSSION

A. Generalization

The Faraday chiral media defined by the constitutive dyadics
(3)–(6) are the most general media for which the SHP tech-
nique can be applied. This is not to mean that more general
types of media are not amenable to an analysis in terms of
scalar potentials. Indeed, Zhuck [40] provided a formalism
for scalarization of general, linear anisotropic media (and it
appears that his approach can be applied to general, linear
bianisotropic media in a straightforward manner). Yet the
scalar potentials introduced in [40] are already double Fourier-
transformed entities which only retain a dependence on one
spatial variable. As a consequence they cannot be considered
as SHP’s anymore.

A further generalization of the SHP technique is possible,
however. Let be the Cartesian coordinate in direction
of the distinguished axis. Then the results of the preceding
section can be extended to nonhomogeneous media of the form

(42)

where the gyrotropic structure of (3)–(6) remains but the
constitutive dyadics have become arbitrary functions of
It then becomes possible to analyze stratification problems
more directly. The usual approach to such problems is to
solve a boundary value problem of multiple plane layers
with constitutive parameters constant in each layer. The SHP
technique, on the other hand, permits the stratification profile
to be implemented directly into the constitutive parameters.

B. Critical Appraisal of the Formalism

For the types of media to which it is applicable, the
SHP technique is a very useful mathematical tool, both for
field problems in the presence or absence of sources. It also
lends itself naturally to stratification problems and the Green
functions corresponding to a certain excitation are of a scalar
rather than a dyadic nature.

Whenever a mathematical field representation is chosen
whereby an arbitrary axis is selected, great care must be
taken when evaluating potential functions in order to avoid
unphysical singularities of the fields. This is a general ob-
servation which does not depend on whether the medium
itself is anisotropic or bianisotropic (with a preferred axis
as, for example, in the case of the Faraday chiral media
discussed here) [41], [37]. General electric and magnetic
current densities and which possess compo-
nents transverse to the distinguished axis of the medium
(the arbitrary axis of the mathematical representation) need
particular attention. Essentially, the formalism generates a
number of auxiliary source potentials; these are the functions

; which are often singular and which
supplement the SHP’s. The relevance of the auxiliary source
potentials is in the removal of unphysical singularities from
the fields [37].
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C. Realizability of Faraday Chiral Media

For the theoretical analysis in the previous sections no
constraints were imposed on the constitutive dyadics (3)–(6)
containing 12 complex-valued parameters. In general, though,
any linear bianisotropic medium must fulfil thePost Constraint
[4], [42]–[44]

(43)

( indicates the inverse dyadic) to be in accordance with
covariance and consistency requirements of modern electro-
magnetic theory. Specializing (43) for the constitutive dyadics
(3)–(6) leads to

(44)

Thus only 11 independent constitutive parameters remain.
Let us now return to our original motivation, the conceptu-

alization of Faraday chiral media as particulate composites
consisting of a dielectric or magnetic gyrotropic medium
and an isotropic chiral medium (resulting in achiroplasma
or a chiroferrite, respectively). Take the chiroplasma, for
example (the discussion for the chiroferrite is analogous): the
magnetically biased plasma is described by three dielectric
parameters and a magnetic parameter
(where is the vacuum permeability). The isotropic chiral
component is characterized through a dielectric, a magnetic

, and a magnetoelectric constitutive parameter. We can
then use the Maxwell–Garnett or the Bruggeman formalism
to estimate the effective properties of a homogenized com-
posite consisting of a plasma and an isotropic chiral medium.
Following the derivation of the pointwise singularity of the
dyadic Green functions of the most general linear bianisotropic
medium in [45], formulas for the most general bianisotropic-
in-bianisotropic composite have become available [46] and
have since been applied to numerical parameter studies of
complex composite media [47]. The relevant expressions in
[46] can be simplified straightforwardly for the characteristics
of the two components of the composite as specified here.
The expressions, as was hinted at in [22], are somewhat
unwieldy. In symbolic form, the constitutive parameters of
the homogenized composite are of the form

(45)

where is representative of any of the 12 constitutive
parameters in (3)–(6). In (45) we have included the volumetric
proportion of the inclusion medium but omitted as it
is a natural constant. We also note that the condition (44)
must be automatically fulfilled for the composite because
the two component media fulfil their corresponding algebraic
constraints individually. The numerical studies on Faraday
chiral media, which have meanwhile been reported [23],
confirm this result.

IV. CONCLUSION

In this manuscript we have provided electromagnetic field
representations in Faraday chiral media in terms of SHP’s
and further reductions in terms of scalar Green functions
and a superpotential. The Faraday chiral media, described

by the constitutive dyadics (3)–(6), are the most general,
linear bianisotropic media to which this technique can be
applied. The relevant expressions for all media which appear as
special cases of Faraday chiral media are contained within the
formulas of this manuscript (consistency checks of the deriva-
tions with previous results were, of course, performed). This
manuscript, therefore, brings to a close the theoretical program
spanning the last decade to develop the SHP technique for
complex, linear bianisotropic media. As far as Faraday chiral
media are concerned, parametric studies of propagation and
radiation problems will be reported in Part II.

APPENDIX

SOME MATHEMATICAL EXPRESSIONS

The coefficients of the scalar differential operators in
(15), (16) are given by

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

The source terms in (15) can be calculated from

(59)

(60)
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with the abbreviations

(61)

(62)

The coefficients in (19) and (21) are given by

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

Finally, the source terms and , used in (26), are
defined as

(71)

(72)

whereas the auxiliary source potentials and are
solutions of

(73)

(74)
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