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Faraday Chiral Media Revisited—I:
Fields and Sources

W. S. Weiglhofer and S. O. Hansen

Abstract—Faraday chiral media, previously conceptualized as  In the present paper we consider linear, homogeneous
chiroplasmas or chiroferrites, are envisioned to combine the pjanisotropic media described by the frequency-domain con-
effects of Faraday rotation and chirality. Electromagnetic field P iond

. ; . stitutive relation
representations for arbitrary sources are derived after the recent

correct characterization of the constitutive relations of such D(z)=¢-E(x)+£- H(x) (1)
media. The scalar Hertz potential (SHP) technique is employed - =
and its applicability is thoroughly investigated. In particular, B(z) :gE(iﬂ) +gH($) 2

it is shown that all field components can be derived from one The permittivity dyadia, the permeability dyadig, and the

scalar Green function (plus so-called auxiliary source potentials) . . . =
in source problems, whereas one scalar superpotential suffices for Magnetoelectric dyadicg and ¢ are functions of the angular

source-free problems. Expressions pertaining to radiation from frequencyw and have the following form:
electric and magnetic dipole sources are presented in a simple

and compact form. Further generalizations of the results and the c=crl+ (cu — c)uu —icu x I (3)
actual realizability of Faraday chiral media are discussed. E=&I+ (& — &uu—iu x 1 4)
§ = Cf£ + (C’u - Cf)'u"u' —iCyu ¥ £ 5)

Index Terms—Bianisotropy, Faraday chiral media, Hertz po- =
tentials, scalar Green functions, scalar superpotentials. p=pued + (pu — pr)uns — ipgu x L. (6)
It is apparent that these dyadics contain a total of 12, in
general complex-valued, scalar quantitiese,,, ¢, &, &, &y,
. INTRODUCTION Cty Cusr Cg» it 11, ANy, which will be assumed unconstrained
ACROSCOPIC electromagnetics provides a descriptidar the theoretical analysis to follow.
of a certain material medium through constitutive rela- A note about notational conventions: vectors appear bold
tions. Once these relations have been formulated (regardledile dyadics are double-underlined; is a unit vector,-
whether their basis is a concise microscopic theory of matgymbolizes a dot-product, whereas omission of a symbol
or a purely phenomenological construct), the solution of tHeetween vectors such as i indicates a dyadic product;
electromagnetic field problem is reduced to a more or letf¥e identity dyadic is written ag. The vectors to observation
complicated set of partial differential equations with certaigand source points are denoted byand z’, respectively,
initial/boundary/radiation conditions. and a harmonic time dependenceegb (—iwt) is suppressed
Bianisotropyis undoubtedly one of the catchwords in electhroughout whereinv is the angular frequency.
tromagnetics research of the present decade. It describes All four constitutive dyadics in (3)—(6) have gyrotropic
type of medium in which the electromagnetic field vectors aséructure. Dielectric and magnetic gyrotropic anisotropy
coupled in a more complex way beyond the normal type @hrough the permittivity dyadie and the permeability dyadic
anisotropy[1]. Indeed, the conceptual origin of bianisotropig:) are well-known effects and displayed individually by (cold)
media is twofold: generalization of the concept of anisotropyagnetically biased plasmas and magnetically biased ferrites
[2] on the one hand, extension of the magnetoelectric couplif®]. In addition, gyrotropic-like bianisotropy is present via the
displayed by isotropic chiral media [3] on the other. Basistructure of the magnetoelectric dyadigsind ¢.2
theoretical analyses of bianisotropic media have been availabl@t this point the reader may ask what mofivates analysis of
for some decades [4], [5]. Yet it is only during the last decadnedia described by the constitutive dyadics given in (3)—(6).
that the rapid advances in materials science—enabling the f@lome years ago, Enghe&t al. [11] studied plane-wave
rication of increasingly complex materials in the form of thirpropagation in materials they calleéaraday chiral media
films or particulate composites—have generated renewed &rtkir aim was to investigate the concept of chirality control
significantly more focussed interest in the electromagneticsmf combining the effects of Faraday rotation (as exhibited
bianisotropic media. The huge number of entries in a recdmt a gyrotropic anisotropic medium) and optical activity (as
database [6] provides ample proof of these activities wittisplayed by an isotropic chiral medium) in a novel material.
latest research being presented at annual specialist conferefi¢®y conceptualized Faraday chiral media in two manifesta-

71-19]. . N

[71-19] 1as far as frequency-domain analysis is concerned, the use of
Manuscript received June 16, 1998. {E(z), H(z)} or {E(x), B(x)} as the fundamental field phasors is equi-
The authors are with the Department of Mathematics, University of Glagalent. The first option is chosen here for convenience.

gow, Glasgow G12 8QW, U.K. 2See [10] and [1] for a discussion on why the tehigyrotropic is not
Publisher ltem Identifier S 0018-926X(99)04824-3. appropriate for the medium considered here.
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tions: achiroplasmaconsisting of chiral objects embedded in Returning now to the mathematical apparatus, we eliminate
a magnetically biased plasma andtfaroferrite consisting of D and B according to (1), (2) from the field equations and
chiral objects immersed in a magnetically biased ferrite [11¢btain Maxwell’'s equations for the complex-valued frequency-
Subsequently, they delineated constitutive relations for sudbpendent field vectors (phasors, to be exatgnd H in the
a composite medium in a purely phenomenological way ligrm
simply adding the constitutive relations of the two components.
A further generalization was provided by Krowne [12] who iwe - E+(VxI+iwt) -H=J, (7)
:sggcp?éj IErr:::dzz?ﬁ)'tfop|c chiral medium by a nonreciprocal bi (VxI- 'WQ -E — iwg-H =—Jn (8)

As a consequence of these approaches, the constitutive ) )
dyadics in [11] and [12] remain reasonably simple. For tther_e_Je(:c) andJm(:c) are the electric and magnetic current
chiroplasma, the permittivity dyadic is gyrotropic such a@ensities, respectively. _ _
in (3), the permeability dyadic is isotropic, and the magne- The partial differential equations (7) gnd (8) form the ba§|s
toelectric dyadics are isotropic too, mimicking those of afif Subsequent developments. In Section I, we first provide
isotropic chiral medium (or nonreciprocal bi-isotropic mediur 9eneral discussion of the scalar Hertz potential (SHP) tech-
in [12], respectively). Likewise, for the chiroferrite, with onlyNique- T_hls_|s followed by_ denvmg the field representation and
the structures of the permittivity and permeability dyadic%_s solution in Faraday chiral media. Scalar G_ree_n func_:tlons are
interchanged from the chiroplasma case. dlscu_ssed and the concept of a superpotentlal is outlined, Wlth

Since then many applicational studies have been conduciﬂ?c'al empha5|s.on the representation of all electr.omagnetlc
which were based on the chiroplasma/chiroferrite constitfie!d components in terms of one scalar Green function or one
tive relations put forth in [11]: from waveguide application§ca|_""r superpotentlal. Further generalization of the r_esuIFs_,, the
[15]-[17] to dipole radiation studies [18] and cylindrical scatnerits and (_j|sadvar_1tages of_the method an(_JI the real_lzablllty of
tering problems [19]; from propagation problems in stratifieﬁara_day chiral media as part|cu!ate c_ompos_ltes are dls_cuss_ed in
geometries [20] to microstrip applications [21]—to provid§eC“°” III,_foIIowed by con.clusmns.ln Sec.t|on V. Whlle this
only a small but representative cross section of publishB@Per provides the theoretical basis for field analysis, future
research. It goes without saying that the actual values @fvelopments in Part Il will be devoted to parametric studies
the constitutive parameters of these mostly numerical studffsPropagation and radiation in Faraday chiral media.
were chosen purely on the grounds of plausibility arguments.
With hindsight, two questions may appropriately be asked: i)
Are the chosen values of the constitutive parameteadis-
tic in representing chiroplasmas/chiroferrites based on théir General Remarks

conceptualization in [11] as composite media? and ii) iS\ye now analyze the electromagnetic field equations by
the actual structure of the constitutive dyadics of chiroplaé-mpbying the scalar Hertz potential (SHP) technique. Po-
masjchiroferrites as given in [11] and used henceforth by magytia| functions in general have a long and distinguished
authors appropriate to describe media of that nature? — pistory in electromagnetic theory. Their frequent usage was
Contrary to [11] and [12], the constitutive dyadics in (3)(8)and remains to be) based on the recognition that it is often
are considerably more involved. There is no doubt that thyre convenient to express the electromagnetic field vectors
wave propagation studies in [11] broke new ground. HOWeVeh terms of auxiliary functions, scalar and vectorial, and
the constitutive dyadics at their basis now appear oversifien solve differential equations for these so-called potentials.
plified if indeed Faraday chiral media are conceptualized gSthese formulations depend on scalar functions only, the
composites via the recipes given previously by Engle¢tal. gtentials are often called (scalar) Hertz potentials (most
and Krowne. A more thorough approach using standard N@sthooks provide a thorough introduction into scalar and
mogenization techniques for particulate composites has shoydtor potentials; see also [25] for many historically interesting
that [22], [23]: i) the definition of constitutive parameter%ferences)_
in [11] is open to misinterpretation, and ii) the constitutive \whjle original developments pertained to isotropic media
relations of chiroplasmas and chiroferrites must, in prmupl%my, the technique of SHP’s was subsequently extended into
be of the form (3)—(6). Consequently, on the basis of thRe anisotropic and bianisotropic regimes. It appears that no
theoretical results in [22] and the numerical studies in [23Lypjicit treatment of the simplest type of anisotropic medium,
we therefore propose usage of the téfaraday chiral media e gielectric/magnetic uniaxial medium, with SHP’s has ever
for a larger class Qf materials, descr_lbed by constitutive dyad'&ﬁpeared in print. Generalizations beyond isotropy were first
(3)~(6), all of which have gyrotropic structufe. reported for source-free gyrotropic media [26], [27]. These
_ o , results were then extended to sources in gyrotropic media [28],
31t should be mentioned that there are significant theoretical argume hus for the fi . idi larizati d
against and no experimental evidence in favor of the recognizable existe I, t_US Or't € ”’S't time providing a sca arlzatloq procedure
of nonreciprocal bi-isotropic media; see [13] and [14] for more detailefDr anisotropic media. Media with magnetoelectric coupling
references. Isotropic chiral media exist in abundance, on the other hand [ere investigated first by applying scalar Hertz potentials to

f‘We note thatinvestigatic_)ns of more general types of media with gyroproqnibmogeneous [30] and nonhomogeneous [31] isotropic chiral
anisotropy and gyrotropic-like bianisotropy have recently become available;

most noticeably optical wave propagation studies in Faraday chiral media \/\Hﬂled|.a-' More ref:emly' the te_chmq_ue_wa; u_sed to.detall .the
constitutive dyadics as in (3)—(6) but for the simplificatipr= —( [24]. solution of the field problem in uniaxial bianisotropic media

Il. THE SCALAR HERTZ POTENTIAL TECHNIQUE
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[32], [33]. The results of these publications all appear d,, H, and the current densities in the fdtrm
spgmal cases o_f the formulas obtained here. . DB 1 T =] [ew—w- (VX H)
pecial mention should also be made of a simply moving g = 7 Y, X E (11)

isotropic medium [2], [1]. This medium is bianisotropic in Lo+ #@Au o fu [ Tmutu (Ve X By
a frame of reference moving with a relative uniform velocityhere the abbreviation, = ¢, — &.C. is introduced. An
with respect to the medium. Its constitutive relations appear iagersion of (11), to express the transverse componBnt#l,
special cases of (3)—(6) whereby = ;1, = 0 and§, = —(,. in terms ofE,, H, plus terms involving the current densities,
The last of these parameter relations actually permits a figddnot possible in general. We can, however, derive a system
transformation which completely eliminates thex I terms in  of differential equations for the transverse components in the
the magnetoelectric dyadigsand ¢ (see [10]). form

The key ob!ec_tlve of the SHI_3 te_chnlque is to obtain an ) 1 £ e |[ViVs-(ux E,)
electromagnetic field representation in terms of a small numbe@.. + — V.V: - (ux H))
(which in some instances can be just one) of scalar func- Lt ‘
tions—the SHP’s—which are solutions of (systems of) scalar —iw [ gt B, } [” X Et} — |:qt1 } (12)
partial differential equations. It was shown in principle [34] & —ﬁt u x Hy 92
that, for any linear biani_sotropic medium, Ma_lxwell’s equationfhe source terms in (12) are given by
can be decomposed with respect to an arbitrarily chosen axis.
This procedure subsequently permits elimination of the field 1 (Ve Tew — €V e Tmn) — 6 X Tt (13)

t LCU)\u —€y _Cu

components parallel to the chosen axis and it, therefore, leads T w,
to a system of differential equations for the four remaining 1 v, J v,J

. . =T Ku Jeu T Cu JYmu X Je - 14
components offf and H which are transverse to that direc- 2 )\u( i €Vedmu) +u i (14)

tion. Further progress, i.e., ano'_[her reduct|_0n in the numqwthen becomes possible to obtain the following system for
of unknowns depends on certain symmetries of the variogs 4 7 .

constitutive dyadics [34]. The limit of medium complexity for
the application of the SHP technique is reached when all of |:L1 Lﬂ |:Eu:| _ {81} (15)
the constitutive medium dyadics are of gyrotropic structure. Ly L] |H, 82
Therefore, media described by the constitutive dyadics (3)—‘/6%}1 5 L
are indeed the most general ones which can be handled _rIeL"(a“t’ a““’.vt) atr)e scalar second-order partial differ-
the SHP technique (in the sense that the method is definefli'd! operators given by
the literature}. L (84, vy V2) = Lnt + 120y + 13300y + 1,uV?
(n=1,2,3,4). (16)

B. Field Decomposition . . _ o

The initial step in the field analysis consists of a paP eta|le(: Expressions gorf theg.ciﬁﬁ';'em’“ df"m.d fzg thgs
tial scalarization (see [34] and [35] for more backgrounaogrcgge”ggl’S2 can t'e Ioun (;n_ e36ppen xin (46)-(58)
information on scalarization of general bianisotropic medi%n (59)—(62), respectively, and in [36].
of the differential equations (7) and (8) with respect to the

direction specified by:. For all vector quantities we use theC: Scalar Hertz Potentials

decomposition schemd = A; + A,u, where 4, - u = 0. Instead of solving (12) directly for the fields,, H, scalar
Thus for the fields we have potentials may now be introduced by using a two-dimensional
version of Helmholtz’' theorem according to
E=E,+Euxu H=H,+H,u. (9)
Ei(z) =V, 9(z)+ V, x O(z)u a7
Similarily, for the current densities H(z) =V, 1(z) + V; X V(z)u. (18)
J.=Joy + Joyu Iy =Tt + Tt (10) At this stage, one has simply exchanged the four components

of E,, H, for four scalar functionsb, ©,11, W. The crucial
and likewise for the derivative operationg = V, + ud, test as to whether a scalar potential formalism is advantageous

and V2 = V2 + 82, being shorthand notations fd/dz,, to a direct solution of thek,, H, problem (12) is this: Can
and 9292 ;espelgfively where:, = x - u. Also used, for the number of scalar functions defined in (17) and (18) be

)

compactness of writing, is the decomposition of the constitffduced so that a complete field representation can still be
tive dyadicse, ¢, ¢, according top = p -+ p.uu such that found? This question was investigated previously for general,
wep —p =0 = = linear bianisotropic media [34]. Although the actual field

) representations were not given at that time, the result emerged

=t =t . . . s .
Ie:LZSﬂ:c? :;S; mf;asgpoeﬁ frg f‘mzuézx)noawazwe.!Steerrqnusag?n%at the most general type of media for which such a reduction
xp ! P 15 Hy | is possible are indeed the Faraday chiral media (3)—(6).

51t may, of course, be the case that the gyrotropic structure of the mediunfin the following equations, square brackets exclusively denote matrices,
dyadics is already a simplification obtained by a field transformation (fdheir respective dimensions defined by the character of their components.
example, an affine transformation) itself. Normal matrix multiplication rules apply.
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Substitution of (17) and (18) into (11) and (12), respectively, 2) The introduction of the scalar Hertz potentia(g), v(x)

yields expressions fok,,, H,, as well as differential equations is not a unique process. New scalar Hertz potentials
in terms of ®,0,II, and ¥. Subsequent manipulations of u"V(x), vV (x) may be defined via
a somewhat tedious nature permit elimination of these four ew
scalar potentials in favor of only two SHPigx) and v(x) u"(z) =nu(z) + 72v(z)
in the form (&) = vau(x) + yav(x) (27)
O(x) =(1/A)[(a1 + a20,)ulx) (v.m = 1,2,3,4, are arbitrary complex constants) if
+ (ag + a;0,)o(x) + pi(z) — &o(z)] (19) so desired.

3) The auxiliary source potentialgx), 7(x) (and equally,
their companion functiong(z) andv(z) defined in (73)

O(z) =iwlCuu(®) + puv(z)] (20) and (74) which appear implicitly irt; and ¢2 in (71)
and (72)) depend only on the given current densities
I(x) = (1/X)[(b1 + b2, )u(x) Jet, Jme @nd not on the medium at all. As such they
+ (b3 + badu)v(z) — Gu(x) + «v(z)] (1) are source-specific and do not count as SHP’s. The field

representation above can thus be regarded as one in truly

two SHP’s only. Furthermore, iff.; = 0 there is no
V(z) = —iwle u(z) + Euv(z)] (22) requirement to introduce(z), u(z) at all and we can,
therefore, setu(x) = w(x) = 0 in that case. Equally,

With Ae = erpir — £, The parametersy,, b.(n = 1,2,3,4) Jm: = 0 permits the choica(z) = T(z) = 0.

are given in (63)—(70) of the Appendix and in [36]. The
electromagnetic field representation can then be delineated

completely in terms ofu(z), v(x). We obtain . Scalar Green Functions and Superpotentials

A set of scalar Green functionsf;(x, '), f2(xz,z'),
[Eu(‘”)} =-V? [“(‘”)} 1 [“u _gﬂ {Jeu(‘”) } g1(z,x'), g2(x,z') can now be defined corresponding to the
H(z) v(z) wha [~Cu cu | [Tmu() SHP’su(x), v(z). Let the scalar Green functions be solutions
(23)  of the systems of differential equations

for the components oF;, H parallel tou when (19)—(22) are Ly Ly||fiolz,2)| |72
substituted into (11). In addition, (17), (18) with (19)-(22) |:L3 LJ |:gl72(.’l,',.’l,'/):| o {
apply for the components transversakiolt is apparent from
(19) and (21) that two auxiliary functiong(xz) and ©(x)
have entered the fray. These may be cabextiliary source

} S(x—=)  (28)

72,1

wherer; = 1,7 = 0 andé(z —z’) is the Dirac delta function.
The complete solution to (26) can then be given in the form

potentials Their defining differential equations [u(z)} :/ B! |:f1($7-'5/) f2($’$/)} [tl(xl)} (29)
V2u(z) = (1/iw)V, - I, (24) v(z) v (@) gaz,z’) | [t2(2)
VIo(x) = (1/iw)Vy - I (25) where the integration is over the volum& in which the

o _ _ source termg;,t, are nonzerg.
indicate that they are independent of the medium. Their The scalar Green functions can now be calculated by solving
existence is only due to the components of the current densitieg) directly. However, the SHP technique permits a further

transverse tou. These functions arise naturally because Qfseful simplification and compactification. Define a scalar
the choice of a distinguished direction in the mathematic@een function (z,«') and let

formalism, see [37] and [33] for a more detailed discussion
of their nature. fi(z,2') = LW (x,2) (30)
What remains to provide is the system of second-order g1(x,2') = — LsW(x,x'). (31)

differential equations for the SHPig«x) andv(z). We obtain
Substitution of (30) and (31) into (28) (with the first subscript

[Ll LQ} M _ {tl} (26) Selected) shows that (28) is identically fulfilled provided

L3 L4 v t2
. i i . (L1L4 — LQLg)W(.’L', .’L'/) = (5(.’[,' — .’L'/). (32)
where the differential operators, are as given before in (16)
and the source terms,¢; can be found in (71)—(74) in the Equally, we can define
Appendix. , ,
At this stage a few comments must be made. F(z,2') = — LaW(z, ') (33)
. . . . : g2z, ") =LiW(x,x') (34)
1) The field representation given above is in coordinate-
free form for the components and coordinates transversgch that once again (28) (with the second subscript selected)
to . Combining the expressions (17)—(23) into just ong fulfilled provided once again (32) holds. Equation (32)
formula for £ and H each (as is possible for the simpler ,_ ) ) : .
. . . . This volume may differ from the volume in which the original current
types of media treated in re_'ferences given In SeQénsity distributionsJ. and J,, are nonzero due to the presence of the
tion II-A) does not seem possible. auxiliary source potentials.
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constitutes a scalar Green function equation for a fourth- lll. DISCUSSION
order operator. By tracing one’s way backward through the
respective equations, it now becomes apparent that the com-
plete electromagnetic field excited by arbitrary sources ﬁ\
Faraday chiral media (3)-(6) can be derived solely from The Faraday chiral media defined by the constitutive dyadics
the scalar Green functiod’ (z,z’) (and the auxiliary source (3)—(6) are the most general media for which the SHP tech-
potentials). In the absence of sourc®8(z,z’) is a solution nique can be applied. This is not to mean that more general
of the homogeneous form (right side 0) of (32) and it types of media are not amenable to an analysis in terms of
is then called asuperpotential[38]. The name is due to scalar potentials. Indeed, Zhuck [40] provided a formalism
the observation that all components & and H, in the for scalarization of general, linear anisotropic media (and it
representation (17)—(23) with all terms arising from sources s&pears that his approach can be applied to general, linear
to 0, can be derived directly from it. One scalar Green functidpianisotropic media in a straightforward manner). Yet the
or one scalar superpotential thus generates the electromagrsidar potentials introduced in [40] are already double Fourier-
field representation in the multiparametered Faraday chitgnsformed entities which only retain a dependence on one
media, see also [36]. spatial variable. As a consequence they gahbe considered

It goes without saying that it is a difficult task to invert éas SHP’s anymore.
fourth-order scalar differential operator. For the general caseA further generalization of the SHP technique is possible,
treated here, no solution to (32) exists in closed form at thiwwever. Letr, = z-u be the Cartesian coordinate in direction
time; for the source-free case, the corresponding homogeneotighe distinguished axis. Then the results of the preceding
version of (32) leads of course to a standard eigenval@ection can be extended to nonhomogeneous media of the form
problem with straightforward algebraic solution. For some
general comments on the solvability of fourth-order differential
operators (in the context of the somewhat simpler uniaxial =) é
bianisotropic media) the reader is referred to [39].

Generalization

e

={(za) (=Czu) p=p=z.) (42)

where the gyrotropic structure of (3)—(6) remains but the
E. Radiation by Axial Sources constitutive dyadics have become arbitrary functionszef

It is apparent from the previously presented formulas thit then _becomes possible to analyze stratification prob_lems
the treatment of problems involving electric and magnet/@ore directly. The usual approach to such problems is to
current density distributions becomes somewhat unwieldy d&@/ve a boundary value problem of multiple plane layers
to the presence of the auxiliary source potentials. The$dh constitutive parameters constant in each layer. The SHP
are solely due tal.;,J,. (i.e., the components of., J,, techmgue, on the other han_d, permits thg st.ratmcatlon profile
transverse tas). Let us, therefore, for the purpose of applying® Pe implemented directly into the constitutive parameters.

the SHP technique to a radiation problem, restrict our attention
here to the so-calledxial sources, i.e, B. Critical Appraisal of the Formalism

JO = JiTy JOE = JO g, (35) For the types of media to which it is applicable, the
SHP technique is a very useful mathematical tool, both for
In particular, let us first consider an electric dipole source field problems in the presence or absence of sources. It also
lends itself naturally to stratification problems and the Green
Jei = Jeob(z — ') S = 0. (36)  functions corresponding to a certain excitation are of a scalar
rather than a dyadic nature.

Whenever a mathematical field representation is chosen
whereby an arbitrary axis is selected, great care must be
W (£) = (Joohe Jiwd) [a fi(2, %) — Cufolz, )] (37) taken when evaluating potential functions in order to avoid
ver

Due to the simplification of the source terms, in (29) we
immediately obtain

N . , , unphysical singularities of the fields. This is a general ob-
(@) = (JeoAs /iwhi)pugr (. 27) — Cug2(2,2')]. (38)  gsaryation which does not depend on whether the medium
itself is anisotropic or bianisotropic (with a preferred axis
as, for example, in the case of the Faraday chiral media

Jor = Jow = ] o8(x — o) (39) discussed here) [41], [37]. General electric and magnetic
current densities/.(z) and J,,,(z) which possess compo-
we obtain nents transverse to the distinguished axis of the medium
(the arbitrary axis of the mathematical representation) need
up () = (Jeo At /iwAn)[=&uf1(x, ') + eufo(x, )] (40) particular attention. Essentially, the formalism generates a
0% (1) = (Jeo s fiwA,)[—€ugr (. 7') + eugo(z.2)].  (41) number of auxiliary source potentials; these are the functions
u(x), u(x),v(x),v(x); which are often singular and which
The expressions (37), (38) and (40), (41) show very instrusdpplement the SHP’s. The relevance of the auxiliary source
tively that the SHP’s for the respective dipole sources apstentials is in the removal of unphysical singularities from
simply linear combinations of the scalar Green functions. the fields [37].

In analogy, for a magnetic dipole
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C. Realizability of Faraday Chiral Media by the constitutive dyadics (3)—(6), are the most general,

For the theoretical analysis in the previous sections H@E&r bianisotropic media to which this technique can be
constraints were imposed on the constitutive dyadics (3)_®§pl|ed. The relevant expressions for all media which appear as
containing 12 complex-valued parameters. In general thoug?ﬂedal cases of Faraday chiral media are contained within the

0

any linear bianisotropic medium must fulfil ti®st Constraint 1ormulas of this manuscript (consistency checks of the deriva-
[4], [42]-[44] tions with previous results were, of course, performed). This

. - manuscript, therefore, brings to a close the theoretical program
Trace [g CHEp Js =0 (43) spanning the last decade to develop the SHP technique for
(-! indicates the inverse dyadic) to be in accordance wiff®mplex, linear bianisotropic media. As far as Faraday chiral
covariance and consistency requirements of modern electiedia are concerned, parametric studies of propagation and
magnetic theory. Specializing (43) for the constitutive dyadi¢gdiation problems will be reported in Part II.
(3)—(6) leads to
£u + Cu ZM(& + Ct) - Ug(gg + Cg)
i (bt + 11g) (1t = 11g) APPENDIX
Thus only 11 independent constitutive parameters remain. SOME MATHEMATICAL EXPRESSIONS
Let us now return to our original motivation, the conceptu- The coefficients of the scalar differential operatdrs in
alization of Faraday chiral media as particulate compositéss), (16) are given by
consisting of a dielectric or magnetic gyrotropic medium 2 2 2
and an igotropic chiral medium (?esultingyinmilraoplasma hfo” = = cum(GG + &G + cuceliy = 1)

—0. (44)

or a chiroferrite, respectively). Take the chiroplasma, for +&Cu(G -~ CQQ) — CuGe(epin + €gttg)

example (the discussion for the chiroferrite is analogous): the + eupg(&eCq + EqCe) + Culylersig + €gpe)  (46)
magnetically biased plasma is described by three dielectric j,, /0w = — ¢, (¢ e + €rpg — 26:C,)
parameters:], e/’ e’, and a magnetic parametgr” = i, Fewpinl€y — C)) — & —¢) (47)
(where 1, is the vacuum permeability). The isotropic chiral ubtlSg = bg) T CublglSt Gt

component is characterized through a dielectfica magnetic lis = cutir — &Cu (48)
1€, and a magnetoelectrgS constitutive parameter. We can  lz21/w” = pupe(erle — €5Cq) + ety — 1)

then use the Maxwell-Garnett or the Bruggeman formalism + (G — CHQ) — 1&u(E:C + £4C,)

to estimate the effective properties of a homogenized com-

posite consisting of a plasma and an isotropic chiral medium. + gbu(8oCe + &Co) + piutta(ey — €Ct)  (49)

Following the derivation of the pointwise singularity of the {22/@ = — pulegi + €rpg — 26:Cy)
dyadic Green functions of the most general linear bianisotropic + peul€y — Cg) — Hg€ulés — &) (50)
medium in [45], formulas for the most general bianisotropic- 1., — ,.¢, — 1.6, (51)

in-bianisotropic composite have become available [46] and 2 _ 2 2

have since been applied to numerical parameter studies ot/ _euq(“gfg ;Lt&) e — cghmla

complex composite media [47]. The relevant expressions in + (& — €)C — €Cul&ele + &4¢g)

[46] can be simplified straightforwardly for the characteristics + e,Cu(&C + &Cy) + eney(1ly — 1g€)  (52)
of the two cpmponents of the compqsne as specified here. Iz Jw = eulegis + eotig — 264Gt

The expressions, as was hinted at in [22], are somewhat

unwieldy. In symbolic form, the constitutive parameters of +eCulSy = Co) — egCul&e — G1) (53)
the homogenized composite are of the form l33 = €Cu — €ult (54)
HOM — GHOM((P (P (P C |/ C eCpy (45) lar Jw® = (erpig + egp)€uly + (6 — €2) bty
. . . B 2 p— 2 p—

where "M s representative of any of the 12 constitutive +&ul8t = )G — etnul&ele +&6Cy)
parameters in (3)—(6). In (45) we have included the volumetric + egpra(&ele + &Cq) — (€rpir + €gpg)uls  (55)
proportion of the inclusion mediunf but omitted i, as it LioJw = Euerpry + egpir — 26,G)
is a natural constant. We also note that the condition (44)

+ 6tﬂu(£g - Cg) - 6g/vbu(gt - Ct) (56)

must be automatically fulfilled for the composite because
the two component media fulfil their corresponding algebraic las = ctpu — Eule (57)
constraints individually. The numerical studies on Faraday lis =l = A = epir — &G, 24 =134 = 0. (58)
confirm this result.
51 =AtVy- q; + (au - ng)as - wugﬁs

+ ()\f/z(*‘))\u)(ﬂuvf2 + w2)\'u,ut)‘]€'u,

— (A /iwA)(EuVE + WG I (59)
52 = AV gy + (9u + w&y)fs +wegas

IV. CONCLUSION

In this manuscript we have provided electromagnetic field
representations in Faraday chiral media in terms of SHP’s
and further reductions in terms of scalar Green functions — (A/iwdn)(Cu Vi + WP Xuét) Jew
and a superpotential. The Faraday chiral media, described + At fiwA,) (€ VE + wAuer) o (60)
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with the abbreviations [10]
o = i€ty = pug)deu + (e /iw)V - Jo
+i(pey — &) Mew — (& /iw)V - I (61) 1
Bs = —iletprg — &gCe)Jeu — (G /iw)V - I
ti(al, — ) Meu + (0 fi)V - T (62) 2
The coefficientss,,, b, in (19) and (21) are given by [13]
CLl/w = eu(/itgg - ligﬁt) - Cu(égut - Sth) (63)
az = eupit — &u (64) 4
ag/w :Su(ﬂtgg - Nggt) - Nu(tgﬂt - Sth) (65) [15]
ag = pu — pubs (66)
bi/w =eulerpiy — EgCt) — Culerly — €4Gt) (67) [16]
by = €1Cu — €y (68)
53/&) :Su(ctug - SgCt) - Nu(Cth - CgCt) (69) (171
by = eppin — Eule- (70)
Finally, the source terms,(«) and ¢-(x), used in (26), are 18]
defined as
. = [19]
t1 = (A/iwAy) (pudew — Eudmu) + MT
— 8y — wly) (T — &) + wpg(—CQu + €v)  (71) [20]
t2 = (M/iwA)(—Cudeu + €udmu) — AT
— (0w + W€ (G + 60) — weg (et — &U) - (72) 21
whereas the auxiliary source potentialéx) and T(x) are
solutions of
V2=V, (ux Jer) (73) [
Vo =V, (ux ). (74) 23]
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