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Array Failure Correction with a Genetic Algorithm
Beng-Kiong Yeo and Yilong Lu,Member, IEEE

Abstract—A flexible approach using the genetic algorithm
(GA) is proposed for array failure correction in digital beam-
forming of arbitrary arrays. In this approach, beamforming
weights of an array are represented directly by a vector of
complex numbers. The decimal linear crossover is employed
so that no binary coding and decoding is necessary. Three
mating schemes, adjacent-fitness-paring (AFP), best-mate-worst
(BMW), and emperor-selective (EMS), are proposed and their
performances are studied. Near-solutions from other analytic or
heuristic techniques may be injected into the initial population
to speed up convergence. Numerical examples of single- and
multiple-element failure correction are presented to show the
effectiveness of the approach.

Index Terms—Adaptive arrays, beamforming, genetic algo-
rithms.

I. INTRODUCTION

FOR an antenna array with traditional analog beamforming,
if one or more elements are damaged by an unforeseen

reason, the array may have to be pulled out from operation due
to unacceptable pattern distortion, for example, a significant
increase of sidelobe level (SLL). With digital beamforming,
the defective elements of an antenna array need not to be
replaced. Instead, the beamforming weights of the remaining
elements can be recalculated to form a new pattern that is
close to the original. The possibility of failure correction for
digital beamforming arrays provides a cost-effective alterna-
tive to hardware replacement which might be too late or
too time-consuming, especially for arrays performing critical
operations, such as, for instance, in the battlefield. Other ap-
plications include satellite or extraterrestrial communications,
where antenna element damage cannot be rectified easily by
replacement. From the open literature, no analytic technique
has been devised to yield a set of new beamforming weights
that effectively corrects the deformed pattern. Since a failed
array can be considered as a nonuniformly spaced array,
analytic approaches are generally unable to tackle this kind
of problem. In recent years, numerical algorithms have been
proposed to correct the deformed patterns. However, due to
the arbitrariness of the geometrical layout of the remaining
functional array elements and of the desired beam shape,
array failure correction even for numerical approaches is a
very challenging problem. From literature review, only a few
research results have been reported. Peters [1] proposed a
method to reconfigure the amplitude and phase distribution of
the remaining elements by minimizing the average sidelobe
level, via a conjugate gradient method. Mailloux [2] used
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the method of replacing the signals from failed elements in
a digital beamforming receiving array.

In this paper, an effective method based on the genetic
algorithm (GA) [3] is proposed for array-failure correction
of arbitrary digital beamforming arrays. GA’s are stochastic
optimization algorithms which have very wide applications
[4], [5]. In recent years, genetic algorithms have also been
applied to array beamforming. Haupt [6] applied GA to
determine which element should be turned on, in thinned
linear and planar arrays to obtain low sidelobes. Tennant
et al. [7] demonstrated its use in null steering in a phased
and adaptive array, while Yan and Lu [8] used a GA for
array pattern synthesis, where the phase and magnitude are
restricted to certain discretized values for easy implementation
by commercially available digital phase shifters and atten-
uators, thereby greatly reducing the complexity and cost of
array antennas. In this paper, an improved GA based on [8] is
applied to array-failure corrections. As array-failure correction
is a much more difficult task than simple sidelobe reduction
of a uniformly spaced linear array, considerable improvement
and new additional features have to be introduced. During
the course of this study, various mating schemes; namely,
adjacent-fitness-pairing (AFP), best-mate-worst (BMW), and
emperor-selective (EMS); have been proposed and their per-
formances are compared to determine the most effective.
Numerical examples of single- and multiple-element failure
corrections are presented to show the effectiveness of this
approach.

II. PROBLEM FORMULATION

For array beamforming, one can employ amplitude-only,
phase-only, or the amplitude-phase approach [9]. The am-
plitude-only approach cannot compensate for the degradation
of a damaged array pattern, as the failed elements introduce an
asymmetrical aperture distribution. On the other hand, phase-
only synthesis with a constant amplitude [10] requires a large
number of elements to yield low sidelobes. Consequently,
beamforming using both amplitude and phase (arbitrary com-
plex variables) is necessary for the redistribution of weights,
in order to correct the damaged pattern.

For an arbitrary, the array factor (AF) can be generally given
by

AF (1)

where

(2)

is the weighting vector, is the steering vector, and are
the direction variable and main beam direction, respectively.

is the set or a subset of all complex numbers.
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Take, for example, a linear array of identical elements,
its steering vector is

(3)

such that the same set of optimum weights for the main beam
at broadside can be used for other directions, if the above
vector is recalculated for the new beam-pointing direction.

In the event of the th-element failure, its weight is
assumed to be zero. Thereafter, the GA is applied to correct
the SLL and the main beam shape of the pattern to prefailure
specifications.

III. T HE GENETIC ALGORITHM

Natural evolution is a search for the fittest in the species
space. The success of life on earth demonstrates the effec-
tiveness of this search process. Based on natural evolution
[3], genetic algorithms capitalize on tools that work well in
nature. It is considered a sophisticated search algorithm for
complex, poorly understood mathematical search spaces. A
mathematical treatment on GA’s foundations is provided in
[11], while numerous contemporary GA applications can be
found in [5]. Living beings are encoded by chromosomes, with
GA’s one encodes the possible solutions in the form of data
structures. Thus GA’s are capable of arriving at an optimal
solution without the benefit of explicit knowledge about the
solution space.

A. Chromosome Structure

Most GA’s use binary coding and binary genetic operations,
[4]. The proposed approach, however, applies floating-point
genetic operations on complex array weighting vectors. Hence,
each chromosome is a vector of complex numbers and the
dimension of the vector is equivalent to the number of array
elements.

B. Initial Population

An initial population of at least 100 random chromosomes
is generated. The weighting vectors of the damaged
array pattern and of a Taylor (one-parameter) synthesized
array with an identical beamwidth as the original pattern, are
added to replace two of the weakest individuals among the
initial population. Their insertion helps to improve the rate of
convergence. In fact, it is observed that the best individual
grown for th-element failure correction should be inserted
into the initial population of a double element failure, if one
of the failed elements is in the th position. In that case, the
rate of convergence is increased significantly as compared to
a GA run without any prior insertion.

C. Reproduction

Rank-based fitness assignment sorts the individuals in a
descending order of fitness for theth generation, popula-
tion of individuals. Linear crossover is performed, where
two parents produce two children. In [12], three selection
methods, as shown in Fig. 1, are used concurrently. However,

Fig. 1. The three different mating schemes. Darker shade represents higher
fitness level.

that has proven to be too computationally intensive. Out of
the three methods, the dominant technique has been identified
and singled out to improve the rate of convergence. Note the
probability of crossover is always one.

1) Best-Mate-Worst (BMW): Adapted from [5] and [8],
BMW effectively spreads the superior genetic material in

It is maximally disruptive, but weaker individuals
with any desirable traits do get a chance to produce
offsprings with stronger partners. In BMW, the best
gets to mate with the worst, and second-best with the
second-worst individual. Thus it is inclined to reduce
the difference in fitnesses between the best and the worst
individuals, with a low bias for an elitist group.

2) Adjacent-Fitness-Pairing (AFP): AFP mates two indi-
viduals with adjacent fitnesses. Thus the best pairs with
the second-best, the third-best mates with the fourth-best
and so forth. It is highly conservative of genetic informa-
tion but may result in premature convergence. However,
AFP ensures the union of strong individuals whose
offsprings may prove to be fitter than their parents. In
[5], a similar method, known as fit–fit selection, steps
through the ordered list of individuals of a population
that does not remain static for an entire cycle. Unlike
[5], AFP does not allow any individual to breed twice.
Moreover, the population that it works on stays static
throughout the mating process.

3) Emperor-Selective (EMS): The best individual in gets
to mate with every other even sample in the population,
as shown in Fig. 1. If one or more near-solutions are
added to an initial population of random individuals,
EMS usually yields the best chromosome among the
three methods. It is the only method that allows the fittest
individual to procreate freely with practically the rest of
the population.

D. Survival Selection

EMS works on to produce , which is the child
population after mating and crossover. Concurrently, a nonuni-
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Fig. 2. Fitness ranking of the current population with Auto-Grooming On.
D is the fitness difference, in this case,D = �132:165+185:617 = 53:45:

WhileR refers to the rejuvenation ratio in percentage of the population sizeP:

form multimodal mutation operator is applied to a population
which comprises of copies of the fittest

individual prior to the mating operation above. The Gaussian
distribution parameter , which is inversely proportional to the
size of mutational changes introduced, is adaptively increased
once stagnated growth due to premature convergence is de-
tected. The same mutation operator is performed across a copy
of the original population , giving , the mutated
child population based on , the mutation probability which
is usually greater than .

Thus most of the fitter individuals from and
may be the mutated versions of the current best sample. In
a fixed-size population, too many of the above will increase
the selective pressure in favor of the best individual or local
maxima, resulting in a loss of diversity. Unlike [12], only the
best individuals from and are
selected to produce , the population of best individuals
produced through unary transformation.

Finally, the new set of individuals that forms the next
generation are those from the best of and

E. Auto-Grooming Mode

In order to ensure implicit parallelism, a portion of the
population determined by the user-defined rejuvenation ratio

, in percentage, is earmarked for replacement by randomly
generated individuals. This is carried out whenever the fitness
difference of the fittest and weakest individuals of the
subpopulation, as shown Fig. 2, is below a user-specified
trigger level, , the minimum fitness difference.

The randomly generated subpopulation of individuals
is seeded with the same solutions as the original population.
In addition, it is allowed to grow or “be groomed” on its own
for the next predefined number of generations before it can
interact with the senior population. This technique has so far
yielded better results than pure restarts of the GA. A good
example is illustrated in Fig. 3.

The rejuvenation ratio must be set in proportion to the
size of the initial population For instance, if ,

Fig. 3. Fitness progress curve with main beam directed broadside and
secondnd-, fifth-, and sixth-element failures.

Fig. 4. Template cast over each decoded pattern to evaluate its fitness.

a reasonable value may be no greater than 80%. So that
the senior population of the top 20 individuals can continue
to prosper, after their separation from the weaker crop of 80
individuals, for at least quarantine generations. The
program may dynamically change the and values as
the GA progresses, by weighing the importance of greater
diversity (higher ) against a smaller gene pool of top
performing individuals. Usually, the maximumvalue should
not be greater than, and it must be reduced for higher
than 60%.

F. Fitness Evaluation

A template, formed by the shape of the main lobe and the
specified SLL, is cast over the array pattern produced by each
candidate, as shown in Fig. 4, to compute their cumulative
difference as a form of fitness measure in decibels. Thus the
ideal array pattern is one that conforms to the original main
beam shape with the specified SLL, as depicted in Fig. 4.
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G. Termination Criteria

The maximum number of generations must be defined
together with the desired fitness level. By satisfying either
one of the above criteria, the GA will terminate. A log file
of the GA progress in terms of the increasing fitness per
generation, and the matrix containing the chromosomes of the
current population are saved onto a hard disk. By reviewing
the above data, it is possible to improve the performance of the
GA through fine-tuning the Gaussian distribution of mutational
changes or by introducing new heuristic marriage routines.
The decreasing cumulative error of each generation can be
extracted from the fitness log.

H. Convergence Observation

The best solution of each generation may be produced
through linear crossover, after one of the selection methods,
or from a mutated individual. Usually, the offsprings of fitter
individuals from the previous generation show greater fitness,
in the beginning of a GA run. However, when approaching
convergence, the mutation operation may tend to produce
better individuals.

A lower shape value , which corresponds to larger muta-
tional changes, will result in higher increments of the average
fitness level at the start of a GA run, but ends up with
premature convergence far from the desired fitness. Whereas, a
high value may yield a steady and continuous improvement
in the fitness of future generations, but at a much slower
convergence rate.

IV. SIMULATION RESULTS

A classic Dolph–Chebyshev linear array design with an SLL
of 35 dB is used as a reference. In simulation, the array
consists of 32 identical dipoles, with a uniform spacing of
half a wavelength. The steering vectoris (3).

A. Two-Element Failure Correction

Fig. 5 depicts the fitness progress curves, obtained over an
average of 20 runs, for three different main beam directions.
Notice that convergence is observed for all the above cases
before 200 generations. The cumulative error after 200 gener-
ations is the highest for the corrected main beam at broadside.
Since its beam shape is narrower than the others, its corrected
SLL is observed to be comparatively higher.

Shown in Fig. 6(a)–(c) are the corrected array patterns
for the secondnd- and fifth-element failure, with the main
beam pointing at broadside, 52, and 138, respectively. All
corrected patterns have a SLL of at most34.78 dB. The half-
power beamwidths of the original patterns are Fig. 6(a) 3.89,
Fig. 6(b) 5.27, and Fig. 6(c) 6.21, respectively, whereas
the corrected main beams have half-power beamwidths of
Fig. 6(a) 4.77, Fig. 6(b) 6.06, and Fig. 6(c) 7.17

B. Three-Element Failure Correction

Now, if a sixth-element failure follows, the fitness progress
curve, obtained over an average of 20 runs, is illustrated in
Fig. 3. Auto-Grooming usually kicks in somewhere between

Fig. 5. Fitness progress curves, obtained from an average of 20 runs, with
main beam directed at i) broadside (dotted line), ii) 52� (dot-dashed line),
and iii) 138� (dashed line).

(a)

(b)

(c)

Fig. 6. Corrected pattern with main beam pointing at (a) broadside, (b) 52�,
and (c) 138�. Thick solid line: the corrected pattern; thin solid line: the
damaged array pattern; and dotted line: the original array pattern.

the 100th and 115th generation, discarding the bottom 50%
of the population to accommodate the new individuals. The
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(a)

(b)

Fig. 7. Corrected beam pattern for second-, fifth-, and sixth-element fail-
ures using references (a) Dolph–Chebyshev and (b) Taylor Line-Source
(one-parameter). Thick solid line: the corrected array pattern; thin solid line:
the damaged array pattern; and dotted linr: the original array pattern.

operation ensures implicit parallelism, while retaining the fitter
individuals produced so far for further breeding. Similarly,
convergence is observed at around 200 generations, even
though three elements have failed. This is made possible
by the insertion of the solution for the above second- and
fifth-element failure correction, else more generations will be
required before the GA yields a solution of satisfactory fitness
level.

The corrected far-field pattern for second-, fifth-, and
sixth-element failures with a half-power beamwidth of 5.36
is shown in Fig. 7(a), where the reference pattern is of
Dolph–Chebyshev design with a half-power beamwidth of
4.14 If a Taylor Line-Source (one-parameter) [9] with a
half-power beamwidth of 4.76is used, Fig. 7(b) depicts a
corrected beam shape that is closer to the original reference.
Hence it is much more difficult to recover the beam shape
or half-power beam width of a Dolph–Chebyshev design as
compared to a Taylor pattern for the same SLL.

In this case, the highest SLL of the above is35.2 dB.
The corrected patterns for other main beam directions are not
shown, since they are essentially similar.

The normalized excitation coefficients of the double- and
triple-element failures are listed in Table I. By using (3), only
one set of normalized weights is required for different main
beam directions, but different vectors are generated each
time.

Usually, the number of generations required to obtain a
satisfactory fitness value increases with the number of failed

TABLE I
NORMALIZED EXCITATION COEFFICIENTS FOR

CORRECTED POWER PATTERNS BY THE GA

elements. However, the increase in the number of generations
is largely dependent on the position or weighting of the failed
element(s). This applies even if the solution for a single-
element failure correction is planted in the initial population
for a double-element failure correction, and so forth.

V. CONCLUSIONS

A genetic algorithm is proposed for the (linear 32-element)
array failure correction of single-, double-, and triple-element
failures. For a triple-element failure, the solution for a double-
element failure can be included in the initial population for
the correction of the former, if two out of the three failed
elements are identical to those involved in the latter, and so
forth. The decrease in the corrected SLL comes at the price
of a slightly broader main beam. All corrected main beams
have a half-power beamwidth of less than one degree broader
than the original.

The success of correcting a damaged pattern depends heav-
ily on i) the original weighting of the failed element(s) and
ii) the number of failures. In this instance, if the 15th or 16th
element fails resulting in a blockage, it would be impossible
to correct or yield any improvement using this GA.
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Incidentally, for the same number of element failures, it is
easier to recover those cases where all failures occur on the
same side (with respect to the central element) as compared to
those with failed elements on each side. Since a higher SLL
is observed in the latter.

The genetic algorithm demonstrates the possibility of its
application for nonlinear array synthesis, since damaged linear
arrays are essentially nonlinear in nature. Though the rate
of convergence may be too slow for real-time applications,
the results for different combinations of element failure for
a digital beamforming array may be stored in the memory
of a digital beamformer. Notice that the number of possible
combinations will not be too large, since not all failures are
correctable. Too many failed elements will ultimately render
the array unusable. Therefore, the aperture distribution can be
dynamically reassigned in real time only if a correctable array
failure scenario arises.
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