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Pattern Synthesis for Arbitrary Arrays
Using an Adaptive Array Method

Philip Yuanping Zhou and Mary Ann Ingram

Abstract—This paper presents a new pattern synthesis algo-
rithm for arbitrary arrays based on adaptive array theory. With
this algorithm, the designer can efficiently control both mainlobe
shaping and sidelobe levels. The element weights optimize a
weighted L2 norm between desired and achieved patterns. The
values of the weighting function in the L2 norm, interpreted
as imaginary jammers as in Olen and Compton’s method, are
iterated to minimize exceedance of the desired sidelobe levels and
minimize the absolute difference between desired and achieved
mainlobe patterns. The sidelobe control can be achieved by
iteration only on sidelobe peaks. In comparison to Olen and
Compton’s method, the new algorithm provides a great im-
provement in mainlobe shaping control. Example simulations,
including both nonuniform linear and planar arrays, are shown
to illustrate the effectiveness of this algorithm.

Index Terms—Antenna array synthesis, array pattern synthe-
sis, beamformer.

I. INTRODUCTION

OVER the last several decades, there has been significant
attention paid to the area of array pattern synthesis. A

classic paper by Dolph [1] showed how to obtain the weights
for an uniform linear array (ULA) to achieve a Chebyshev
pattern, which is optimal in the sense that it yields a minimum
uniform sidelobe level for a given mainlobe width. Other
pattern synthesis approaches for ULA’s have been presented
in literature [2].

A more challenging problem is to synthesize patterns for
arrays with arbitrary element positions. Perini [6] proposed a
pattern synthesis method using a steepest descent technique
for nonuniform arrays. The algorithm iteratively updates the
weights of array while searching for the point of minimum
sum of squared errors between the synthesized pattern and the
desired pattern. Nget al. [5] developed a noniterative method
to minimize the norm using quadratic programming. Even
though the norms could be weighted as noted by Perini to
emphasize certain portions of the pattern, there was no method
given to adjust such weighting values in the iterative process.
As a result, the abovementioned algorithms can guarantee
neither a particular pattern shape in certain area nor a specific
response level over a sidelobe region. Tseng and Griffiths
[3] proposed an algorithm that iterates the constraints in the
solution of a linearly constrained least square problem to
control sidelobe peaks.
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A different approach to synthesis is to apply adaptive array
theory. In an early paper, Sureau and Keeping [7] employed
adaptive array techniques to synthesize the patterns for cylin-
drical arrays. The imaginary jammer powers were varied
depending on desired sidelobe levels. Although they achieved
reasonable sidelobe control, they did not provide a systematic
approach to adjust jammer powers so that sidelobe levels could
meet the desired specifications. Olen and Compton presented a
systematic approach; a simple recursion is driven by the differ-
ence between the current synthesized pattern and the desired
pattern over sidelobe regions [4]. The artificial interferers of
various power levels are assigned in sidelobe regions to control
sidelobe levels of the synthesized pattern. This algorithm is
very effective and generally yields satisfactory array patterns.
However, there is no pattern control mechanism in mainlobe
region. In many applications, a mainlobe with a particular
shape is desired, e.g., flat top. Without effective pattern control
in the mainlobe region, specified pattern shaping can hardly
be achieved.

The mainlobe shaping problem might be fixed by applying
constraints. However, when more constraints are used, the
sidelobes become more difficult to control because the degrees
of freedom are reduced due to the constraints. Furthermore, an
additional matrix inverse is required when using constraints,
which adds computational complexity and makes the algorithm
slow if many patterns must be synthesized, for example, when
pattern requirements change with look direction and multiple
look directions are anticipated [12].

In this paper, we present a new pattern synthesis algorithm
for arbitrary arrays based on adaptive array theory. The
problems mentioned above can be eliminated completely with
the new algorithm. The new algorithm shapes the mainlobe
with an iterative procedure and employs an efficient sidelobe
peak iteration technique to reduce computational complexity.

We formulate the problem as finding the optimal array
weight vector that minimizes the weighted norm of the
difference between the synthesized pattern and the desired
pattern. The difference between our algorithm and others that
use the norm is that our algorithm iterates the values of
the weighting function in order to minimize the exceedance the
desired sidelobe levels and to minimize the absolute difference
between desired and achieved patterns in the mainlobe region.

This algorithm offers a high flexibility and can easily handle
arbitrary arrays with nonisotropic elements. The new algorithm
offers a significant improvement to Olen and Compton’s
method [4] in regard to mainlobe shape control. Simulation
results are presented to illustrate the effectiveness of this
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Fig. 1. An sidelobe canceler interpretation.

method. Following is the organization of this paper. Section II
is the problem formulation, Section III describes the pattern
synthesis algorithm, Section IV shows the simulation exam-
ples, and Section V is the conclusion.

II. THE PROBLEM FORMULATION

The problem of array pattern synthesis can be stated as
follows. Given the number of array elements and the element
positions, we want to find a set of complex weightssuch
that the array pattern has a maximum at the desired
direction with a certain beamwidth and also the sidelobe
levels meet the specified values. Let’s consider the sum of a
weighted pattern errors over the set of angles

(1)

where

(2)

and
is the steering vector of the array,is the conjugate

transpose operation, is the th element pattern,
is the reference pattern, is the weighting function,

is the phase due to propagation whereis
the wavenumber vector and is the th element position, and

is the weight vector. When the error
is expressed as

(3)

we observe that may be interpreted as the average output
power of a “sidelobe canceller” with main channel response

to a collection of jammers (Fig. 1), where theth
jammer has the location and the power . The key
to this algorithm is that the jammer powers are adjusted to
emphasize selected parts of the achieved pattern, particularly
the mainlobe and sidelobe peaks.

The weight vector that minimizes the erroris the solution
of a well-known least squares problem

(4)

Fig. 2. The reference patternPr(�).

where is the covariance matrix and is the cross-
correlation vector defined as

(5)

(6)

Furthermore, when constraints are needed, the pattern syn-
thesis problem can be formulated as

subject to

where is the constraint matrix and is the constraint vector.
The solution for optimal weight vector is

(7)
The error is found to be [10]

where is the minimized error

The array response at each angular location depends on
the weighting function . Different values of put
different emphasis on array responses at pertinent directions
and, therefore, would result in a different array pattern. By
making large, our cost function makes it possible to
ensure sidelobe peaks are below a certain value.

III. T HE PATTERN-SYNTHESIS ALGORITHM

A. Full Iteration

The most common objective for pattern synthesis is to
obtain a pattern with sidelobe level lower than a specified
value over certain regions while maintaining a certain gain at
look angle . Here, we select the reference pattern , as
shown in Fig. 2, in which all the responses in sidelobe regions
are zeros and the mainlobe peak response is a value A. The
mainlobe shape is specified by the designer and could be, for
example, a parabola. While it is impractical to have all zero
sidelobe levels, we can induce lower and lower sidelobes by
increasing the weighting function in selected areas. We
use a realistic desired pattern to iteratively adjust
until the sidelobe requirements in are met.
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The weighting function is updated through an iteration pro-
cedure similar to that of Olen and Compton’s [4], which leads
to a satisfactory array pattern. The iteration is as in (8) and
(9), shown on the bottom of the page, where
indexes the points in angle over which we are interested in
controlling the pattern. and are the weighting
function and the synthesized pattern, respectively, at theth
iteration and is a small number for an error tolerance
between the synthesized pattern and the desired pattern in
mainlobe region. is the desired pattern; and
are the iteration gains. Observe that for in the mainlobe
region, is never decreased from its initial value. The
desired pattern is set up to facilitate the iteration process
whereas the reference pattern is used to define the
pattern errors that are to be minimized. In general,
and are the same in mainlobe regions but different in
sidelobe regions. The sidelobe part of should be chosen
according to a realistic specification or a reasonable estimation.

We next use to compute new weights. Let
and be the boundary points for mainlobe region, i.e.

defines the mainlobe. Since the reference
pattern is zero outside of this region, the cross-correlation
vector and the covariance matrix become

(10)

(11)

where a small quantity is added to each diagonal element of
the covariance matrix to prevent it from being ill conditioned
[3]. Then the next weight vector is

(12)

The iteration stops when the errors between and
are small enough in the mainlobe region and the sidelobe levels
of are equal to or lower than .

The procedure here is different from Olen and Compton’s
method [4] in three respects: 1) the summation for
here includes both mainlobe and sidelobe regions whereas only
sidelobe regions are included for in [4]; 2) the cross-
corelation vector here includes all or selected steering
vectors in the mainlobe region whereas only a single steering
vector in the look direction is included in [4]; and 3) the
iteration here occurs in both sidelobe and mainlobe regions
whereas it only occurs in sidelobe regions in [4]. Mainlobe
shaping is conveniently achieved by minimizing the output
power (from the imaginary jammers) of thedifferencebetween
two patterns (as in Fig. 1) rather than minimizing the output
power of just the synthesized pattern.

Fig. 3. The initial pattern for the nonuniform linear array.

B. Peak-Only Iteration

In this section, we consider an alternative form of the
algorithm that iterates the weighting function values only in
the mainlobe and on the peaks of the sidelobes. Originally,
we thought that this version would be faster, and indeed the
amount of computation per iteration is significantly reduced.
However, the number of iterations increases, so this version
takes about the same amount of time overall as the version
discussed in the previous section. In spite of the lack of time
savings, we include this form because it is easier to program
than the original form and because it may inspire a future
algorithm that has the sought-after time savings.

We now motivate the alternative form. Suppose that the
sidelobe part of the desired pattern is some low but
admissible sidelobe level1. Then, if the original version of the
algorithm is allowed to continue after the maximum sidelobe
specification is met, we find that all weighting function values
outside of the mainlobe go to zero except those on the peaks
of the sidelobes. This happens because the polarity on the

term in (8) becomes negative for all
in the sidelobes that don’t correspond to peak locations.

Eventually, the left argument of the max function becomes
negative, and becomes zero.

This phenomenon is illustrated for a 13-element nonuniform
linear array. The selected desired pattern has a sidelobe
level of 30 dB. Figs. 3–8 show the synthesized patterns
along with the weighting functions at different iteration steps.
The synthesis process starts with unity values of weighting
function. It is clear that the values of weighting function will
only exist on the peaks in sidelobe regions as . This
suggests an alternative iteration scheme in which sidelobe

1In [13], we show how to identify the lowest admissible sidelobe level.

in mainlobe region
in side lobe region

(8)

if
otherwise

(9)
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Fig. 4. The weighting function for the initial pattern.

Fig. 5. The synthesized pattern at the 27th iteration.

Fig. 6. The weighting function at the 27th iteration.

levels can be sufficiently controlled by updating the weighting
function only on peak sidelobe locations. To identify the
locations of the sidelobe peaks, various peak-finding schemes
are available. One of the easy ways to do it is to obtain peak
locations by just comparing the neighboring response values.

Fig. 7. The synthesized pattern at the 16 336th iteration.

Fig. 8. The weighting function at the 16 336th iteration

The peak sidelobe locations will generally change from
iteration to iteration. Therefore, the updates in (10) and (11)
in Section III are no longer appropriate because they keep the
same set of angles throughout the synthesis procedure. We
can rewrite (8)–(12) in a form that allows the update terms
to involve only the angles of sidelobe peaks. The covariance
matrix and cross-correlation vector can be expressed in terms
of a residual covariance matrix and a residual cross-
correlation vector , which are added to the current ones,
i.e.,

(13)

(14)

where

(15)

(16)

Here, is a residual weighting function that indicates how
much correction is needed for the mainlobe and the sidelobe
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Fig. 9. An adaptive spatial filter model.

peaks at the current iteration. is calculated as follows:

in mainlobe
in sidelobe peak

(17)

where

if
otherwise.

(18)

The next weight vector is

(19)

With the exception of (17), the algorithm in (13)–(20) is
equivalent to the previous one. The exception is that the
update to the covariance matrix is done only for sidelobe peak
locations.

The pattern synthesis with this algorithm can be modeled
as an adaptive spatial filter shown in Fig. 9. The inputs to
this filter are the signals of unit amplitude with incident angle

. The signal from each array element is weighted and
then summed to give the array output, which is compared
with desired array response over an angular range. The errors
between the array outputs and the desired pattern are used
to update the covariance matrix and the cross-correlation
vector to obtain the next optimal weight vector. The adaptive
algorithm minimizes the errors so that the synthesized array
pattern approaches the desired pattern . This
system is adaptive in the sense that the algorithm finds
the next optimal weight vector depending on the new error
environment.

This adaptive filter model suggests the following step-by-
step flow chart for programming implementation.

1) Select inputs as signals of unit amplitude incident
from various angles; for example, from90 to 90
with one-degree spacing.

2) Obtain an initial weight vector , i.e.,

(20)

in mainlobe (21)

(22)

Here, is usually a small number; for example, 0.001.
Then obtain an initial array pattern from (2).

3) Find all peak sidelobe locations. Then obtain peak
sidelobe values of as well as some values of
in the mainlobe region at selected points of interest.

4) At selected points in mainlobe region and the points of
sidelobe peaks, calculate the differences of

.
5) Calculate from the results of step (4) for pertinent

points using (17) and (18). Usually, is specified to
be much smaller than , for example, and

. Then, calculate and using (15)
and (16).

6) Add to the current covariance matrix ,
and also to the current cross-correlation vector

. Then obtain the next weight vector
from (19).

7) Obtain the array pattern from (2). If it is satisfac-
tory, stop; otherwise, go to step (3).

The peak-only iteration scheme provides an alternative to
the full iteration scheme. We found that peak-only iteration
took less computational time for each iteration because the
number of processing units involved in each iteration was
greatly reduced. However, each iteration did not change the
pattern as much compared to that of full iteration, therefore,
more iterations were needed to obtain the same pattern. As
a result, the overall computational times for both iteration
schemes were about the same.



ZHOU AND INGRAM: PATTERN SYNTHESIS FOR ARBITRARY ARRAYS USING AN ADAPTIVE ARRAY METHOD 867

Fig. 10. Initial pattern.

Fig. 11. Intermediate pattern.

C. Two-Dimensional Pattern Synthesis

This algorithm can be extended in a straightforward way to
the synthesis of two-dimensional (2-D) array patterns. In the
2-D peak-only iteration scheme, the residual weighting func-
tion at th iteration for the spatial location becomes

, where is an azimuth angle and is an elevation
angle. is replaced with in all previous expressions.

IV. SIMULATION EXAMPLES

In this section, we will show a few pattern synthesis
examples using our algorithm. The array elements used in
following examples are assumed to be isotropic although such
an assumption is not necessary in our algorithm. No mutual
coupling was assumed. Also, the peak-only iteration scheme
is used in the examples.

The first example is a Chebyshev pattern synthesis for a 15-
element uniform linear array with a half wavelength spacing.
Fig. 10 shows the initial pattern, Fig. 11 shows an intermediate
pattern and Fig. 12 is the final synthesized pattern along with
the ideal Chebyshev pattern for the same array; the solid line is
the synthesized pattern and the dashed line is the Chebyshev
pattern. The patterns are almost identical. Here we selected

Fig. 12. Synthesized and Chebyshev patterns.

TABLE I
SYNTHESIZED PATTERN FOR A 21-ELEMENT NONUNIFORM LINEAR ARRAY

Element Nos. Position Element Nos. Position
1, 21 �5:0000� 6, 16 �2:3497�

2, 20 �4:6065� 7, 15 �1; 8494�

3, 19 �3:8098� 8, 14 �1:5302�

4, 18 �3:2995� 9, 13 �0:6299�

5, 17 �2:8973� 10, 12 �0:3749�

11 0�

Fig. 13. The synthesized pattern.

and . The reference pattern is chosen
as the same as that in Fig. 2 except that there is only one
specified value unity at the desired signal direction in the
mainlobe region. The final synthesized pattern was realized
in 23 iterations.

The second example is to synthesize a pattern for a 21-
element nonuniform linear array with element positions shown
in Table I. Fig. 13 shows the result using our method with

in the mainlobe.
In the third example, the synthesized pattern for a 41-

element nonuniform linear array has a flat top and a notch
in the sidelobe region as shown in Fig. 14. Constraints can
also be incorporated to place nulls in sidelobe regions by
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Fig. 14. Flat-top pattern with notch.

Fig. 15. Multibeam pattern.

using (7) instead of (4). The fourth example is a multibeam
pattern synthesis for the same array as the third example. The
synthesized pattern is shown in Fig. 15. In above two cases,
Olen amd Compton’s method is not applicable because it does
not provide any pattern control in the mainlobe region.

The fifth example is to synthesize a 2-D Chebyshev pattern
for a 5 5 rectangular uniform planar array of 25 elements
with half-wavelength spacing. The ideal Chebyshev pattern,
shown as the solid line in Fig. 16 is used as both the reference
pattern and the desired pattern. We used 1spacing in azimuth
from 0 to 180 and also 1 spacing in elevation from 90
to 90 for placing values of the weighting function. Fig. 16
also shows the lowest upper bound (dashed) and highest lower
bound (dash) for all radial cuts of the synthesized pattern after
18 iterations. It is observed that the sidelobe peaks deviate
from the ideal no more than 1.5 dB.

The sixth example is to synthesize a 2-D pattern for a
nonuniform planar array of 61 elements shown in Fig. 17.
The reference pattern is a circularly rotated version of Fig. 2.
The desired pattern is basically the same as the reference
pattern except the sidelobe value is set to be a constant of
0.06 ( 24.437 dB). Also, we used and .

Fig. 16. Chebyshev/synthesized patterns.

Fig. 17. A nonuniform array.

Fig. 18. Initial pattern.

The initial 2-D pattern is plotted in Fig. 18 as a function of
and and a side view of the

initial pattern is plotted in Fig. 19. The Figs. 20 and 21 show
the two views of the final synthesized pattern.
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Fig. 19. A side view.

Fig. 20. Synthesized pattern.

Fig. 21. A side view.

V. CONCLUSION

We have presented two new pattern synthesis algorithms for
arbitrary arrays, where iterations occur only in the mainlobe
and on sidelobe peaks. The optimal weight vector is obtained
by minimizing the sum of weighted squared errors between
synthesized and desired patterns. Iterations on the weighting

function in both mainlobe and sidelobe regions insure a desired
mainlobe shape as well as desired sidelobe levels. The weight-
ing function iterations are driven by the difference between the
synthesized pattern and desired pattern. In contrast to Olen
and Compton’s method, the new method provides convenient
mainlobe shape control. The algorithm has been demonstrated
with simulations of nonuniform linear and planar arrays.
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