1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 6, June 1999

Table of Contents for this issue

Complete paper in PDF format

FDTD Analysis of Resistor-Loaded Bow-Tie Antennas Covered with Ferrite-Coated Conducting Cavity for Subsurface Radar

Yasuhiro Nishioka, Student Member, IEEE, Osamu Maeshima, Toru Uno, Member, IEEE, and Saburo Adachi, Life Fellow, IEEE

Page 970.

Abstract:

This paper presents a full-wave analysis of a ground penetrating radar (GPR) using the finite-difference time-domain (FDTD) method. The antenna treated here consists of a resistor-loaded bow-tie antenna, which is covered with a rectangular conducting cavity of which inner walls are coated partially or fully with ferrite absorber. Some techniques are introduced into the FDTD analysis to obtain the accurate results and to save the computer resources. The validity of the FDTD analysis is confirmed experimentally. Furthermore, the effects of the ferrite absorber on the GPR characteristics are theoretically investigated in detail. The FDTD results indicate that the remarkable improvement of the antenna characteristics for the GPR system cannot be attained by the ferrite absorber.

References

  1. L. Peters Jr., J. J. Daniels, and J. D. Young, "Ground penetrating radar as a subsurface environmental sensing tool," Proc. IEEE, vol. 82, pp. 1802-1822, Dec. 1994.
  2. D. J. Daniels, D. J. Gunton, and H. F. Scott, "Introduction to subsurface radar," Proc. Inst. Elect. Eng., vol. 135, pt. F, pp. 278-320, Aug. 1988.
  3. J. M. Bourgeois and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 36-44, Jan. 1996.
  4. J. G. Maloney and G. S. Smith, "The use of surface impedance concepts in the finite-difference time-domain method," IEEE Trans. Antennas Propagat., vol. 40, pp. 38-48, Jan. 1992.
  5. J. H. Beggs, R. J. Luebbers, K. S. Yee, and K. S. Kunz, "Finite-difference time-domain implementation of surface impedance boundary conditions," IEEE Trans. Antennas Propagat., vol. 40, pp. 49-56, Jan. 1992.
  6. K. S. Yee, K. Shlager, and A. H. Chang, "An algorithm to implement a surface impedance boundary condition for FDTD," IEEE Trans. Antennas Propagat., vol. 40, pp. 833-837, July 1992.
  7. T. Kashiwa, O. Chiba, and I. Fukai, "A formulation for surface impedance boundary conditions using the finite-difference time-domain method," Microwave Opt. Tech. Lett., vol. 5, no. 10, pp. 486-490, 1992.
  8. S. Kellali, B. Jecko, and A. Reineix, "Implementation of a surface impedance formalism at oblique incidence in FDTD method," IEEE Trans. Electromagn. Compat., vol. 35, pp. 347-356, Aug. 1993.
  9. J. H. Beggs, "A FDTD surface impedance boundary condition using Z-transforms," Appl. Computat. Electromagn. Soc. J., vol. 13, no. 1, pp. 14-24, Mar. 1998.
  10. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys., vol. 114, pp. 185-200, Oct. 1994.
  11. J. G. Maloney, G. S. Smith, and W. R. Scott Jr., "Accurate computation of the radiation from simple antenna using the finite-difference time-domain method," IEEE Trans. Antennas Propagat., vol. 38, pp. 1059-1068, July 1990.
  12. K. L. Shlager, G. S. Smith, and J. G. Maloney, "Optimization of bow-tie antennas for pulse radiation," IEEE Trans. Antennas Propagat., vol. 42, pp. 975-982, July 1994.
  13. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, May 1966.
  14. R. J. Luebbers and K. Kunz, "Finite difference time domain calculation of antenna mutual coupling," IEEE Trans. Antennas Propagat., vol. 39, pp. 1203-1212, Aug. 1991.
  15. R. J. Luebbers, L. Chen, T. Uno, and S. Adachi, "FDTD calculation of radiation patterns, impedance, and gain for a monopole antenna on a conducting box," IEEE Trans. Antennas Propagat., vol. 40, pp. 1577-1583, Dec. 1992.
  16. J. G. Maloney and G. S. Smith, "The efficient modeling of thin material sheets in the finite-difference time-domain (FDTD) method," IEEE Trans. Antennas Propagat., vol. 40, pp. 323-330, Mar. 1992.
  17. T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surface," IEEE Trans. Antennas Propagat., vol. 40, pp. 357-366, Apr. 1992.
  18. T. G. Jurgens and A. Taflove, "Three-dimensional contour FDTD modeling of scattering from single and multiple bodies," IEEE Trans. Antennas Propagat., vol. 41, pp. 1703-1708, Dec. 1993.
  19. D. F. Kelly and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propagat., vol. 44, pp. 792-797, June 1996.
  20. T. Uno, FDTD Method for Electromagnetic and Antenna Analyzes.Tokyo, Japan: Corona, Mar. 1998, sec. 10.5, pp. 254-259.
  21. Y. Nishioka, O. Maeshima, T. Uno, and S. Adachi, "FDTD implementation of surface impedance boundary condition for dispersive layer backed by perfect conductor," IEICE Trans. Electron., vol. E81-C, no. 12, pp. 1902-1904, Dec. 1998.
  22. T. Uno, Y. He, and S. Adachi, "Perfectly matched layer absorbing boundary condition for dispersive medium," IEEE Microwave Guided Wave Lett., vol. 7, pp. 264-266, July 1997.