1999 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 47 Number 6, June 1999
Table of Contents for this issue
Complete paper in PDF format
FDTD Analysis of Resistor-Loaded
Bow-Tie Antennas Covered with
Ferrite-Coated Conducting Cavity
for Subsurface Radar
Yasuhiro Nishioka, Student Member, IEEE, Osamu Maeshima, Toru Uno, Member, IEEE, and Saburo Adachi, Life Fellow, IEEE
Page 970.
Abstract:
This paper presents a full-wave analysis of a ground
penetrating radar (GPR) using the finite-difference time-domain (FDTD)
method. The antenna treated here consists of a resistor-loaded bow-tie
antenna, which is covered with a rectangular conducting cavity of which
inner walls are coated partially or fully with ferrite absorber. Some
techniques are introduced into the FDTD analysis to obtain the accurate
results and to save the computer resources. The validity of the FDTD
analysis is confirmed experimentally. Furthermore, the effects of the
ferrite absorber on the GPR characteristics are theoretically
investigated in detail. The FDTD results indicate that the remarkable
improvement of the antenna characteristics for the GPR system cannot be
attained by the ferrite absorber.
References
-
L. Peters Jr., J. J. Daniels, and J. D. Young, "Ground
penetrating radar as a subsurface environmental sensing tool,"
Proc. IEEE, vol. 82, pp.
1802-1822, Dec. 1994.
-
D. J. Daniels, D. J. Gunton, and H. F. Scott, "Introduction
to subsurface radar," Proc. Inst. Elect.
Eng., vol. 135, pt. F, pp. 278-320, Aug.
1988.
-
J. M. Bourgeois and G. S. Smith, "A fully three-dimensional
simulation of a ground-penetrating radar: FDTD theory compared with
experiment," IEEE Trans. Geosci. Remote
Sensing, vol. 34, pp. 36-44, Jan. 1996.
-
J. G. Maloney and G. S. Smith, "The use of surface impedance
concepts in the finite-difference time-domain method,"
IEEE Trans. Antennas Propagat., vol.
40, pp. 38-48, Jan. 1992.
-
J. H. Beggs, R. J. Luebbers, K. S. Yee, and K. S. Kunz,
"Finite-difference time-domain implementation of surface impedance
boundary conditions," IEEE Trans. Antennas
Propagat., vol. 40, pp. 49-56, Jan. 1992.
-
K. S. Yee, K. Shlager, and A. H. Chang, "An algorithm to
implement a surface impedance boundary condition for FDTD,"
IEEE Trans. Antennas Propagat., vol.
40, pp. 833-837, July 1992.
-
T. Kashiwa, O. Chiba, and I. Fukai, "A formulation for
surface impedance boundary conditions using the finite-difference
time-domain method," Microwave Opt. Tech.
Lett., vol. 5, no. 10, pp. 486-490, 1992.
-
S. Kellali, B. Jecko, and A. Reineix, "Implementation of a
surface impedance formalism at oblique incidence in FDTD method,"
IEEE Trans. Electromagn. Compat.,
vol. 35, pp. 347-356, Aug. 1993.
-
J. H. Beggs, "A FDTD surface impedance boundary condition
using Z-transforms," Appl. Computat.
Electromagn. Soc. J., vol. 13, no. 1, pp. 14-24,
Mar. 1998.
-
J.-P. Berenger, "A perfectly matched layer for the
absorption of electromagnetic waves," J.
Computat. Phys., vol. 114, pp. 185-200, Oct.
1994.
-
J. G. Maloney, G. S. Smith, and W. R. Scott Jr., "Accurate
computation of the radiation from simple antenna using the
finite-difference time-domain method," IEEE
Trans. Antennas Propagat., vol. 38, pp.
1059-1068, July 1990.
-
K. L. Shlager, G. S. Smith, and J. G. Maloney, "Optimization
of bow-tie antennas for pulse radiation," IEEE
Trans. Antennas Propagat., vol. 42, pp. 975-982,
July 1994.
-
K. S. Yee, "Numerical solution of initial boundary value
problems involving Maxwell's equations in isotropic media,"
IEEE Trans. Antennas Propagat., vol.
AP-14, pp. 302-307, May 1966.
-
R. J. Luebbers and K. Kunz, "Finite difference time domain
calculation of antenna mutual coupling," IEEE
Trans. Antennas Propagat., vol. 39, pp.
1203-1212, Aug. 1991.
-
R. J. Luebbers, L. Chen, T. Uno, and S. Adachi, "FDTD
calculation of radiation patterns, impedance, and gain for a monopole
antenna on a conducting box," IEEE Trans.
Antennas Propagat., vol. 40, pp. 1577-1583, Dec.
1992.
-
J. G. Maloney and G. S. Smith, "The efficient modeling of
thin material sheets in the finite-difference time-domain (FDTD)
method," IEEE Trans. Antennas
Propagat., vol. 40, pp. 323-330, Mar.
1992.
-
T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore,
"Finite-difference time-domain modeling of curved surface,"
IEEE Trans. Antennas Propagat., vol.
40, pp. 357-366, Apr. 1992.
-
T. G. Jurgens and A. Taflove, "Three-dimensional contour
FDTD modeling of scattering from single and multiple bodies,"
IEEE Trans. Antennas Propagat., vol.
41, pp. 1703-1708, Dec. 1993.
-
D. F. Kelly and R. J. Luebbers, "Piecewise linear recursive
convolution for dispersive media using FDTD,"
IEEE Trans. Antennas Propagat., vol.
44, pp. 792-797, June 1996.
-
T. Uno, FDTD Method for Electromagnetic and
Antenna Analyzes.Tokyo, Japan: Corona, Mar.
1998, sec. 10.5, pp. 254-259.
-
Y. Nishioka, O. Maeshima, T. Uno, and S. Adachi, "FDTD
implementation of surface impedance boundary condition for dispersive
layer backed by perfect conductor," IEICE Trans.
Electron., vol. E81-C, no. 12, pp. 1902-1904,
Dec. 1998.
-
T. Uno, Y. He, and S. Adachi, "Perfectly matched layer
absorbing boundary condition for dispersive medium,"
IEEE Microwave Guided Wave Lett.,
vol. 7, pp. 264-266, July 1997.