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Abstract—Multigrid techniques for three-dimensional (3-D)  principle is the approximation of the smooth (long wavelength)
electromagnetic scattering problems are presented. The numeri- part of the error on the coarser grids. The nonsmooth or rough

cal representation of the physical problem is accomplished via a 5t js reduced with a small number of iterations (independent
finite-element discretization, with nodal basis functions. A total L . . .
of N) of a basic iterative method on a fine grid.

magnetic field formulation with a vector absorbing boundary S ; Y e
condition (ABC) is used. The principal features of the multi- The first “true” multigrid publication was by Fedorenko [1],
level technique are outlined. The basic multigrid algorithms are but it was Brandt who clearly outlined the main principles
described and estimations of their computational requirements and the practical utility of the multigrid methods [2], [3].
are derived. The multilevel code is tested with several scattering Equally important is the contribution of Hackbush, who laid
problems for which analytical solutions exist. The obtained results fi th tical f dati d ided reli b,I thod
clearly indicate the stability, accuracy, and efficiency of the Irm mathematica OUI:I ations and provi e_ reliable m_e 0ds
multigrid method. [4], [5]- In the domain of electromagnetism, Kalbasi and
Demarest applied the multilevel concepts to the method of
moments with impressive results [6]. ¥eal.used a multilevel

finite-difference method for the Helmholtz wave equation [7].
Herring and Christopoulos introduced the use of multigrid
. INTRODUCTION techniques in the transmission line matrix (TLM) method

HE finite-element method (FEM), has been successfuli§]. Costiner et al. [9] presented a multilevel formulation

app“ed in e|ectr0magnetism for the solution of prob|en‘@f the finite-difference method for the Computation of the
with arbitrary conductor geometries as well as dielectric inh#rodes and eigenvalues of resonant cavities. Wang and Fang
mogeneities. The most computationally intensive part of tH§oposed a multilevel implementation of the diakoptic method
method is the solution of the resulting system of equations. [H0]. Goverdahananet al. derived a novel multigrid scheme
this context, direct methods are the most robust; but iteratif@f the finite-difference time-domain (FDTD) technique, by
techniques like the preconditioned conjugate gradient meth@@iPlying the principles of multiresolution analysis [11]. For the
and its variants exhibit higher efficiency because of the sparsgfficient finite-element solution of two-dimensional magneto-
of the finite-element matrices. However, even with the ugdatic problems, Tsukerman developed a family of multilevel
of advanced iterative methods, the operation count for P&econditioners [12].
finite-element program is extremely high for electrically large The central theme of this publication, is the incorporation
three-dimensional (3-D) bodies. A solution to this problem lie@f the multigrid principles to the formulation of a 3-D FEM
in the utilization of multigrid formulations. for electromagnetic scattering. To this end the next section

Multigrid should not be considered as a single method &farts with the presentation of the corresponding single-level

even a family of methods, but rather as an entire approachf%mmation. Then a short introduction to the fundamental
computational engineering a collection of ideas and attitudééeas behind multigrid development is given. Section IV pro-
Multigrid is a prime source of important algorithmic efficiencyvides the description of the most basic multigrid algorithms.
and its popularity is rapidly increasing. This is because unlikeection V deals with the important subject of intergrid transfer
other known methods, multigrid offers the possibility of solvoperators. In Section VI, implementation details and compu-
ing problems withV unknowns with O{V) work and storage, tational cost estimations are presented. The last two sections
not just for special cases but for large classes of probleng@ntain numerical results and conclusions.
As their name implies, multigrid techniques use a sequencdn the following ane’“* time dependence is assumed for the

of increasingly finer nested grids. The essential multigriéeld quantities and it is suppressed throughout the remaining
sections.

Index Terms— Electromagnetic  scattering, finite-element
method, multigrid, multilevel numerical techniques.
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magnetic field Closely related to (7) and of extreme importance to multi-
1 grid algorithms is the residual equation of (7)
V x <—V xﬁ) — k2 H=0. (1)
£, Ac=r (8)

For the application of the FEM for unbounded problemgy,q o - an approximation to the exact solutiom, ¢ = z—&
like those of electromagnetic scattering, the truncation %fthe error oft andr = b— A is the corresponding residual.
the computational domain with an artificial bounda6y

is necessary. On this boundary the enforcement of suitable
absorbing boundary conditions (ABC's) takes place. Theselll: NESTEDITERATION AND COARSE GRID CORRECTION
boundary conditions suppress nonphysical reflections from thaOne way to check the convergence of a finite-element
boundary, thus ensuring the outgoing nature of the waves. Tdeheme is to compare the computed results for increasingly
ABC'’s used in this formulation are the Sommerfeld radiatiodenser meshes. It is possible to use this comparison to compute
condition an estimate of the discretization error of the scheme [15].
. _s . _s Usually, one gets a finer grid by uniformly shrinking the mesh
nxVxH =—jknxnxH (2)  size. However, a more efficient option is adaptive refinement
and the second-order ABC [13] with a posteriori error _estimat_ion [1_6]. In _both cases, the
result is a sequence of increasingly finer grids. As the number
AxVxH® = o, +8V x[A(VxH )] +8V.(V-H.) (3) of unknowns increases, the accuracy of the finite-element
s approximations improves but the price is a much higher
where o« = jk,, 8 = 1/(2jk, + 2/r), H™ represents the computational cost. The idea behind multigrid is to exploit
scattered magnetic fieldy is the unit normal to the surfaceinteractions between the different discretization spaces, thus
S,, and the subscriptsandn denote the transverse and normateeping the computational cost as low as possible.

component toS,, respectively. The spaces of discretized functions corresponding to dif-
It is possible to combine (2) and (3) in the more concisierent grids are called levels—level 1 being the coarsest. At
expression each level, the solution of a sparse linear system is required
. _ s s and iterative methods are the most efficient choice [17]. A
nxVxH =PH) (4) simple way to speed up the convergence of these methods

For the total field formulation where the unknown is th& to_ use a_good |n|t|_al_ guess. A WeII-k_nown technlque for
total magnetic field, the above relation takes the form obtaining a improved initial guess at a given level is to solve
the problem at a coarser grid and then project in some way

AxVxH=PH) +axVxH™_-p@E"™) (5 this approximation on the original level. The solution at a
_ coarser level is significantly cheaper since there are fewer
whereH ™ is the incident magnetic field. unknowns and the convergence rate of the iterative techniques
Using the curl—curl equation and the above ABC and better. This procedure is known as nested iteration or one
through the application of a Galerkin weighted residual prevay multigrid and its application can be performed recursively
cedure, the following weak form is obtained: until the coarsest level is reached. The additional cost for
1 1 solving the systems associated to the coarser grids is justified
/ {— (VxHxX V) +—(V-H)Ve; — k2 u,,ﬁ@} dV by having quicker convergence for the actually sought one.
v \&r Er The solution at each level is composed of fast and slow
_ _j[ {P(H)¢; +1 x V x ﬁimd)i _ P(ﬁim)@}ds. spatial variations. The cause of the fast variations are local
S, ' iterations in geometry, while the slow components arise from
(6) global interactions. Many iterative methods tend to damp out

the fast components of the error quickly, but their convergence

This expression has been shown to eliminate spurious Moglgs, sjows down considerably in the presence of the remaining
[14]. Tetrahedral elements, with;, being the standard VO'“mesmooth components. However, the smooth components of

coordinates that have closed-form exact integration formulgﬁe level seem more oscillatory on a coarser one. These

on each tetrahedron, are used. By substituting in (6) th&,ortant observations have led people to develop the coarse
expansion of the totgl magnetic field in terms of inside grid correction strategy.
each elemenH = >_,_, H;¢;, the following linear system ™ the pasic idea is simple and elegant. At a given level, some
of equations is derived: steps of an iterative method are performed, in order to smooth
Az = b. (7 out the error. This is called presmoothing. When convergence
deteriorates, the current residual equation is restricted to a
The coefficient matrix of this system is complex symmetricoarser grid. There the resulting projected problem is solved, to
and highly sparse. Only the nonzero elements of its uppatain an approximation of the error. Then the error estimate is
triangular part are stored using a compressed row storagterpolated back to the original grid. By adding this estimation
format. The elements of vecterare the Cartesian component®f the error to the previous approximation of the solution at
of the magnetic field corresponding to the nodes of the mette fine level, a new improved approximation is obtained. This
being used. is the coarse grid correction step.
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The new approximation contains slow mode information level

not easily obtained at the fine level. It also contains fast 4 Veyele
mode errors introduced by the interpolation process. However, 3

these oscillatory errors can be easily eliminated with a few 2

steps of the iterative method at the fine level. This is called 1

this postsmoothing. The correction step can be thought of

as a fancy form of iterative improvement [19] using an

approximate smaller system of linear equations. Alternately, level W cycle
the combination of presmoothing and coarse grid correction 4

can be seen as a preconditioner for the postsmoothing fine 3

iterations. i

It is important to appreciate the complementarity, which
is at work in the process. Fine grid iterations eliminate thgg. 1. V (u, = 1) andW (u = 2) cycle.
oscillatory error components, leaving a relatively smooth error.
By solving the residual equation on a coarse level where tﬁ)ef,
projected error appears fast, it is possible to deal with tr&%
problematic on the fine level slow modes very efficiently.
The three steps of the coarse grid correction scheme, canALGORITHM MGC(k, {pueth_,, i, br)
be repeated many times if it is necessary, but usually only (1) If £ = 1, then solved,z; = b; exactly.

solving residual correction problems. Its most elegant
scription is by means of a recursive formulation

a few cycles are enough to arrive at a satisfactory fine level  (2) If £ > 1, thenrepeai =1, - -+, pz:
approximation. (2a) Approximately solver; — Sit(z, by).

It is evident, that the coarse grid problem is not much (2b) Residual Correction:
different from the original one. Therefore, the coarse grid br—1 — Ri(by — Apxy).
correction scheme can be also applied to the residual equation xy — xx + P_1 MGC(k — 1, {W}Q“;ll, 0,
on the coarse level, which means moving to an even coarser br_1).
grid for the new correction step. This process can continue (2c) Approximately solvexy, — SZ(xy, by).

recursively, visiting successively coarser grids until a direct (3) Returnzxy,.

solution of the residual equation is negligible at the coarsest

level. The above definition requirgs; = 1. Symmetric multigrid
Of course, the actual mathematical theory goes far beyobghemes assume théf* = S and nonsymmetric multigrid

the above simple interpretation as well as beyond the scopesghemes usually assume tiff = I where! is the identity

the present paper. Our main objective is to examine possiSRerator. However, it is computationally more efficient to

applications of the multigrid algorithms to electromagneti@ssumes;’ = I since the residual on level — 1 is by,
scattering. and does not need to be recomputed.

The second multigrid variant presented utilizes nested iter-
ation schemes, which begin computation on level 1 and work
their way to some leve) using each levek, £ < j both

It is convenient to organize the ideas of the previoup generate an initial guess for levkel+ 1 and for solving
section in an algorithmic form. Suppose a hierarchyMf residual correction problems
discretization levels. At each level a sparse linear system has

IV. MULTIGRID ALGORITHMS

to be solved ALGORITHM NIC(j, {4tk }m1s 215 {05 }1ms)
Q) Fork=1, ---, 4, do:
Apzy = bk, k= 1,2,---, M. (9) (1a) If £ > 1, thenzy «— Py_1x1_1.
o L . _ (1b) s, — MGC(E, {s1e}i—y, Tk, br)-
The application of an iterative solver on a given le¥ek (2) Returnz;.

represented by, (xx, bx). This solver is usually a smoother
(like Gauss—Seidel), but it can also be a rougher (symmetricThe order in which the levels are visited is called the
successive overrelaxation (SSOR) or conjugate gradientsultigrid schedule or multigrid cycle. There are two kinds
Only on the coarsest level is (9) solved exactly. This is oftesf schedules—fixed and adaptive. Fixed schedules have their
done with a direct method (such as LU decomposition). Qrarameterg:;, constant. The term adaptive signifies schedules
the rest of the levels, only a few iterations (or even one) afer which the ., parameters depend on intermediate compu-
performed each time the iterative solver is called. tational results. Fig. 1 shows the order in which MGC visits
P, denotes the prolongation operator, that interpolates ttie levels whenu, = 1 and i, = 2 in the caseM = 4. A
approximation of the solution or the error from levielto dot represents an approximate solution. Because of the shape
k+ 1. R, symbolizes the restriction operator that projects th&f these diagrams, these schedules are calledvttend W
residual from levek to the previous coarser orie— 1. cycles, respectively. Another commonly used schedule is the
There are two principal variants of multigrid algorithmsawtooth cycle. This is the name for a special case ofithe
[18]. The first is composed of correction schemes, which stamtcle in which the approximate solution is omitted before the
on some level; and only use the coarser levels < j coarse grid correction (presmoothing).
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Full V cycle operator is a very popular choice in multigrid literature because
level for it, the following important relation holds:
4
Ry =cPL |, ceR. (12)

3
i The corresponding multilevel procedure is usually referred to
as a Galerkin multilevel formulation. For a Galerkin formula-
tion, it is possible to compute the elements of the coefficient
matrix of a coarse leve} using the fine level matrix;; and

A very efficient combination is what is called full multigridthe intergrid transfer operato,_; and R;,. This is known
[20], which corresponds to algorithm nested iteration corregs the Galerkin coarse grid approximation
tion (NIC) with i, = 1. Fig. 2 illustrates full multigrid for
M = 4. If pz, = 0, then the NIC algorithm describes what is Ap = Rpp1 Agy1 Pre. (13)
known as one-way multigrid.

Fig. 2. Full V' multigrid.

The above identity and the transposition relation between
R; and P,_; are called the variational properties of the
multilevel scheme. The grid transfer operators must satisfy

Intergrid transfer operators are mechanisms for commutiie following accuracy requirement [21]:
cating information between the levels. They can be thought
of as mappings between the neighboring spaces of adjacent mp +mg > 2m (14)

levels. For the sake of simplicity in the following discussior\N ere mg and mp are the order of the restriction and

only the case in which each coarse grid has twice the grt' e prolongation, respectively, arith is the order of the
spacing of the next finer one is considered. This is know Kterential opera'tor '
5 .

as standard coarsening. The general case is, of course, mor

complicated, but the basic principles are the same.
When a transition from a coarse levielto the next finer VI. |MPLEMENTATION ASPECTS ANDCOMPUTATIONAL COSTS

V. INTERGRID TRANSFER OPERATORS

one is necessary, a prolongation operatrhas to be used. This section discusses briefly some practical issues of multi-
Prolongation operators are interpolation procedures. Magyid implementation. The most basic characteristic of our
interpolation methods can be used. The degree of interpolationltigrid program is its high modularity. This means that its

needed depends on the smoothness of the function to yagious components (for example, iterative or direct solvers,
interpolated. Usually linear interpolation is sufficient. In thremterpolation or restriction subroutines) can be replaced indi-

dimensions trilinear interpolation [exact fgi(x1, x5, 23) = vidually. While the use of recursion makes the description

1, x1, 2, X3, T1T2, T2X3, T1T3, T12223], approximates fine of multigrid algorithms easier and more elegant, it is by
grid values of a function: using the relations no means necessary. Our program employs a nonrecursive

implementation of the multigrid algorithms, based on the

(Pru)2; = i . .
structure diagrams given in [21].

(Prw)2ite, = % (Wi + Uite, ) The construction of suitable data structures for multilevel
(Prtt)2i4eq+es :%(ui—i-u”el + Uiter + Uitestes) computations is of extreme importance. The solution and
(i) 2iey eyt =§(ui 3 Uien F Uige, 4oy the right-hand side vectors of the various grids are stored

contiguously in single arrays. The same is done for the mesh
data structures and the sparse storage vectors of each level.
(10) The storage requirements of a specific level are proportional
wheree, = (1, 0, 0), e; = (0, 1, 0), andes = (0, 0, 1). In to the number of its grid nodes. If the finer level has N
MesM—l has approximately2® times as many (remember
values, while stencil notation is used. Linear interpolation irandard coarsening was assumed in the previous section), and

three dimensions takes place in tetrahedra and it is cheaB4¢'y lower level has about2 times the nodes of its finer
because of greater sparsity. The reason trilinear interpolatBrl?decessor' Adding the storage requirements of all the levels

is preferable in practice is because, unlike linear interpolatio‘ﬁf‘d using the sum of the geometric series as an upper bound
it preserves symmetry exactly. gives us that

When information from a fine grid has to be passed to a Storage=cN{1 + 273 + 276 _|_____’_273(1\471)}
coarse one, a restriction operaf®y is used. The most obvious

T Uitertes T Witestes T Uitertes +€3)

the above expressions, the right-hand sides are coarse |

M
restriction operator is injection. During injection each element :CNZ 9-3(M—k) o .N
of the coarse grid residual vector simply takes its value from ot 1-2-3
the corresponding fine grid node :CN% (15)
(Rpu)j = ua;. (11)

Thus, the storage costs of multigrid algorithms in three
An alternate restriction operator is called full weighting. As itdimensions for standard coarsening, is less than 8/7 of the fine
name implies, it approximates a coarse residual value usingr&d problem’s alone. It is evident that the additional storage
weighted average of nearby fine residuals. The full weightingquirement posed by multigrid is modest.
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Similar reasoning can be used to estimate the computatiorration satisfied the stopping criterion [22]
costs of the multigrid algorithms. It is convenient to measure
these costs in terms of work units (WU). One WU is usually [Irfl < e - AT -l + 1ol (18)

defined as the amount of computing work required to evaluaigere|| - || denoted matrix or vector norm. Tolerance was set

the residualy, = by — Az Of (7) on the finest leveM. In - to ¢ = 10~6 since lower values of it did not offer significant
practice, the work involved in smoothing is by far the dominaminprovements.

part of the total work. Therefore, another definition for the WU The first problem considered was the scattering of a plane

is as the cost of performing one iteration of the solver on thgave by a dielectric sphere. This problem was chosen because
finest grid. The two definitions agree with each other more @f, analytical solution exists for it and it can be used to check
less, when the iterative solver is simple and cheap. A WU cg@fe accuracy of our code. The sphere modeled had relative
be thought of as the cost of expressing the fine grid operatgfectric permittivity ¢, = 2 and radiusa = 0.5 m. The

As it is customary in muItigrid Iiterature, for S|mpI|C|ty in theincident p|ane wave was p0|arized,2 trave"ng’ and had
following analysis, the cost of intergrid transfer operations Bequencyf = 90 MHz. The Sommerfeld ABC was enforced
neglected. This amounts to less than 15% of the cost of @A a artificial spherical boundary placed at a distafde\,
entire multigrid cycle. from the surface of the sphere.

During a V' cycle if only one iteration of the solver is On the finest level a total of 15625 nodes were used,
performed, each time the solver is called the cost at the fipgsulting in 46 785 unknowns. The nodal spacing at this level
level is two WU’s. Each of the lower levels is visited twicewas 12.5 cm. The curvature based criterion derived in [23],
Every smoothing iteration on levet adds approximately was employed for the choice of this sampling rate. Although it
22(+=M) WU to the total work. The exact solution by a directed to satisfactory results, it must be admitted that the accuracy
method at the coarsest level is considered negligible and thagfghe finite-element approximation can be further increased if

the case in practice. Adding the costs of all the levels and agaimigher discretization density per minimum wavelength like
using the geometric series for an upper bound the result isthose in [17], [24], and [25] is utilized.

Vcycle cost=2{1+234+264... 4 273(1\471)} A three-level scheme was composed for the solution of this
M ' problem. The number of nodes at the coarsest level was only
:22273(1\4%) < 2 . 343 (1029 unknowns), while at the intermediate level there

o =27 were 2197 nodes and 6591 unknowns.
=16 wu. (16) It is desirable to keep the problem at level 1 as small as

possible, but it was found out by experimentation that if a
ampling rate of less than about five nodes per wavelength
as used, serious problems with multigrid convergence arose.

Fhe reason for this must be the excessive misrepresentation

of the finer level oscillatory modes at the lowest level. These
roblems can be avoided by adopting a discretization density

f not less than five nodes at the coarsest grid.

In the same way it is found that a sindlE cycle costs 8/3
WU for a 3-D problem. For a sawtooth cycle the cost is 8
WU. With a slight modification, the computational cost of
full multigrid V' cycle can be estimated. K cycle costs 16/7
WU on the fine levellf. EachV cycle on every lower levet
costs about #*~™) as much. Adding all these costs gives u

Full V cost= 26 {1 +27% + 276 4 ... 4 273(M=1 The prolongation operator used was trilinear interpolation.
M The restriction operator was full weighting. At the coarsest

=16 Z 2 3(M=h) < 128 Wy, (17) level sparse LU decomposition was employed. The factoriza-

k=1 tion of the system matrix at this level was needed only once at

It is natural to expect that the fine grid problem cannot ke beginning. After this factorization had taken place, every
solved at a cost less than a few WU and one should be contemte the coarsest level was visited, only the very cheap forward
if this realized. Multigrid algorithms can achieve this goahnd backward substitutions had to be performed.
because they require only a few cycles to converge. MultigridIn Fig. 3 the convergence of the conjugate orthogonal
convergence analysis is a difficult and open area of computgadient method (COCG) [26] and the one way multigrid with
tional mathematics and it will not be dealt theoretically in thiEOCG as fine level solver are compared. It is obvious that the
publication. However, in the next section, a wealth of complatter converged earlier, requiring only 194 fine level iterations
tational evidence is provided that testifies to the general effeghile the single level method needed 620. In terms of central
tiveness of multigrid methods in electromagnetic scatteringprocessing unit (CPU) time the three-level one way multigrid
was more than two times faster from COCG alone.

The COCG was used, because it turned out to be the fastest

To demonstrate the efficiency of the multilevel algorithms single-level method that converged, for our problem. The bi-
series of numerical experiments were performed on the silicoanjugate gradient stabilized method (BiCGStab) satisfied the
graphics power challenge computer. The code was writtstopping criterion in less iterations, but as the COCG required
in FORTRAN and double-precision complex arithmetic wasnly about half the amount of work per iteration, the CPU time
used. the latter took to converge was clearly shorter. It is interesting

The approximation obtained from a numerical techniquiat the initial residual of the one way multigrid is larger
was considered sufficiently close to the true solution of talmost double) from the corresponding residual of COCG.
problem if at the finest level the residualfor this approxi- This is due to errors induced by the interpolation process

VIl. COMPUTATIONAL EXPERIMENTS
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10° T T T T T r The regular and smooth convergence of the Fllscheme
full W - is clearly obvious. It was further observed that the resid-
COCG initi i i

o | one way multigrid ual initially (for the first couple of cycles) reduced rapidly,

but then its reduction rate slowed down. This happened
because as the multigrid process converged to the exact
solution on the finer level, the residual error became increas-
ingly smoother. As a result, the remaining extremely slow
. modes of the error appeared less and less oscillatory on
the coarser levels and their elimination there became more
9 difficult with every cycle. However, this situation is not a
. L L L - problem for multigrid, because these slow modes amount
0 100200 390 400300 60000 4 g very small percentage of the total error and can be
Work Units efficiently eliminated if the multigrid procedure is carefully
Fig. 3. Convergence comparison of a one-way three-level multigrid themplemented. This means that the slowing down of the multi-
COCG alone and a three level full” scheme. grid convergence can be used as an indication that the exact
solution is very close. This was verified many times in
T T practice.
full W scheme <= Fig. 3 compares the convergence of the full three-lé¥el
scheme and the COCG. The performance of the multilevel
scheme is evidently superior. The computational cost of it is

. 1072
Residual 0
Norm

107*

1074

102 T Y T

10-3 131 WU against the 620 WU that are required by COCG. This
Residual means that the fullW scheme is almost five times faster.
Norm When instead of the Sommerfeld radiation condition the
second-order ABC (3) was applied, the filf scheme took
Lot 18 cycles to satisfy the stopping criterion. It should be noticed

that the solution obtained with this ABC did not appear to
be significantly improved in accuracy over the solution of the
first-order condition.

The full V- multigrid schedule was also tried, for the initial
Fig. 4. Convergence history of a three-level fll scheme. problem (with the Sommerfeld condition). Its performance was

also very satisfactory and comparable with that of the Full
during the nested iteration steps. These errors are fast satieme that proved slightly superior. With tiieschedule 16
thus easily eliminated by the iterative solver at the fine levetycles were needed and 155 WU.

Another noteworthy fact is the highly irregular convergence Furthermore, the use of other solvers (apart from BiCGStab)
of COCG, that also characterizes the one way multigrid tha&s examined at the various levels. Stationary methods (like
uses COCG as its solver. The reason for this is that the CO@@auss—Seidel) typically led to fast divergence. These methods
implicitly computes and uses the lower diagonal upper (LDWjid not converge for the system of our problem, even on a
factorization of an indefinite tridiagonal matrix arising fronsingle level context. Row projection methods such as Kacz-
the underlying Lanczos process. Since no pivoting is usedarz iteration [27] had, as a result, very slow reduction of
there is the possibility of encountering small (or even zerthe residual and often stagnation. The method of conjugate
pivots in this factorization. When a small pivot is encounteredradients on the normal equations (CGNE) showed a better
typically, the residual norm increases by a large amount dehavior, but it could not compete with BiCGStab as it was
one iteration only to be reduced by a similar amount on thiharacterized by slower convergence and so its use as a
next step, creating a “spike” in the convergence history. Sushlver is not recommended. Finally, the trial of COCG led
“spikes” can cause large cancellation errors, and can threaterivergence the multigrid procedure, probably because of its
the numerical stability of COCG. One-way multigrid withhighly irregular convergence behavior.

COCG as fine level solver also suffers from these “spikes,” One technique that worked very well as a solver was
but their size and especially their number is reduced and a&auss—Seidel with minimal residual [Orthomin(1)] accelera-
result the errors they introduce are also reduced. tion (GSMR). Although this method alone stagnated for our

Even faster than one way multigrid is the “true” multigridoroblem when it was incorporated in a fuV scheme, 27
that uses coarse grid corrections. In Fig. 4 the residual normgles were sufficient for the satisfaction of the termination
at the finest level of a “true” multigrid are plotted for evencriterion. The corresponding computational cost was only 140
cycle. The cycling scheme used was the #ifl cycle. In the WU. The reduction rate of the residual at the initial cycles, was
intermediate and the finer level BiCGStab was used as a solegen greater than the one achieved with the use of BiCGStab,
and two iterations of it were executed each time it was calledhich required double computational work per iteration. It
The fact that for a problem with 46 875 unknowns only 12ppears that it would be a good idea to use the GSMR as a
cycles were sufficient for its solution is a clear indication ofolver for the first few cycles and then switch to BiCGStab
the high efficiency of the multilevel technique. for the remaining.

cycle
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Fig. 5. They component of the total magnetic field along thexis for a
three-level fulll¥’ scheme; onéV cycle, the COCG alone, and Mie's series
solution.

Fig. 6. Convergence behavior of a three-level il scheme for scattering
from a lossy sphere.

T T T T T T
The accuracy of the results of multilevel methods depends full W scheme <-
on the modeling of the problem at the finest level. The L0=2 ks COCG ]
computational price that has to be paid for this accuracy is ]"}
lower than the cost of solving the finest level system with
an ordinary iterative or direct method. Moreover, as with thB&Séd“al

.. . . . T -3 L .
multigrid schemes, the less number of arithmetic operations are U

performed, the number of the unavoidable roundoff errors is 5
reduced significantly. Additionally, the smoother convergence R
history of multigrid makes it more numerically stable from 1074+ “%. .

the COCG with its highly irregular convergence behavior. 1' - . .

Apart from that, coarse grid corrections are a form of iterative 0 00 00 3,0 0 00500 600 700
. . . . Work Units

improvement so their application might also serve as a cure to

the accumulation of roundoff errors, as is the case for stand&f@l 7- Convergence comparison between a three-level¥ulscheme and
. . . COCG for the problem of the lossy sphere.
iterative improvement [19].

To verify the accuracy of the solutions of our multigrid | order to investigate the effect that the electrical properties
algorithms, in Fig. 5 a distribution for the total magnetic fielgyf the mediums modeled have on the behavior of the multilevel
that was obtained from the full” scheme and the correspondy|gorithms, the scattering of a plane wave by a lossy sphere
ing analytical curve from Mie’s theory are compared. On thgas analyzed next. The only difference that the new physical
same figure we superimposed the field distribution that resultgghplem had from the previous one examined was that the
when the COCG was used alone and the field values providgthere had a complex relative permittivity of = (2, —1.5).
by the use of only one fullV’ cycle. It is observed that the For the solution of this problem, again, a three-level scheme
multigrid results are considerably more accurate than thog@s used with the same intergrid operators and solvers as
of the single-level COCG for the same numerical model anggfore.
equal tolerance: = 10~° for the termination criterion. The residual reduction curve at the highest level (3) is

The discrepancies between the analytical and the numerigadwn in Fig. 6. The fulliW schedule required 14 cycles to
field values are greater close to the surface of the sphesgminate and this cost 153 WU. These values are close to
and near the absorbing boundary surface. The errors of thgse achieved for the previous lossless problem, but slightly
FEM there were higher because of the approximate natwigher. It appears that the presence of electrical loss in the
of the ABC and the imperfect geometrical representation eatterer slightly reduced the multigrid convergence speed. The
the sphere by a collection of tetrahedra. It should be notedmparison between the fulV scheme and the COCG for the
that the results of COCG only appeared to be more accurgi®blem of the lossy sphere takes place in Fig. 7.
at those areas because of an unusual and not exploitable locglhe difference between the performances of the multigrid
cancellation of discretization and roundoff errors. From Fig. §chemes and the single-level methods, became more intense as
it is also evident that the use of only one filff cycle (21 WU) the number of unknowns in the problems solved increased. In
gave us a very good approximation of the analytical solutioMable I, the cycles and the required CPU times for the solution

The improved accuracy of multigrid has been observesith multigrid of various problems are given. These problems
in other comparisons between multilevel and single-leveiodeled the scattering of plane waves by dielectric spheres.
techniques as well. It can allow us to use larger tolerances fr the same table, the computational requirements for the
the stopping criterion (for example = 10~?), thus arriving solution of these problems, with sparse LU decomposition, are
at a sufficient approximation at a much shorter time. It miglicluded. The latter has extremely large memory demands due
even be possible to safely use single-precision arithmetic atadbe filled during the factorization process; a fact that makes
in that way reduce half the memory demands of our prograniis practical implementation problematic (or even impossible)
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TABLE |
COMPARISON BETWEEN THE COMPUTATIONAL REQUIREMENTS OF ADIRECT METHOD AND VARIOUS MULTIGRID SCHEMES
Number Initial | Nonzero Sparse LU Number | Multilevel | Multilevel
of Nonzero | Elements | Decomposition of Cycles Iteration
Unknowns | Elements | after LU Time (sec) Levels Time (sec)
2187 50943 5.10° 204 2 64 118
6591 139227 5-10° 2016 2 42 212
14739 289431 107 10313 3 24 319
46785 835503 108 105606 3 12 476
107811 1808967 10° 560434 4 3 596
TABLE I TABLE 1l
PERFORMANCE OF A THREE-LEVEL MULTIGRID SCHEME PERFORMANCE OF A THREE-LEVEL MULTIGRID
FOR VARIOUS PERMITTIVITIES AND FREQUENCIES SCHEME FOR VARIOUS SCATTERERS
Er £(MHz) | Cycles | Work Units Scatterer f(MHz) | Cycles | Work Units
(3,-2) 90 19 207
.0 55 s 194 Cl?.be 90 12 131
(7.-3.2) 90 20 350 Cylinder 55 22 235
(7,-3.2) 75 9 99 Prolate Spheroid 90 23 240
(16,0) 45 8 65 Multilayered Sphere 90 13 141

for large V. It is clear from Table | that multilevel techniques . i -
. - . n the surface of which the Sommerfeld radiation condition
are by far more computationally efficient than direct methods
. : was enforced. The cube had an edge length of 1 m. The
and this performance gap grows rapidly as the number Of:

. ; : . c&hnder had 1 m height and 0.5 m radius. The major axis of
unknowns increases. The same is also true if multilevel a

: . ) e spheroid was 1.5 m long while the ratio of its major and
single-level iterative solvers are compared. For example, the

. minor axes was 1.27. Except from the last case, all the other
four-level scheme of Table | was almost 16 times faster than

COCG (it cost 32 WU, while the corresponding cost of COC cattgrers were homogenous _and kad= 2. The multigrid
was 511 WU). echnique worked very well with all of them.

In Table Il, one can see the effects that the values of reIativeThe last case examined was a double-layered sphere. The

permittivity and frequency have on the behavior of multigri adius of the sphere was 0.5 m. The inner layer had a relative

. . - permittivity of £,; = 4 and radius 0.25 m. The permittivity
With the exception ot,. and f, the remaining parameters ofof the outer layer was,» = 2. Despite of the inhomogeneity

the problems investigated were the same with those of tgtﬁat is referred as a serious problem in multigrid literature)

section’s first problem. This is also true for the numeric
o : . and the fact that on the coarsest level we were forced to
models and the multigrid schemes with which the problems ) .
model a homogenous sphere with = 4, the multilevel
were analyzed.

It is noticed that wherf remained constant arg increased, method_ wor_ked surprlsmgly well and its performance was
, . Imost identical to that achieved for a homogenous problem. It
more cycles and subsequently more WU’s were required for . o . . .
: ) . : IS, suspected that this promising and impressive behavior was
a multilevel solution. This may be because the increased - .
. o N part owed to the magnetic field formulation of the FEM
difference between the free-space permittivity and that of the : :
. : ecaused remained continuous even whep changed.
scatterer introduced more oscillatory (fast) error component}s
that were immune to coarse grid corrections and needed more
high-level iterations to be eliminated. As fixed schedules were
used with a constant number of iterations at each cycle, thisin this paper, a multilevel implementation of the 3-D
means that more cycles had to be performed. An adaptivEM for electromagnetic scattering has been presented. The
cycling scheme would be more efficient in these cases.  main features and the characteristic behavior of the multigrid
Another reason for the slower multigrid convergence falgorithms have been described in detail. It has been shown
highere,. could be the reduced number of nodes per minimuthat the multilevel FEM allows the rapid solution of problems
wavelength at the lowest level. As increased, the minimum with tens of thousands of unknowns, in only about a dozen
wavelength shrunk in size. In order to test this hypothesisultigrid cycles and in a small fraction of the single-level
quickly and easily, the frequency of some problems was reemputational cost. It has also been demonstrated that the
duced, keeping the number of nodes per minimum wavelengttultilevel approximations exhibit improved accuracy over the
at level 1 constant as. increased. It was found out that whercorresponding single-level solutions. The multigrid technique
this happened, multigrid convergence speeded up again #ag been applied for various problems with different number
was even faster than before. It is evident that an adapti@€levels and unknowns and every time very promising and
refinement mesh generator that allocated a sufficient numleeicouraging results were obtained. These results show that
of nodes inside regions with high. at every grid would take the multilevel method proposed is feasible, numerically stable,
effectively care of this problem. reliable, and very computationally efficient.
Finally, Table Ill presents the performance of the full The efficiency of the method can be further increased by us-
three-level scheme for various dielectric scatterers. All thieg various preconditioners, more advanced transfer operators

scatterers were enclosed by a conforming absorbing boundg@ilye bicubic interpolation), more sophisticated solvers (like

VIIl. CONCLUSIONS
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QMR and GMRES), and adaptive cycling schemes. Another tions of specific absorption rates in anatomically conforming full-body
very interesting possibility, seems to be the combination of the models for hyperthermia treatment analysi§EE Trans. Biomed. Eng.

vol. 40, pp. 933-945, Sept. 1993.

multilevel method_with an adaptive refinement technique fC?ﬁe] H. A. van der Vorst and J. B. M. Melissen, “A Petrov—Galerkin type
the mesh generation at the various levels. We are currently in method for solvingAx = b, where A is symmetric complex,1EEE

the process of parallelizing the multilevel code in a distributeﬁﬂ

Trans. Magn,. vol. 26, pp. 706—-708, Mar. 1990.
K. Tanabe, “Projection methods for solving a singular system of linear

memory environment. equations and its applicationsNumer. Math.,vol. 17, pp. 203-214,
Mar. 1971.
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