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Abstract—Multigrid techniques for three-dimensional (3-D)
electromagnetic scattering problems are presented. The numeri-
cal representation of the physical problem is accomplished via a
finite-element discretization, with nodal basis functions. A total
magnetic field formulation with a vector absorbing boundary
condition (ABC) is used. The principal features of the multi-
level technique are outlined. The basic multigrid algorithms are
described and estimations of their computational requirements
are derived. The multilevel code is tested with several scattering
problems for which analytical solutions exist. The obtained results
clearly indicate the stability, accuracy, and efficiency of the
multigrid method.

Index Terms— Electromagnetic scattering, finite-element
method, multigrid, multilevel numerical techniques.

I. INTRODUCTION

T HE finite-element method (FEM), has been successfully
applied in electromagnetism for the solution of problems

with arbitrary conductor geometries as well as dielectric inho-
mogeneities. The most computationally intensive part of the
method is the solution of the resulting system of equations. In
this context, direct methods are the most robust; but iterative
techniques like the preconditioned conjugate gradient method
and its variants exhibit higher efficiency because of the sparsity
of the finite-element matrices. However, even with the use
of advanced iterative methods, the operation count for a
finite-element program is extremely high for electrically large
three-dimensional (3-D) bodies. A solution to this problem lies
in the utilization of multigrid formulations.

Multigrid should not be considered as a single method or
even a family of methods, but rather as an entire approach to
computational engineering a collection of ideas and attitudes.
Multigrid is a prime source of important algorithmic efficiency
and its popularity is rapidly increasing. This is because unlike
other known methods, multigrid offers the possibility of solv-
ing problems with unknowns with O( ) work and storage,
not just for special cases but for large classes of problems.
As their name implies, multigrid techniques use a sequence
of increasingly finer nested grids. The essential multigrid
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principle is the approximation of the smooth (long wavelength)
part of the error on the coarser grids. The nonsmooth or rough
part is reduced with a small number of iterations (independent
of ) of a basic iterative method on a fine grid.

The first “true” multigrid publication was by Fedorenko [1],
but it was Brandt who clearly outlined the main principles
and the practical utility of the multigrid methods [2], [3].
Equally important is the contribution of Hackbush, who laid
firm mathematical foundations and provided reliable methods
[4], [5]. In the domain of electromagnetism, Kalbasi and
Demarest applied the multilevel concepts to the method of
moments with impressive results [6]. Yeet al.used a multilevel
finite-difference method for the Helmholtz wave equation [7].
Herring and Christopoulos introduced the use of multigrid
techniques in the transmission line matrix (TLM) method
[8]. Costiner et al. [9] presented a multilevel formulation
of the finite-difference method for the computation of the
modes and eigenvalues of resonant cavities. Wang and Fang
proposed a multilevel implementation of the diakoptic method
[10]. Goverdahanamet al. derived a novel multigrid scheme
for the finite-difference time-domain (FDTD) technique, by
applying the principles of multiresolution analysis [11]. For the
efficient finite-element solution of two-dimensional magneto-
static problems, Tsukerman developed a family of multilevel
preconditioners [12].

The central theme of this publication, is the incorporation
of the multigrid principles to the formulation of a 3-D FEM
for electromagnetic scattering. To this end the next section
starts with the presentation of the corresponding single-level
formulation. Then a short introduction to the fundamental
ideas behind multigrid development is given. Section IV pro-
vides the description of the most basic multigrid algorithms.
Section V deals with the important subject of intergrid transfer
operators. In Section VI, implementation details and compu-
tational cost estimations are presented. The last two sections
contain numerical results and conclusions.

In the following an time dependence is assumed for the
field quantities and it is suppressed throughout the remaining
sections.

II. SINGLE-LEVEL FORMULATION

The partial-differential equation, that is to be solved using
the FEM, is the well known curl–curl equation for the total
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magnetic field

(1)

For the application of the FEM for unbounded problems
like those of electromagnetic scattering, the truncation of
the computational domain with an artificial boundary
is necessary. On this boundary the enforcement of suitable
absorbing boundary conditions (ABC’s) takes place. These
boundary conditions suppress nonphysical reflections from that
boundary, thus ensuring the outgoing nature of the waves. The
ABC’s used in this formulation are the Sommerfeld radiation
condition

(2)

and the second-order ABC [13]

(3)

where , , represents the
scattered magnetic field, is the unit normal to the surface

, and the subscriptsand denote the transverse and normal
component to , respectively.

It is possible to combine (2) and (3) in the more concise
expression

(4)

For the total field formulation where the unknown is the
total magnetic field, the above relation takes the form

(5)

where is the incident magnetic field.
Using the curl–curl equation and the above ABC and

through the application of a Galerkin weighted residual pro-
cedure, the following weak form is obtained:

(6)

This expression has been shown to eliminate spurious modes
[14]. Tetrahedral elements, with being the standard volume
coordinates that have closed-form exact integration formulas
on each tetrahedron, are used. By substituting in (6) the
expansion of the total magnetic field in terms of inside
each element , the following linear system
of equations is derived:

(7)

The coefficient matrix of this system is complex symmetric
and highly sparse. Only the nonzero elements of its upper
triangular part are stored using a compressed row storage
format. The elements of vectorare the Cartesian components
of the magnetic field corresponding to the nodes of the mesh
being used.

Closely related to (7) and of extreme importance to multi-
grid algorithms is the residual equation of (7)

(8)

where for an approximation to the exact solution,
is the error of and is the corresponding residual.

III. N ESTED ITERATION AND COARSE GRID CORRECTION

One way to check the convergence of a finite-element
scheme is to compare the computed results for increasingly
denser meshes. It is possible to use this comparison to compute
an estimate of the discretization error of the scheme [15].
Usually, one gets a finer grid by uniformly shrinking the mesh
size. However, a more efficient option is adaptive refinement
with a posteriori error estimation [16]. In both cases, the
result is a sequence of increasingly finer grids. As the number
of unknowns increases, the accuracy of the finite-element
approximations improves but the price is a much higher
computational cost. The idea behind multigrid is to exploit
interactions between the different discretization spaces, thus
keeping the computational cost as low as possible.

The spaces of discretized functions corresponding to dif-
ferent grids are called levels—level 1 being the coarsest. At
each level, the solution of a sparse linear system is required
and iterative methods are the most efficient choice [17]. A
simple way to speed up the convergence of these methods
is to use a good initial guess. A well-known technique for
obtaining a improved initial guess at a given level is to solve
the problem at a coarser grid and then project in some way
this approximation on the original level. The solution at a
coarser level is significantly cheaper since there are fewer
unknowns and the convergence rate of the iterative techniques
is better. This procedure is known as nested iteration or one
way multigrid and its application can be performed recursively
until the coarsest level is reached. The additional cost for
solving the systems associated to the coarser grids is justified
by having quicker convergence for the actually sought one.

The solution at each level is composed of fast and slow
spatial variations. The cause of the fast variations are local
iterations in geometry, while the slow components arise from
global interactions. Many iterative methods tend to damp out
the fast components of the error quickly, but their convergence
rate slows down considerably in the presence of the remaining
smooth components. However, the smooth components of
one level seem more oscillatory on a coarser one. These
important observations have led people to develop the coarse
grid correction strategy.

The basic idea is simple and elegant. At a given level, some
steps of an iterative method are performed, in order to smooth
out the error. This is called presmoothing. When convergence
deteriorates, the current residual equation is restricted to a
coarser grid. There the resulting projected problem is solved, to
obtain an approximation of the error. Then the error estimate is
interpolated back to the original grid. By adding this estimation
of the error to the previous approximation of the solution at
the fine level, a new improved approximation is obtained. This
is the coarse grid correction step.
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The new approximation contains slow mode information
not easily obtained at the fine level. It also contains fast
mode errors introduced by the interpolation process. However,
these oscillatory errors can be easily eliminated with a few
steps of the iterative method at the fine level. This is called
this postsmoothing. The correction step can be thought of
as a fancy form of iterative improvement [19] using an
approximate smaller system of linear equations. Alternately,
the combination of presmoothing and coarse grid correction
can be seen as a preconditioner for the postsmoothing fine
iterations.

It is important to appreciate the complementarity, which
is at work in the process. Fine grid iterations eliminate the
oscillatory error components, leaving a relatively smooth error.
By solving the residual equation on a coarse level where the
projected error appears fast, it is possible to deal with the
problematic on the fine level slow modes very efficiently.
The three steps of the coarse grid correction scheme, can
be repeated many times if it is necessary, but usually only
a few cycles are enough to arrive at a satisfactory fine level
approximation.

It is evident, that the coarse grid problem is not much
different from the original one. Therefore, the coarse grid
correction scheme can be also applied to the residual equation
on the coarse level, which means moving to an even coarser
grid for the new correction step. This process can continue
recursively, visiting successively coarser grids until a direct
solution of the residual equation is negligible at the coarsest
level.

Of course, the actual mathematical theory goes far beyond
the above simple interpretation as well as beyond the scope of
the present paper. Our main objective is to examine possible
applications of the multigrid algorithms to electromagnetic
scattering.

IV. M ULTIGRID ALGORITHMS

It is convenient to organize the ideas of the previous
section in an algorithmic form. Suppose a hierarchy of
discretization levels. At each level a sparse linear system has
to be solved

(9)

The application of an iterative solver on a given levelis
represented by . This solver is usually a smoother
(like Gauss–Seidel), but it can also be a rougher (symmetric
successive overrelaxation (SSOR) or conjugate gradients).
Only on the coarsest level is (9) solved exactly. This is often
done with a direct method (such as LU decomposition). On
the rest of the levels, only a few iterations (or even one) are
performed each time the iterative solver is called.

denotes the prolongation operator, that interpolates the
approximation of the solution or the error from level to

. symbolizes the restriction operator that projects the
residual from level to the previous coarser one .

There are two principal variants of multigrid algorithms
[18]. The first is composed of correction schemes, which start
on some level and only use the coarser levels

Fig. 1. V (�k = 1) andW (�k = 2) cycle.

for solving residual correction problems. Its most elegant
description is by means of a recursive formulation

ALGORITHM MGC( )
(1) If , then solve exactly.
(2) If , then repeat :

(2a) Approximately solve: .
(2b) Residual Correction:

.
MGC(

).
(2c) Approximately solve: .

(3) Return .

The above definition requires . Symmetric multigrid
schemes assume that and nonsymmetric multigrid
schemes usually assume that where is the identity
operator. However, it is computationally more efficient to
assume since the residual on level is
and does not need to be recomputed.

The second multigrid variant presented utilizes nested iter-
ation schemes, which begin computation on level 1 and work
their way to some level using each level , both
to generate an initial guess for level and for solving
residual correction problems

ALGORITHM NIC( )
(1) For , do:

(1a) If , then .
(1b) MGC( ).

(2) Return .

The order in which the levels are visited is called the
multigrid schedule or multigrid cycle. There are two kinds
of schedules—fixed and adaptive. Fixed schedules have their
parameters constant. The term adaptive signifies schedules
for which the parameters depend on intermediate compu-
tational results. Fig. 1 shows the order in which MGC visits
the levels when and in the case . A
dot represents an approximate solution. Because of the shape
of these diagrams, these schedules are called theand
cycles, respectively. Another commonly used schedule is the
sawtooth cycle. This is the name for a special case of the
cycle in which the approximate solution is omitted before the
coarse grid correction (presmoothing).
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Fig. 2. Full V multigrid.

A very efficient combination is what is called full multigrid
[20], which corresponds to algorithm nested iteration correc-
tion (NIC) with . Fig. 2 illustrates full multigrid for

. If , then the NIC algorithm describes what is
known as one-way multigrid.

V. INTERGRID TRANSFER OPERATORS

Intergrid transfer operators are mechanisms for communi-
cating information between the levels. They can be thought
of as mappings between the neighboring spaces of adjacent
levels. For the sake of simplicity in the following discussion,
only the case in which each coarse grid has twice the grid
spacing of the next finer one is considered. This is known
as standard coarsening. The general case is, of course, more
complicated, but the basic principles are the same.

When a transition from a coarse levelto the next finer
one is necessary, a prolongation operatorhas to be used.
Prolongation operators are interpolation procedures. Many
interpolation methods can be used. The degree of interpolation
needed depends on the smoothness of the function to be
interpolated. Usually linear interpolation is sufficient. In three
dimensions trilinear interpolation [exact for

], approximates fine
grid values of a function using the relations

(10)

where , , and . In
the above expressions, the right-hand sides are coarse level
values, while stencil notation is used. Linear interpolation in
three dimensions takes place in tetrahedra and it is cheaper
because of greater sparsity. The reason trilinear interpolation
is preferable in practice is because, unlike linear interpolation,
it preserves symmetry exactly.

When information from a fine grid has to be passed to a
coarse one, a restriction operator is used. The most obvious
restriction operator is injection. During injection each element
of the coarse grid residual vector simply takes its value from
the corresponding fine grid node

(11)

An alternate restriction operator is called full weighting. As its
name implies, it approximates a coarse residual value using a
weighted average of nearby fine residuals. The full weighting

operator is a very popular choice in multigrid literature because
for it, the following important relation holds:

(12)

The corresponding multilevel procedure is usually referred to
as a Galerkin multilevel formulation. For a Galerkin formula-
tion, it is possible to compute the elements of the coefficient
matrix of a coarse level using the fine level matrix and
the intergrid transfer operators and . This is known
as the Galerkin coarse grid approximation

(13)

The above identity and the transposition relation between
and are called the variational properties of the

multilevel scheme. The grid transfer operators must satisfy
the following accuracy requirement [21]:

(14)

where and are the order of the restriction and
the prolongation, respectively, and is the order of the
differential operator.

VI. I MPLEMENTATION ASPECTS ANDCOMPUTATIONAL COSTS

This section discusses briefly some practical issues of multi-
grid implementation. The most basic characteristic of our
multigrid program is its high modularity. This means that its
various components (for example, iterative or direct solvers,
interpolation or restriction subroutines) can be replaced indi-
vidually. While the use of recursion makes the description
of multigrid algorithms easier and more elegant, it is by
no means necessary. Our program employs a nonrecursive
implementation of the multigrid algorithms, based on the
structure diagrams given in [21].

The construction of suitable data structures for multilevel
computations is of extreme importance. The solution and
the right-hand side vectors of the various grids are stored
contiguously in single arrays. The same is done for the mesh
data structures and the sparse storage vectors of each level.
The storage requirements of a specific level are proportional
to the number of its grid nodes. If the finer level has
nodes, has approximately 2 times as many (remember
standard coarsening was assumed in the previous section), and
every lower level has about 2 times the nodes of its finer
predecessor. Adding the storage requirements of all the levels
and using the sum of the geometric series as an upper bound
gives us that

Storage

(15)

Thus, the storage costs of multigrid algorithms in three
dimensions for standard coarsening, is less than 8/7 of the fine
grid problem’s alone. It is evident that the additional storage
requirement posed by multigrid is modest.
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Similar reasoning can be used to estimate the computational
costs of the multigrid algorithms. It is convenient to measure
these costs in terms of work units (WU). One WU is usually
defined as the amount of computing work required to evaluate
the residual of (7) on the finest level . In
practice, the work involved in smoothing is by far the dominant
part of the total work. Therefore, another definition for the WU
is as the cost of performing one iteration of the solver on the
finest grid. The two definitions agree with each other more or
less, when the iterative solver is simple and cheap. A WU can
be thought of as the cost of expressing the fine grid operator.
As it is customary in multigrid literature, for simplicity in the
following analysis, the cost of intergrid transfer operations is
neglected. This amounts to less than 15% of the cost of an
entire multigrid cycle.

During a cycle if only one iteration of the solver is
performed, each time the solver is called the cost at the fine
level is two WU’s. Each of the lower levels is visited twice.
Every smoothing iteration on level adds approximately
2 WU to the total work. The exact solution by a direct
method at the coarsest level is considered negligible and that is
the case in practice. Adding the costs of all the levels and again
using the geometric series for an upper bound the result is

cycle cost

WU (16)

In the same way it is found that a single cycle costs 8/3
WU for a 3-D problem. For a sawtooth cycle the cost is 8/7
WU. With a slight modification, the computational cost of a
full multigrid cycle can be estimated. A cycle costs 16/7
WU on the fine level . Each cycle on every lower level
costs about 2 as much. Adding all these costs gives us

Full cost

WU (17)

It is natural to expect that the fine grid problem cannot be
solved at a cost less than a few WU and one should be content
if this realized. Multigrid algorithms can achieve this goal
because they require only a few cycles to converge. Multigrid
convergence analysis is a difficult and open area of computa-
tional mathematics and it will not be dealt theoretically in this
publication. However, in the next section, a wealth of compu-
tational evidence is provided that testifies to the general effec-
tiveness of multigrid methods in electromagnetic scattering.

VII. COMPUTATIONAL EXPERIMENTS

To demonstrate the efficiency of the multilevel algorithms a
series of numerical experiments were performed on the silicon
graphics power challenge computer. The code was written
in FORTRAN and double-precision complex arithmetic was
used.

The approximation obtained from a numerical technique
was considered sufficiently close to the true solution of the
problem if at the finest level the residualfor this approxi-

mation satisfied the stopping criterion [22]

(18)

where denoted matrix or vector norm. Tolerance was set
to since lower values of it did not offer significant
improvements.

The first problem considered was the scattering of a plane
wave by a dielectric sphere. This problem was chosen because
an analytical solution exists for it and it can be used to check
the accuracy of our code. The sphere modeled had relative
electric permittivity and radius m. The
incident plane wave was polarized, traveling, and had
frequency MHz. The Sommerfeld ABC was enforced
on a artificial spherical boundary placed at a distance
from the surface of the sphere.

On the finest level a total of 15 625 nodes were used,
resulting in 46 785 unknowns. The nodal spacing at this level
was 12.5 cm. The curvature based criterion derived in [23],
was employed for the choice of this sampling rate. Although it
led to satisfactory results, it must be admitted that the accuracy
of the finite-element approximation can be further increased if
a higher discretization density per minimum wavelength like
those in [17], [24], and [25] is utilized.

A three-level scheme was composed for the solution of this
problem. The number of nodes at the coarsest level was only
343 (1029 unknowns), while at the intermediate level there
were 2197 nodes and 6591 unknowns.

It is desirable to keep the problem at level 1 as small as
possible, but it was found out by experimentation that if a
sampling rate of less than about five nodes per wavelength
was used, serious problems with multigrid convergence arose.
The reason for this must be the excessive misrepresentation
of the finer level oscillatory modes at the lowest level. These
problems can be avoided by adopting a discretization density
of not less than five nodes at the coarsest grid.

The prolongation operator used was trilinear interpolation.
The restriction operator was full weighting. At the coarsest
level sparse LU decomposition was employed. The factoriza-
tion of the system matrix at this level was needed only once at
the beginning. After this factorization had taken place, every
time the coarsest level was visited, only the very cheap forward
and backward substitutions had to be performed.

In Fig. 3 the convergence of the conjugate orthogonal
gradient method (COCG) [26] and the one way multigrid with
COCG as fine level solver are compared. It is obvious that the
latter converged earlier, requiring only 194 fine level iterations
while the single level method needed 620. In terms of central
processing unit (CPU) time the three-level one way multigrid
was more than two times faster from COCG alone.

The COCG was used, because it turned out to be the fastest
single-level method that converged, for our problem. The bi-
conjugate gradient stabilized method (BiCGStab) satisfied the
stopping criterion in less iterations, but as the COCG required
only about half the amount of work per iteration, the CPU time
the latter took to converge was clearly shorter. It is interesting
that the initial residual of the one way multigrid is larger
(almost double) from the corresponding residual of COCG.
This is due to errors induced by the interpolation process
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Fig. 3. Convergence comparison of a one-way three-level multigrid the
COCG alone and a three level fullW scheme.

Fig. 4. Convergence history of a three-level fullW scheme.

during the nested iteration steps. These errors are fast and
thus easily eliminated by the iterative solver at the fine level.

Another noteworthy fact is the highly irregular convergence
of COCG, that also characterizes the one way multigrid that
uses COCG as its solver. The reason for this is that the COCG
implicitly computes and uses the lower diagonal upper (LDU)
factorization of an indefinite tridiagonal matrix arising from
the underlying Lanczos process. Since no pivoting is used,
there is the possibility of encountering small (or even zero)
pivots in this factorization. When a small pivot is encountered,
typically, the residual norm increases by a large amount on
one iteration only to be reduced by a similar amount on the
next step, creating a “spike” in the convergence history. Such
“spikes” can cause large cancellation errors, and can threaten
the numerical stability of COCG. One-way multigrid with
COCG as fine level solver also suffers from these “spikes,”
but their size and especially their number is reduced and as a
result the errors they introduce are also reduced.

Even faster than one way multigrid is the “true” multigrid
that uses coarse grid corrections. In Fig. 4 the residual norms
at the finest level of a “true” multigrid are plotted for every
cycle. The cycling scheme used was the full cycle. In the
intermediate and the finer level BiCGStab was used as a solver
and two iterations of it were executed each time it was called.
The fact that for a problem with 46 875 unknowns only 12
cycles were sufficient for its solution is a clear indication of
the high efficiency of the multilevel technique.

The regular and smooth convergence of the fullscheme
is clearly obvious. It was further observed that the resid-
ual initially (for the first couple of cycles) reduced rapidly,
but then its reduction rate slowed down. This happened
because as the multigrid process converged to the exact
solution on the finer level, the residual error became increas-
ingly smoother. As a result, the remaining extremely slow
modes of the error appeared less and less oscillatory on
the coarser levels and their elimination there became more
difficult with every cycle. However, this situation is not a
problem for multigrid, because these slow modes amount
to a very small percentage of the total error and can be
efficiently eliminated if the multigrid procedure is carefully
implemented. This means that the slowing down of the multi-
grid convergence can be used as an indication that the exact
solution is very close. This was verified many times in
practice.

Fig. 3 compares the convergence of the full three-level
scheme and the COCG. The performance of the multilevel
scheme is evidently superior. The computational cost of it is
131 WU against the 620 WU that are required by COCG. This
means that the full scheme is almost five times faster.

When instead of the Sommerfeld radiation condition the
second-order ABC (3) was applied, the full scheme took
18 cycles to satisfy the stopping criterion. It should be noticed
that the solution obtained with this ABC did not appear to
be significantly improved in accuracy over the solution of the
first-order condition.

The full multigrid schedule was also tried, for the initial
problem (with the Sommerfeld condition). Its performance was
also very satisfactory and comparable with that of the full
scheme that proved slightly superior. With theschedule 16
cycles were needed and 155 WU.

Furthermore, the use of other solvers (apart from BiCGStab)
was examined at the various levels. Stationary methods (like
Gauss–Seidel) typically led to fast divergence. These methods
did not converge for the system of our problem, even on a
single level context. Row projection methods such as Kacz-
marz iteration [27] had, as a result, very slow reduction of
the residual and often stagnation. The method of conjugate
gradients on the normal equations (CGNE) showed a better
behavior, but it could not compete with BiCGStab as it was
characterized by slower convergence and so its use as a
solver is not recommended. Finally, the trial of COCG led
to divergence the multigrid procedure, probably because of its
highly irregular convergence behavior.

One technique that worked very well as a solver was
Gauss–Seidel with minimal residual [Orthomin(1)] accelera-
tion (GSMR). Although this method alone stagnated for our
problem when it was incorporated in a full scheme, 27
cycles were sufficient for the satisfaction of the termination
criterion. The corresponding computational cost was only 140
WU. The reduction rate of the residual at the initial cycles, was
even greater than the one achieved with the use of BiCGStab,
which required double computational work per iteration. It
appears that it would be a good idea to use the GSMR as a
solver for the first few cycles and then switch to BiCGStab
for the remaining.
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Fig. 5. They component of the total magnetic field along they axis for a
three-level fullW scheme; oneW cycle, the COCG alone, and Mie’s series
solution.

The accuracy of the results of multilevel methods depends
on the modeling of the problem at the finest level. The
computational price that has to be paid for this accuracy is
lower than the cost of solving the finest level system with
an ordinary iterative or direct method. Moreover, as with the
multigrid schemes, the less number of arithmetic operations are
performed, the number of the unavoidable roundoff errors is
reduced significantly. Additionally, the smoother convergence
history of multigrid makes it more numerically stable from
the COCG with its highly irregular convergence behavior.
Apart from that, coarse grid corrections are a form of iterative
improvement so their application might also serve as a cure to
the accumulation of roundoff errors, as is the case for standard
iterative improvement [19].

To verify the accuracy of the solutions of our multigrid
algorithms, in Fig. 5 a distribution for the total magnetic field
that was obtained from the full scheme and the correspond-
ing analytical curve from Mie’s theory are compared. On the
same figure we superimposed the field distribution that resulted
when the COCG was used alone and the field values provided
by the use of only one full cycle. It is observed that the
multigrid results are considerably more accurate than those
of the single-level COCG for the same numerical model and
equal tolerance for the termination criterion.

The discrepancies between the analytical and the numerical
field values are greater close to the surface of the sphere
and near the absorbing boundary surface. The errors of the
FEM there were higher because of the approximate nature
of the ABC and the imperfect geometrical representation of
the sphere by a collection of tetrahedra. It should be noted
that the results of COCG only appeared to be more accurate
at those areas because of an unusual and not exploitable local
cancellation of discretization and roundoff errors. From Fig. 5,
it is also evident that the use of only one full cycle (21 WU)
gave us a very good approximation of the analytical solution.

The improved accuracy of multigrid has been observed
in other comparisons between multilevel and single-level
techniques as well. It can allow us to use larger tolerances for
the stopping criterion (for example ), thus arriving
at a sufficient approximation at a much shorter time. It might
even be possible to safely use single-precision arithmetic and
in that way reduce half the memory demands of our programs.

Fig. 6. Convergence behavior of a three-level fullW scheme for scattering
from a lossy sphere.

Fig. 7. Convergence comparison between a three-level fullW scheme and
COCG for the problem of the lossy sphere.

In order to investigate the effect that the electrical properties
of the mediums modeled have on the behavior of the multilevel
algorithms, the scattering of a plane wave by a lossy sphere
was analyzed next. The only difference that the new physical
problem had from the previous one examined was that the
sphere had a complex relative permittivity of .
For the solution of this problem, again, a three-level scheme
was used with the same intergrid operators and solvers as
before.

The residual reduction curve at the highest level (3) is
drawn in Fig. 6. The full schedule required 14 cycles to
terminate and this cost 153 WU. These values are close to
those achieved for the previous lossless problem, but slightly
higher. It appears that the presence of electrical loss in the
scatterer slightly reduced the multigrid convergence speed. The
comparison between the full scheme and the COCG for the
problem of the lossy sphere takes place in Fig. 7.

The difference between the performances of the multigrid
schemes and the single-level methods, became more intense as
the number of unknowns in the problems solved increased. In
Table I, the cycles and the required CPU times for the solution
with multigrid of various problems are given. These problems
modeled the scattering of plane waves by dielectric spheres.
At the same table, the computational requirements for the
solution of these problems, with sparse LU decomposition, are
included. The latter has extremely large memory demands due
to be filled during the factorization process; a fact that makes
its practical implementation problematic (or even impossible)
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TABLE I
COMPARISON BETWEEN THE COMPUTATIONAL REQUIREMENTS OF A DIRECT METHOD AND VARIOUS MULTIGRID SCHEMES

TABLE II
PERFORMANCE OF A THREE-LEVEL MULTIGRID SCHEME

FOR VARIOUS PERMITTIVITIES AND FREQUENCIES

for large . It is clear from Table I that multilevel techniques
are by far more computationally efficient than direct methods
and this performance gap grows rapidly as the number of
unknowns increases. The same is also true if multilevel and
single-level iterative solvers are compared. For example, the
four-level scheme of Table I was almost 16 times faster than
COCG (it cost 32 WU, while the corresponding cost of COCG
was 511 WU).

In Table II, one can see the effects that the values of relative
permittivity and frequency have on the behavior of multigrid.
With the exception of and , the remaining parameters of
the problems investigated were the same with those of this
section’s first problem. This is also true for the numerical
models and the multigrid schemes with which the problems
were analyzed.

It is noticed that when remained constant and increased,
more cycles and subsequently more WU’s were required for
a multilevel solution. This may be because the increased
difference between the free-space permittivity and that of the
scatterer introduced more oscillatory (fast) error components
that were immune to coarse grid corrections and needed more
high-level iterations to be eliminated. As fixed schedules were
used with a constant number of iterations at each cycle, this
means that more cycles had to be performed. An adaptive
cycling scheme would be more efficient in these cases.

Another reason for the slower multigrid convergence for
higher could be the reduced number of nodes per minimum
wavelength at the lowest level. As increased, the minimum
wavelength shrunk in size. In order to test this hypothesis
quickly and easily, the frequency of some problems was re-
duced, keeping the number of nodes per minimum wavelength
at level 1 constant as increased. It was found out that when
this happened, multigrid convergence speeded up again and
was even faster than before. It is evident that an adaptive
refinement mesh generator that allocated a sufficient number
of nodes inside regions with high at every grid would take
effectively care of this problem.

Finally, Table III presents the performance of the full
three-level scheme for various dielectric scatterers. All the
scatterers were enclosed by a conforming absorbing boundary

TABLE III
PERFORMANCE OF A THREE-LEVEL MULTIGRID

SCHEME FOR VARIOUS SCATTERERS

on the surface of which the Sommerfeld radiation condition
was enforced. The cube had an edge length of 1 m. The
cylinder had 1 m height and 0.5 m radius. The major axis of
the spheroid was 1.5 m long while the ratio of its major and
minor axes was 1.27. Except from the last case, all the other
scatterers were homogenous and had . The multigrid
technique worked very well with all of them.

The last case examined was a double-layered sphere. The
radius of the sphere was 0.5 m. The inner layer had a relative
permittivity of and radius 0.25 m. The permittivity
of the outer layer was . Despite of the inhomogeneity
(that is referred as a serious problem in multigrid literature)
and the fact that on the coarsest level we were forced to
model a homogenous sphere with , the multilevel
method worked surprisingly well and its performance was
almost identical to that achieved for a homogenous problem. It
is suspected that this promising and impressive behavior was
in part owed to the magnetic field formulation of the FEM
because remained continuous even when changed.

VIII. C ONCLUSIONS

In this paper, a multilevel implementation of the 3-D
FEM for electromagnetic scattering has been presented. The
main features and the characteristic behavior of the multigrid
algorithms have been described in detail. It has been shown
that the multilevel FEM allows the rapid solution of problems
with tens of thousands of unknowns, in only about a dozen
multigrid cycles and in a small fraction of the single-level
computational cost. It has also been demonstrated that the
multilevel approximations exhibit improved accuracy over the
corresponding single-level solutions. The multigrid technique
has been applied for various problems with different number
of levels and unknowns and every time very promising and
encouraging results were obtained. These results show that
the multilevel method proposed is feasible, numerically stable,
reliable, and very computationally efficient.

The efficiency of the method can be further increased by us-
ing various preconditioners, more advanced transfer operators
(like bicubic interpolation), more sophisticated solvers (like
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QMR and GMRES), and adaptive cycling schemes. Another
very interesting possibility, seems to be the combination of the
multilevel method with an adaptive refinement technique for
the mesh generation at the various levels. We are currently in
the process of parallelizing the multilevel code in a distributed
memory environment.
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