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Ultrawide-Band Coherent Processing
Kevin M. Cuomo, Jean E. Piou, and Joseph T. Mayhan

Abstract—In this paper, we develop an approach for estimat-
ing the ultrawide-band (UWB) radar signature of a target by
using sparse subband measurements. First, we determine the
parameters of an appropriate signal model that best fits the
measured data. Next, the fitted signal model is used to interpolate
between and extrapolate outside of the measurement subbands.
Standard pulse-compression methods are then applied to provide
superresolved range profiles of the target. The algorithm can
automatically compensate for lack of mutual coherence between
the radar subbands, providing the potential for UWB processing
of real-world radar data collected by separate wide-band radars.
Because the processing preserves the phase distribution across the
measured and estimated subbands, extended coherent processing
can be applied to the UWB compressed radar pulses to generate
superresolved radar images of the target. Applications of this
approach to static test range and field data show promising
results.

Index Terms—Radar signal processing, ultrawide-band.

I. INTRODUCTION

L INCOLN Laboratory has played a major role in de-
veloping wide-band radar systems. This development

was motivated by the successful application of high-power
instrumentation radars to research in ballistic missile de-
fense and satellite surveillance. Today’s wide-band imaging
radars perform real-time discrimination and target identifica-
tion. Advanced signal processing methods have improved the
resolution of processed radar return signals, further improving
wide-band radar technology.

Fig. 1 illustrates a ballistic missile defense environment that
relies on accurate target identification and size–shape estima-
tion, two capabilities critical to many areas of national defense.
The primary goal of a defensive radar system is to intercept
and destroy a threat target. This objective is complicated
by the presence of many objects in the radar field of view,
some purposefully designed to deceive radar discrimination
algorithms. Decoys, for example, may have radar cross-section
(RCS) levels similar to those of the warhead, which makes
robust target selection based solely on RCS levels difficult.
Narrow-band radars usually lack sufficient range resolution to
allow a direct measurement of target length, although they are
generally useful for tracking and coarse motion estimation.
Unlike narrow-band radars, wide-band radars allow a much
larger suite of target discrimination algorithms to be employed
for real-time range Doppler imaging and phase-derived range
estimation.
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Fig. 2 illustrates a typical narrow-band radar and wide-band
radar target response. The narrow-band response indicates
the position of the target as a whole with the peak RCS
corresponding to the electromagnetic size of the target. The
wide-band response provides resolution within the target’s
range profile. Individual scattering centers are isolated into
small range-resolution cells that provide a more direct mea-
surement of the target’s size and shape.

To achieve fine range resolution, wide-band field radars
utilize coded waveforms with large time bandwidth products.
Wide-band chirp waveforms are commonly used because of
their ease of generation and processing in the radar receiver.
Mixing the radar return signals with a replica of the transmitted
signal produces a base-band signal with frequency components
that are proportional to the relative range between scattering
centers on the target. The base-band signal is sampled and
Fourier transformed to provide a range-resolved profile of the
target. This process is called pulse compression. Properties
of the compressed pulse such as resolution and sidelobe levels
depend on the extent and shape of the window function applied
to the base-band signal samples. The Fourier theory relations
define resolution to be inversely proportional to the total signal
bandwidth. In accordance with this inverse relationship, the
resolution of the radar improves as radar bandwidth increases.
See [1], for example, for a more in-depth discussion of pulse-
compression radar principles.

Many wide-band field radars operate on these basic prin-
ciples. Fig. 3 shows an aerial view of the Kiernan reentry
measurement system (KREMS) facility located on Kwajalein
Atoll in the central Pacific Ocean. This facility has been the
most sophisticated and important wide-band radar research
center in the United States for over 30 years [2]. The pho-
tograph depicts several wide-band field radars, including the
ALCOR -band radar developed in 1970 for the purpose of
wide-band discrimination research. ALCOR utilizes a wide-
band chirp waveform with a bandwidth of 512 MHz to
achieve a range-resolution capability of about 53 cm. Kwa-
jalein’s millimeter-wave radar can operate at the-band and

-band and is capable of a transmission bandwidth of 2000
MHz, providing an impressive 14-cm range-resolution capa-
bility. These range resolution figures take into account the use
of a Hamming window function to reduce the sidelobe levels
of the compressed pulse. The United States also operates high-
resolution wide-band radars on ship platforms such as COBRA
JUDY. Fig. 4 shows the COBRA JUDY-band phased-array
radar and the -band dish-antenna radar.

Although the field radars mentioned above provide a high
degree of range resolution, important target features are often
much smaller than conventionally processed range-resolution
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Fig. 1. A typical ballistic missile defense environment, which demands accurate target identification and size–shape estimation. Shortly after launch, the
warhead and decoy separate from the main body of the missile. Radar discrimination algorithms attempt to find the threat target by exploiting differences
in size, shape, and motion dynamics between the warhead and nonthreatening objects in the radar’s field of view.

(a) (b)

Fig. 2. Comparison of target response—RCS levels versus relative range—for typical (a) narrow-band radar and (b) wide-band radar. The narrow-band
response can identify only the position of the target as a whole. The wide-band response provides a direct measurement of individual scatterers within the
target’s length, permitting a much larger suite of target discrimination algorithms to be employed than with narrow-band radars.

cells. To improve the range resolution of a radar, we can in-
crease the radar bandwidth or process the received signals with
superresolution algorithms. Cost and design limitations are
major drawbacks to increasing radar bandwidth. Because we
want to obtain higher resolution radar data without incurring
significant hardware costs, we researched robust superreso-
lution algorithms that can be applied to a wide range of
real-world data sets.

In 1990, Lincoln Laboratory developed a superresolution
algorithm that can significantly improve the range resolution
of processed radar return signals. The algorithm, called band-
width extrapolation (BWE) [3], [4], increases the effective
bandwidth of a radar waveform by predicting the target’s
response at frequencies that lie outside the measurement

bands. For typical real-world radar applications, BWE typi-
cally improves the range resolution of compressed radar pulses
by a factor of two to three. BWE often provides striking
improvements in the quality of wide-band radar images. As an
example, Fig. 5(a) shows a radar image of a simulated three-
point target without BWE processing applied. The resolution
is insufficient to resolve the target points. Fig. 5(b) shows the
same target with BWE processing applied to the compressed
radar pulses, first in the range dimension and then in cross
range. The BWE processed image is better resolved, allowing
us to analyze and identify the target.

Although BWE improves resolution, the approach has the
following inherent limitations. The algorithm is based on
signal processing models that characterize a complex target
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Fig. 3. The Kiernan reentry measurement system (KREMS) facility located
on Kwajalein Atoll in the central Pacific Ocean. The ALCOR C-band radar
is located under the white radome in the lower left of the photograph. The
millimeter-wave radar is located under the smaller white radome near the
center.

as a collection of point scatterers, each having a frequency-
independent scattering amplitude. BWE algorithms are often
sufficient for typical wide-band signal processing in which
the waveforms have a small fractional bandwidth compared
with the center frequency. Over ultrawide frequency bands in
which the radar bandwidth is comparable to the radar center
frequency, however, the scattering amplitude of the individ-
ual scattering centers can vary significantly with frequency.
Spheres, edges, and surface joins are examples of realistic
scattering centers that exhibit significant amplitude variations
as a function of frequency. ultrawide-band (UWB) signal
models must be flexible enough to accurately characterize
these nonpointlike scattering centers.

The ability to measure or estimating a target’s UWB radar
signature is useful for many radar discrimination and target
identification applications. Not only is fine range resolution
obtained, but the amplitude variations of isolated scattering
centers are useful for identifying the type of scattering center.
Many canonical scattering centers are known to exhibit-
type scattering behavior; e.g., the RCS of flat plates, singly
curved surfaces (cone sections), and doubly curved surfaces
(sphere) vary as , , and , respectively. The RCS of a
curved edge varies as , whereas a cone vertex varies as

. One goal of UWB processing is to detect these frequency
dependent terms in the measured data and to exploit them for
scattering-type identification.

Building a field model of a true UWB radar can be ex-
pensive. A more practical approach is to use conventional
wide-band radars to sample the target’s response over a
set of widely spaced subbands, as illustrated in Fig. 6. In
this figure, the COBRA JUDY -band and -band radars
are used to collect coherent target measurements over their
respective widely spaced subbands. Coherently processing
these subbands together makes it possible in principle to
accurately estimate a target’s UWB radar signature. This

concept increases processing bandwidth and improves range-
resolution and target-characterization capabilities.

To perform UWB processing, as illustrated in Fig. 6, we
must address a number of technical issues. First, we need to
develop a robust signal processing method that compensates
for the potential lack of mutual coherence between the various
radar subbands. We must then fit an appropriate UWB signal
model to the sparse subband measurements. The fitted signal
model must accurately characterize UWB target scattering and
provide for meaningful interpolations or extrapolations outside
the measurement subbands. In this article, we discuss our
approach to UWB coherent processing and then apply our
UWB coherent processing algorithms to static-range data. We
summarize the main results of this work and suggest some
research strategies for the future.

II. UWB COHERENT PROCESSING

A. Concept

Fig. 7 illustrates an overview of our approach to UWB
coherent processing. An estimate of the target’s UWB radar
signature is obtained by coherently combining sparse subband
measurements. While the figure illustrates UWB processing for
only two subbands, it is straightforward to apply this concept
to an arbitrary number of subbands.

The illustrated process is divided into three steps.

1) Process multiband data samples from the in-phase ()
and quadrature () channels to make the radar subbands
mutually coherent.

2) Optimally fit an UWB all-pole signal model to the
mutually coherent subbands. The fitted model is used
to interpolate between and extrapolate outside the mea-
surement bands.

3) Apply standard pulse-compression methods to the en-
larged band of spectral data to provide a superresolved
range profile of the target.

Step 1) is important when applying UWB processing to
field data collected by separate wide-band radars. Time delays
and phase differences between the radars can make them
mutually incoherent. To cohere the subbands, we fit an all-pole
signal model to the spectral data samples in each subband and
adjust the models until they optimally match. Corresponding
corrections are then applied to the underlying data samples.
This approach is based on the assumption that the target
can be accurately characterized by a superposition of discrete
scattering elements. This assumption is often valid for targets
that are large with respect to radar wavelength [5]–[7].

In Step 2), we fit a global UWB all-pole signal model
to the mutually coherent subbands. We then use the model
for interpolation and extrapolation purposes. All-pole models
are well suited for UWB processing because they accurately
characterize the target by a superposition of discrete scattering
centers, each with its own frequency-dependent term. While
all-pole models match best to signals that grow or decay expo-
nentially with frequency, they can also accurately characterize

scattering behavior over finite bandwidth intervals.
In Step 3), standard Fourier-based pulse-compression meth-

ods are used to generate a range-resolved profile of the target.



CUOMO et al.: ULTRAWIDE-BAND COHERENT PROCESSING 1097

Fig. 4. The COBRA JUDY ship with a clear view of theS-band phased-array andX-band dish-antenna radars.

Because the UWB process is fully coherent, superresolved
radar images can also be generated by using standard tech-
niques.

B. Mutual-Coherence Processing

UWB processing requires a consistent set of spectral signals
in each subband, i.e., the all-pole models for each sub-
band must be consistent. This requirement is not an issue in
multiband radar systems specifically designed to be mutually
coherent. Mutual-coherence problems will most likely occur,
however, when the subband measurements are collected by
wide-band radars operating independently. This section dis-
cusses a straightforward signal processing approach that can
compensate for the lack of mutual coherence between any
number of radar subbands. The technique allows us to apply
UWB processing across a wider range of radar platforms used
in the field.

For illustration purposes, we simulate the radar returns for
a hypothetical target consisting of two discrete scattering cen-
ters. The scattering center closer to the radar has a scattering
amplitude that decays with frequency, whereas the scattering
center away from the radar has a scattering amplitude that
grows with frequency. The simulated spectral signal samples

are given by

The frequency-sampled phase terms correspond to a scattering
center separation of 15 cm. White Gaussian noise is added
to each signal sample and the signal-to-noise ratio (SNR) is
20 dB.

We assume that only two subbands are available for co-
herent processing of the noisy signal samples illustrated
in Fig. 8(a). The signal samples in the lower subband
have been modulated by the function to simulate the
effects of mutual incoherence, i.e., the signal poles for the

lower subband have been rotated 20clockwise relative to the
upper subband signal poles. Fig. 8(b) shows the corresponding
compressed pulses, which do not line up because the subbands
are not mutually coherent. In effect, mutual coherence is
seen as a consequence of uncertainty in position and time
sequencing of the separate radars.

We begin the mutual-cohering process by modeling the
spectral signals in each subband with a superposition of
complex exponential functions. An all-pole signal model of
the form

is used for this purpose. As illustrated in Fig. 8(a), the lower
subband contains data samples, while the upper subband
contains data samples. Thus, the sample indexranges
from for the lower subband and from

for the upper subband. The all-pole
model parameters are physically meaningful. The number of
scattering centers and their complex amplitudes are denoted
by and , respectively. The poles characterize the
relative ranges and frequency decay of the individual scattering
centers; the frequency decay model indicated earlier is
approximated by an exponential variation over the band of
interest. The subbands can be mutually cohered by fitting a
separate all-pole model to each subband and adjusting the
models until they are consistent.

Our approach to all-pole modeling utilizes the singular-
value decomposition of the forward-prediction matrix [8].
Specifically, the forward-prediction matrix for the lower sub-
band is given by

...
...

...
...
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(a)

(b)

Fig. 5. Demonstration of bandwidth extrapolation (BWE) processing. (a)
The three-point target image without BWE processing is not resolved well
enough to identify the target. (b) The three-point target image with BWE
processing allows us to identify and analyze the target.

Fig. 6. UWB processing concept applied to COBRA JUDYS-band and
X-band wide-band signature data.S-band andX-band measurements are
coherently processed together to provided an interpolated estimated of target’s
UWB radar signature.

where denotes the correlation window length and the
denote the frequency-domain radar measurements. The

special form of matrix is called a Hankel matrix, which
is associated with the transient response of a linear-time-
invariant system. Subspace decomposition methods exploit the
eigenstructure of Hankel matrices to estimate the parameters
of linear-time-invariant signal models [8]. Using a correlation
window length generally provides for robust
parameter estimates. Larger values ofcan provide better

Fig. 7. UWB process flow to estimate the target’s UWB radar signature.
Sparse multiband data samples for the in-phase (I) and quadrature (Q)
channels are selected. Mutual-coherence processing allows two or more
independent radar subbands to be used in the model fitting step that follows.
An all-pole signal model is fitted to the sparse subband data samples and used
for interpolation and extrapolation outside the measurement bands. Standard
pulse-compression methods are then applied to the UWB target data.

resolution, but the estimates may not be as robust to noise.
The forward-prediction matrix for the upper subband
constructed in a similar way is

...
...

...
...

To estimate the all-pole model parameters for the lower and
upper subbands, we apply the singular-value decomposition to

and , respectively, which decomposes and into
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(a)

(b)

Fig. 8. (a) Sparse multiband measurements of a target consisting of two closely spaced scattering centers. The amplitude of one scatterer (blue) decays with
frequency, while the amplitude of the other scatterer (red) grows with frequency. The two subbands illustrated are not mutually coherent. For clarity, signals
from only theI channel are shown. (b) The corresponding compressed pulses do not line up in range because the subbands are mutually incoherent.

the product of three matrices

and

where the prime symbol denotes the hermitian operator. The
matrices contain the singular values for the two subbands. The

and matrices contain the corresponding eigenvectors. In
particular, the columns of the matrices correspond to the
eigenvectors of the respective subband covariance matrices. By
decomposing and in this way, we can estimate the all-
pole model parameters for each subband with the following
four-step process.

1) The singular-value matrices and are used to
estimate the model orders and for the two
subbands.

2) and are used to partition and into
orthogonal subspaces: a signal-plus-noise subspace and a
noise subspace. A modified root-MUSIC (multiple signal
classification) algorithm described below is applied to
estimate the signal poles for each subband.

3) The all-pole model amplitude coefficients are deter-
mined by using a linear least-squares fit to the measured
data.

4) The resulting subband signal models are adjusted to
optimally match.

In Step 1), the singular values in are used to estimate
appropriate model orders for the two subbands. The relatively
large singular values in correspond to strong signal compo-
nents, while the small singular values generally correspond to
noise. For low noise levels there is a sharp transition between
the large and small singular values. The transition point can be

Fig. 9. Singular-value spectra for the two subband data set in Fig. 8. The
AIC and MDL model-order estimates are equal to two. The SNR is 20 dB.

used as an estimate of the model order. At higher noise levels
the transition from large to small singular values is smooth,
making accurate model-order estimation more difficult. The
Akaike information criterion (AIC) [9], [10] and minimum
description length (MDL) [11], [12] are two model-order
estimation methods that often work well in these cases. Fig. 9
shows the singular-value spectra for the two-subband data set
in Fig. 8. The AIC and MDL model-order estimates are both
correctly equal to two.

Once the model orders and have been estimated,
we proceed to Step 2), in which the subspace decomposition
properties of and are used to estimate the dominant
signal poles for each subband. The matrices and
are partitioned into orthogonal signal-plus-noise and noise
subspaces
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and

The partitioning is performed so that and have
and columns, respectively. The noise subspace matrices

and have and columns, respectively.
Pole estimates for each subband are obtained by employing
a modified root MUSIC algorithm. Matrices and are
defined from the noise subspace vectors for each subband as

We denote as the elements of the first row of and
as the elements of the first row of . These elements are
used to form the polynomials and given by

The roots of and correspond to pole estimates
for bands 1 and 2, respectively.

This approach can be viewed as a variant of the traditional
root MUSIC algorithm described in [13]. Our approach has
the important advantage of providing high-resolution pole
estimates while eliminating the symmetric pole ambiguities
that result from the traditional root MUSIC approach.

Pole estimates can also be obtained by applying the spectral-
estimation techniques described in [14]–[20]. In our algorithm,
the pole estimates are obtained for each subband by applying
the modified root MUSIC algorithm to and . The
root MUSIC algorithm finds poles corresponding to the signal
vectors that are most orthogonal to the noise-subspace vectors.
In general, the variation of the signal model leads to poles
that are displaced from the unit circle in the complexplane.
Over each subband, however, the variation ofis small, so
the dominant signals correspond to poles that lie close to the
unit circle. After estimating model orders in Step 1), we use
the poles closest to the unit circle in Step 2) to characterize
the dominant lower subband signals and thepoles closest
to the unit circle to characterize the dominant upper subband
signals.

Fig. 10 shows the resulting pole estimates for the two
subband data set illustrated in Fig. 8. The poles shown in blue
and red are considered the dominant signal poles for the lower
and upper subbands, respectively. Notice that a lack of mutual
coherence prevents the signal poles in the lower subband from
lining up with the signal poles in the upper subband.

In Step 3), we estimate the all-pole amplitude coefficients
for the lower and upper subbands. An optimal set of amplitude
coefficients can be found by solving a standard linear least-
squares problem. Step 3) completes the all-pole modeling
process for each subband. The lower and upper subband signal
models are denoted by and , respectively.

In Step 4), the subband signal models and
are adjusted until they optimally match. There are many ways

(a)

(b)

Fig. 10. Pole estimates for the two subband data set illustrated in Fig. 8.
The dominant signal poles in the lower and upper subbands are shown in blue
and red, respectively.

to accomplish the match. A straightforward method involves
modulating and phase aligning the lower subband signal model
until it closely matches the upper subband signal model. For
example, the coherence function

can be minimized with respect to the pole rotation angle
and complex amplitude coefficient. Another approach for
matching the subband signal models is to find an appropriate
rotation matrix that best aligns the signal subspace vectors
contained in and . Whichever method is employed, the
subband model-alignment process tends to promote a strong
sense of mutual coherence between the two subbands.

In Fig. 11(a), we show the mutually incoherent subband
signal models. In Fig. 11(b), an optimal pole rotation angle

and complex amplitude coefficient were applied to the
lower subband signal model and corresponding data samples,
i.e., the lower subband data samples were replaced by mutually
coherent data samples given by
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(a)

(b)

Fig. 11. Mutual-coherence processing applied to the sparse subband data set illustrated in Fig. 8. Lower and upper subband signal models are shown (a)
before and (b) after mutual-coherence processing. The mutually cohered signal models are consistent over much of the UWB processing interval.

Although the two signal models in Fig. 11(b) may not
entirely agree, it is important to recognize that they have
approximately the same signal poles. The corresponding all-
pole model coefficients , however, significantly differ. The
lower subband favors the decaying signal component, whereas
the upper subband favors the growing signal component.

C. UWB Parameter Estimation and Prediction

Once the radar subbands have been mutually cohered, a
global all-pole signal model is optimally fitted to the measured
data. Our approach determines the all-pole model parameters
that minimize the cost function given by

The index ranges over all of the available data samples.
The coefficients are used to weight the measurements
appropriately. The function measures the total weighted
error between the model given by

and the mutually coherent data samples in each subband.
Minimizing with respect to the all-pole model parameters

is a difficult nonlinear problem with no closed-form solution.
Brute-force numerical solutions are not feasible because of
the potentially large number of signal parameters that must
be estimated. Fig. 12 illustrates an alternative approach to
solving this dilemma. Initial estimates of the all-pole model
parameters are obtained by using the technique based on
singular-value decomposition. These initial estimates are then
iteratively optimized by using a standard nonlinear least-
squares algorithm, such as the Newton–Raphson algorithm.

(Detailed information about the Newton–Raphson algorithm
can be found in many standard texts on numerical analysis
[21].) If the initial parameter estimates are close to optimal, the
standard nonlinear least-squares algorithm rapidly converges
to the all-pole model parameters that minimize.

Many methods will give an initial estimate of the global
all-pole model parameters. One method is to construct the
multiband prediction matrix given by

The submatrices and correspond to the forward-
prediction matrices for the lower and upper subbands, respec-
tively. We call this approach subaperture processing because
it combines the data samples from both subbands, providing
the potential for robust parameter estimates from noisy data.

It is also possible to obtain multiband parameter estimates
by allowing for cross-correlation between the subbands, i.e.,
by defining as

We refer to this method as extended-aperture processing,
which provides the potential for true UWB resolution. How-
ever, the resulting pole estimates are typically more sensitive
to noise than those from subaperture processing. In princi-
ple, the two methods—subaperture processing and extended-
aperture processing—can be combined to provide robust high-
resolution estimates of the dominant signal poles. In both
cases, multiband parameter estimates are obtained by decom-
posing into the product of three matrices

An estimate of the model order is obtained by applying the
AIC or MDL techniques to the spectrum of singular values
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Fig. 12. UWB parameter estimation. Initial parameter estimates are obtained
by using a singular-value decomposition technique. These initial parameter
estimates are iteratively optimized with a standard nonlinear least-squares
algorithm.

contained in . For the sparse subband data set illustrated
in Fig. 11(b), both the AIC and MDL model-order estimates
are correctly equal to two. The model-order estimate is used
to partition into orthogonal signal-plus-noise and noise sub-
spaces. Initial pole estimates are obtained by using the methods
of a previous section, “Mutual-Coherence Processing,” or any
other superresolution spectral-estimation technique.

Fig. 13 shows a plot of initial pole estimates for the sparse
subband data set illustrated in Fig. 11(b). Including both
and into the Hankel matrix correctly identifies both signal
poles and associates them as and pole behavior.
The two dominant signal poles are used to initialize the
Newton–Raphson algorithm.

This algorithm uses the initial parameter estimates to find
the global all-pole model parameters and that locally
minimize the cost function . The model order remains
fixed during this iterative process and the algorithm typically
converges to a local minimum of in only a few iterations. We
test the approach by optimally fitting a global all-pole signal
model to the two subbands illustrated in Fig. 11(b).

Fig. 13. Multiband pole estimates for the mutually coherent subbands illus-
trated in Fig. 11(b). The dominant signal pole inside the unit circle corresponds
to thef�1 scattering center. The dominant signal pole outside the unit circle
corresponds to thef+1 scattering center.

Fig. 14(a) shows a comparison between the global all-pole
signal model and the actual signal; the all-pole model agrees
with the actual signal over the entire UWB frequency range.
The corresponding compressed pulses are shown in Fig. 14(b).
The sparse subband compressed pulse uses the mutually co-
herent radar measurements within the two subbands and the
global all-pole model in the vacant band. With this approach,
the two target points are well resolved and the estimated UWB
response closely matches the actual signal.

This example also demonstrates the potential for using
all-pole signal models to accurately characterize-type scat-
tering behavior over ultrawide processing bandwidths. In fact,
the UWB pole estimates can be transformed into equivalent
estimates of the exponents for -type signal models.
We can always find an function that best matches the
exponential behavior of an UWB signal pole over a given
frequency range. We can also derive an approximate analytical
relationship between the pole magnitudes and the correspond-
ing exponents by matching the functions and at
the lowest and highest UWB frequencies. This relationship is
given by

(1)

where and denote the spectral-sample spacing and lowest
UWB frequency, respectively. The constant denotes the
total number of UWB frequency samples. In the two scattering
center example discussed previously, the two dominant signal
poles and are given by

By substituting these poles into (1), we obtain an accurate
estimate of the true exponents used in the simulation. Thus,
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(a)

(b)

Fig. 14. (a) Comparison between the fitted UWB signal model (brown curve) and truth (black curve). (b) Corresponding compressed pulses. The two
scattering centers are well resolved with UWB model closely matching truth.

Fig. 15. Test target for UWB processing experiments. This monoconic model
of a reentry vehicle is 1.6 m long. The spherical nose tip has a radius of 0.22
cm. The nose section is made from a solid piece of machined aluminum with
three grooves—two near the front of the model and one at midbody.

the UWB pole locations provide information on scattering
type. This information is useful for analyzing the details
of targets with the viewpoint of constructing an accurate
measurement-based model.

III. TATIC-RANGE EXPERIMENTS

In the previous section, we presented the basic concepts
behind our UWB processing algorithms. In this section, we
utilize static-range data to demonstrate the applied aspects of
UWB processing.

Fig. 15 shows our target for the UWB processing demon-
stration—a monoconic model of a reentry vehicle with length
of 1.6 m. The spherical nose tip of the reentry vehicle has a
radius of 0.22 cm; the nose section is made from a solid piece
of machined aluminum with two grooves and one seam. The
first groove—approximately 3 mm deep and 6 mm wide—is
located 22 cm from the reentry-vehicle nose tip. The second
groove is approximately 2 mm deep and 4 mm wide and

Fig. 16. Moment-method RCS calculations for the three major grooves on
the target, which was at a 20� aspect angle. All three grooves exhibit the
expectedf3 scattering behavior at low frequencies, with break points that
depend on the size of the groove.

is located 44 cm from the reentry-vehicle nose tip. The
midbody of the reentry vehicle is made from a single sheet
of rolled aluminum with one groove, one slip-on ring, and
three seams. The aluminum slip-on ring (not shown in the
photo) is approximately 5 mm thick and 10 mm wide, and is
placed 1.4 m from the reentry-vehicle nose tip.

The reentry vehicle shown in Fig. 15 is ideal for UWB
processing experiments because it has several scattering cen-
ters that exhibit significant RCS variations as a function of
frequency. Fig. 16 shows a moment-method RCS calculation
for the three major grooves on the reentry vehicle. The
grooves exhibit the expected scattering behavior at the low-
frequency end of the spectrum, with break points that depend
on the size of the groove.

The Lincoln Laboratory static-range radar facility was used
to collect coherent radar measurements over a wide range of
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(a)

(b)

(c)

Fig. 17. (a) Uncompressed radar pulse of the test target shown in Fig. 15 with viewing aspect 20� from nose-on. (b) Sparse-subband measurements used
to predict the target’s response over the fullband from 12 to 18 GHz. (c) Compressed pulses for the sparse subbands and full-band data sets. The full-band
compressed pulse (black) resolves all of the significant scattering centers on the target.

frequencies and viewing aspects of the target. Measurements
were taken from 4.64 to 18 GHz in 40-MHz increments. The
target viewing angles, relative to nose-on, ranged from5
to 95 in 0.25 increments.

To demonstrate UWB processing, we focused on a segment
of data collected in the 12–18-GHz region shown in Fig. 16.
Fig. 17(a) shows an uncompressed radar pulse corresponding
to an aspect angle of 20. To test our UWB processing
algorithms, we reduced the bandwidth of the uncompressed
radar pulses to two 1.0-GHz-wide subbands, as illustrated in
Fig. 17(b). Fig. 17(c) shows the compressed pulses for the two
subbands and for the full-band data set. The bandwidth of the
two subbands is insufficient to resolve many scattering centers
on the target, while the full-band compressed pulse resolves
all the significant scattering centers on the target. The purpose
of this experiment was to use UWB processing to obtain a
result highly consistent with the full-band result. We then
demonstrated the ability to coherently process the subband
measurements so that we can accurately estimate the target’s
UWB response.

Fig. 18. UWB pole estimates obtained by using the sparse subband data set
shown in Fig. 17(b).

Fig. 18 shows the UWB pole estimates obtained by applying
the sparse subband spectral-estimation technique discussed
earlier in the section entitled “UWB Coherent Processing.”
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(a)

(b)

Fig. 19. Comparisons between the estimated UWB target response and the true UWB radar measurements. (a) Uncompressed radar pulse for the prediction
model (brown line) and the actual radar measurements (black line). (b) The corresponding compressed pulses that resolve the scattering centers on the target.

The pole locations are consistent with the physical scattering
centers on the target. The pole corresponding to the nose-tip
response is close to the unit circle, indicating it has a nearly
constant RCS as a function of frequency. The grooves and slip-
on ring have nonconstant RCS’s as a function of frequency;
the corresponding poles are either inside or outside the unit
circle, as predicted by the moment-method RCS calculations
in Fig. 16.

Estimating the corresponding exponents for these major
scattering centers is straightforward—the magnitude of the
signal poles is related to the exponents via (1). A more
accurate relationship can be obtained by solving for the
exponents that produce the best match between the functions

and over the frequency range of interest, i.e.,
from 12 to 18 GHz. Using this approach, we estimated the

exponents for the first, second, and midbody grooves,
respectively, on the reentry vehicle to be ,

, and . These estimates are consistent with the
moment-method RCS calculations shown in Fig. 16.

Fig. 19(a) and (b) shows comparisons between the estimated
UWB target response and the true UWB radar measurements.
The model and the measurements are in excellent agreement.

Because radar measurements were taken over a wide range
of viewing aspects, we could generate two-dimensional (2-
D) radar images of the target. Fig. 20(a) and (b) shows the
lower and upper subband images, respectively. The resolution
is insufficient to resolve many of the scattering centers on the
target. Fig. 20(c) and (d) shows the true and estimated UWB
target images, respectively. All four images were generated by
applying extended coherent processing [4] to the correspond-

ing compressed pulses over the full range of available viewing
aspects. We used target symmetry to process the data as if we
had sampled a range of viewing aspects from95 to 95 . The
UWB images provide a clear picture of the target and show
considerable detail. The sparse subband image closely matches
the full-band image and provides an accurate estimate of the
locations and exponents of the many realistic scattering
centers on the target.

These experimental results suggest that UWB processing of
sparse subband measurements can significantly improve range
resolution and provide accurate characterizations of targets
over ultrawide bandwidths. We are currently investigating fun-
damental limitations and practical payoffs of UWB processing.

IV. SUMMARY

This paper presents an approach for accurately estimating a
target’s UWB radar signature from sparse subband measure-
ments. To apply this technology to field data we developed
an algorithm that could compensate for the potential lack of
mutual coherence between the various radar subbands. Ro-
bust mutual-coherence processing was performed by optimally
matching the all-pole signal models for each subband. With
the radar subbands mutually cohered, a single UWB all-pole
signal model was optimally fitted to the available data. The
fitted model was used to interpolate between and extrapolate
outside the measurement bands. Standard pulse-compression
methods were applied to the enlarged band of spectral data to
provide a superresolved range profile of the target.



1106 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 6, JUNE 1999

(a) (b)

(c) (d)

Fig. 20. Comparison of 2-D radar images. (a) The upper left and (b) right images show the lower and upper subband images, respectively. (c) The
full-band image in the lower left uses actual radar measurements over the full 12–18-GHz frequency range. (d) The sparse subband image in the lower
right uses the sparse subband measurements with UWB prediction.

These UWB processing concepts were demonstrated by
using simulations and static-range data. We showed that it
was possible to accurately estimate a target’s UWB response
when the radar measurements fill only a small fraction of
the total processing bandwidth. The practical payoff of this
technology is that radar measurements need not be taken
over the full UWB processing interval; signal processing can
be used to a certain extent to compensate for any miss-
ing data. Another important benefit of UWB processing is
that the exponents of individual scattering centers can be
more accurately estimated. This accuracy helps us to better
identify the scattering centers that make up a target, which
significantly improves our analysis and understanding of the
target.

B. Suggestions for Future Research

Many unresolved issues in UWB processing of sparse
subband measurements remain. The uniqueness of our non-
linear optimization process, the accuracy of the initial pole
estimates, and the performance versus band-fill ratio (ratio

of measured data to total processing interval) are important
UWB processing concerns. While the nonlinear optimization
process cross correlates the subbands, it may be possible to
obtain more resolved UWB signal models by better exploiting
the cross-band correlation information during the initial pole
estimation stage. We are currently investigating these issues
and considering some potential real-time applications of this
technology.

ACKNOWLEDGMENT

The authors would like to thank M. Burrows of the Sensor
Systems and Measurements Group, MIT Lincoln Laboratory,
Lexington, MA, for providing radar cross-section predictions
for the monoconic reentry vehicle. The authors would also
like to thank M. Abouzahra of the Systems Engineering and
Analysis Group, MIT Lincoln Laboratory, Lexington, MA, and
P. Kao of the Sensor Technology and Systems Group, MIT
Lincoln Laboratory, Lexington, MA, for providing the static-
range data that we used to demonstrate the applied aspects of
UWB processing.



CUOMO et al.: ULTRAWIDE-BAND COHERENT PROCESSING 1107

ACKNOWLEDGMENT

Opinions, interpetations, conclusions, and recommendations
are those of the authors and are not necessarily endorsed by
the U.S. Army.

REFERENCES

[1] M. Skolnik, Radar Handbook,2nd ed. New York: McGraw-Hill, 1990.
[2] K. R. Roth, M. E. Austin, D. J. Frediani, G. H. Knittel, and A. V.

Mrstik, “The Kiernan reentry measurements system on Kwajalein Atoll,”
Lincoln Lab. J., vol. 2, no. 2, pp. 247–276, 1989.

[3] K. M. Cuomo, “A bandwidth extrapolation technique for improved range
resolution of coherent radar data,” Lincoln Lab., Massachusetts Inst.
Technol., Lexington, MA, Proj. Rep. CJP-60, Rev. 1, Dec. 4, 1992,
DTIC ADA-258462.

[4] S. L. Borison, S. B. Bowling, and K. M. Cuomo, “Super-resolution
methods for wideband radar,”Lincoln Lab. J.,vol. 5, no. 3, pp. 441–461,
1992.

[5] J. B. Keller, “Geometrical theory of diffraction,”J. Opt. Soc. Amer.,
vol. 52, no. 2, pp. 116–130, 1962.

[6] W. M. Steedly and R. L. Moses, “High resolution exponential modeling
of fully polarized radar returns,”IEEE Trans. Aerosp. Electron. Syst.,
vol. 27, pp. 459–469, 1991.

[7] E. F. Knott, J. F. Shaeffer, and M. T. Tuley,Radar Cross Section: Its
Prediction, Measurement and Reduction.Dedham, MA: Artech House,
1985, pp. 178–179.

[8] S. Y. Kung, K. S. Arun, and D. V. Bhaskar Rao, “State-space and
singular-value decomposition-based approximation methods for the Har-
monic retrieval problem,”J. Opt. Soc. Amer.,vol. 73, no. 12, pp.
1799–1811, 1983.

[9] H. Akaike, “A new look at the statistical model identification,”IEEE
Trans. Automat. Contr.,vol. 19, pp. 716–723, June 1974.

[10] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoust., Speech, Signal Processing,vol. 33, pp.
387–392, Feb. 1995.

[11] J. Rissanen, “Modeling by shortest data description,”Automatica,vol.
14, no. 5, pp. 465–471, 1978.

[12] M. Wax and I. Ziskind, “Detection of the number of coherent signals by
the MDL principle,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 37, pp. 1190–1196, Aug. 1989.

[13] A. J. Barabell, J. Capon, D. F. DeLong, J. R. Johnson, and K. D.
Senne, “Performance comparison of superresolution array processing
algorithms,” Lincoln Lab., Massacusetts Inst. Technol.. Lexington, MA,
Proj. Rep. TST-72, May 9, 1984, Rev. June 15, 1998.

[14] S. W. Lang and J. H. McClellan, “Frequency estimation with maxi-
mum entropy spectral estimators,”IEEE Trans. Acoust., Speech, Signal
Processing,vol. 28, pp. 716–724, June 1980.

[15] R. O. Schmidt, “A signal subspace approach to multiple emitter location
and spectral estimation,” Ph.D. dissertation, Stanford Univ., Stanford,
CA, 1981.

[16] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-
of-arrival estimation of coherent signals,”IEEE Trans. Acoust., Speech,
Signal Processing,vol. 33, pp. 806–811, Apr. 1985.

[17] A. Paulraj, R. Roy, and T. Kailath, “Estimation of signal parameters
via rotational invariance techniques—ESPRIT,” in19th Asilomar Conf.
Circuits, Syst., Comput.,Pacific Grove, CA, Nov. 1986, pp. 83–89.

[18] D. W. Tufts and C. D. Melissinos, “Simple, effective com-putation of
principal eigenvectors and their eigenvalues and application to high-
resolution estimation frequencies,”IEEE Trans. Acoust., Speech, Signal
Processing,vol. 34, pp. 1046–1053, May 1986.

[19] A. Moghaddar, Y. Ogawa, and E. K. Walton, “Estimating the time-
delay and frequency decay parameter of scattering components using a
modified MUSIC algorithm,”IEEE Trans. Antennas Propagat.,vol. 42,
pp. 1412–1418, Oct. 1994.

[20] C. W. Ma and C. C. Teng, “Detection of coherent signals using weighted
subspace smoothing,”IEEE Trans. Antennas Propagat.,vol. 44, pp.
179–187, Feb. 1996.

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing,2nd ed.
Cambridgeshire, U.K.: Cambridge Univ. Press, 1992.

Kevin M. Cuomo received the B.S. (magna cum
laude) and M.S. degrees in electrical engineering
from the State University of New York (SUNY) at
Buffalo, in 1984 and 1986, respectively, and the
Ph.D. degree in electrical engineering from Massa-
chusetts Institute of Technology (MIT), Cambridge,
in 1994.

He is a Senior Staff Member in the Sensor
Systems and Measurements Group, MIT Lincoln
Laboratory, where he works on the development
of advanced signal processing methods for high-

resolution radar. Before joining Lincoln Laboratory in 1988, he was a
member of the research staff at Calspan Corporation, Buffalo, NY. He
has developed and implemented various radar imaging techniques, including
extended coherent processing to generate high-resolution three-dimensional
radar images and bandwidth extrapolation to improve the range resolution of
coherent radar returns. He has authored several technical papers and reports
in the areas of superresolution data processing and applications of chaotic
dynamical systems for secure communications. Recent research efforts include
the development of UWB processing techniques for mutually cohering and
coherently combining sparse multispectral/multisensor radar measurements.

Dr. Cuomo was awarded Departmental Honors and was the recipient of
a University Fellowship and a Hughes Fellowship while attending SUNY
Buffalo. He is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.

Jean E. Piou received the B.S. degree in applied
mathematics and electrical engineering from the
Universite d’Etat d’Haiti, in 1981, the M.S. degree
from the City College of New York (CCNY), in
1987, and the Ph.D. degree in electrical engineering
from the Graduate School and University Center,
City University of New York (CUNY), in 1993.

He is a Staff Member in the Sensor Systems and
Measurements Group, Lincoln Laboratory, Massa-
chusetts Institute of Technology (MIT), Lexington,
where he works on advanced superresolution tech-

niques related to radar target identification and imaging. Before joining
Lincoln Laboratory in 1995, he taught at City College of New York (CCNY)
and the State University of New York at Binghamton, where he held Visiting
and Assistant Professorships, respectively. His research interests include
estimation theory and application, system identification, and eigenstructure
assignment for multivariable stochastic systems. He has published several
technical papers in the areas of eigenstructure assignment for flight control
systems.

Joseph T. Mayhan received the B.S. degree in
electrical engineering from Purdue University,
Lafayette, IN, and the M.S. and Ph.D. degrees
in electrical engineering from the Ohio State
University in Columbus, OH, in 1964 and 1967,
respectively.

He is currently a Senior Staff Member at Lincoln
Laboratory, Massachusetts Institute of Technology
(MIT), Lexington, and a former group leader of the
Sensor Systems and Measurements Group there.
Since joining Lincoln Laboratory in 1973, he has

worked in the areas of satellite communications antennas, adaptive antenna
design and performance evaluation, spatial spectral estimation that uses
multiple-beam antennas, electromagnetic scattering from actively loaded
targets, radar system design, and radar data analysis. He served two four-year
tours at the Laboratory’s Kwajalein field site in the Marshall Islands—the
first as leader of the ALTAIR deep-space tracking radar and the second as site
manager of the Lincoln Program at Kwajalein. Upon graduation, he worked
on reentry systems analysis for Avco Corporation, Wilmington, MA. In 1969,
he joined the faculty of the University of Akron in Ohio as an Associate
Professor of electrical engineering. He has published extensively in the areas
of nonlinear interactions of electromagnetic waves in plasma media, adaptive
antenna design, spectral-estimation techniques, and electromagnetic scattering.

Dr. Mayhan has twice received the RWP King Award for papers published
in the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.


