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Ultrawide-Band Coherent Processing

Kevin M. Cuomo, Jean E. Piou, and Joseph T. Mayhan

~ Abstract—In this paper, we develop an approach for estimat- Fig. 2 illustrates a typical narrow-band radar and wide-band
ing the ultrawide-band (UWB) radar signature of a target by radar target response. The narrow-band response indicates

using sparse subband measurements. First, we determine thethe position of the target as a whole with the peak RCS
parameters of an appropriate signal model that best fits the

measured data. Next, the fitted signal model is used to interpolate COTresponding to the electromagnetic size of the target. The
between and extrapolate outside of the measurement subbands.wide-band response provides resolution within the target’s
Standard pulse-compression methods are then applied to provide range profile. Individual scattering centers are isolated into

SUPerr95.0|\1|6d range PrOf”?S IOf lihef target.l Thﬁ a|90”t2m can small range-resolution cells that provide a more direct mea-
automatically compensate for lack of mutual coherence between surement of the target’s size and Shape.

the radar subbands, providing the potential for UWB processing ) ; . ; .
of real-world radar data collected by separate wide-band radars. 10 achieve fine range resolution, wide-band field radars
Because the processing preserves the phase distribution across theltilize coded waveforms with large time bandwidth products.
measured a_nd estimated subbands, extended coherent processing\ide-band chirp waveforms are commonly used because of
can be applied to the UWB compressed radar pulses to generate yhair ease of generation and processing in the radar receiver.
superresolved radar images of the target. Applications of this Mixina th d t . Is with i fthe t itted
approach to static test range and field data show promising v 'XINg the radarreturn signais with a replica ot the transmitte
results. signal produces a base-band signal with frequency components
that are proportional to the relative range between scattering
centers on the target. The base-band signal is sampled and
Fourier transformed to provide a range-resolved profile of the

I. INTRODUCTION target. This process is called pulse compression. Properties

INCOLN Laboratory has played a major role in deOf the compressed pulse such as resolution and sidelobe levels

L veloping wide-band radar systems. This developmeﬂ?pe”d on the extent and shape of the window function applied
was motivated by the successful application of high-powé&? the base-band signal samples. The Fourier theory relations
instrumentation radars to research in ballistic missile déefine resolution to be inversely proportional to the total signal
fense and satellite surveillance. Today’s wide-band imagifg@ndwidth. In accordance with this inverse relationship, the
radars perform real-time discrimination and target identific&esolution of the radar improves as radar bandwidth increases.
tion. Advanced signal processing methods have improved thee [1], for example, for a more in-depth discussion of pulse-
resolution of processed radar return signals, further improviggmpression radar principles.
wide-band radar technology. Many wide-band field radars operate on these basic prin-

Fig. 1 illustrates a ballistic missile defense environment thaiples. Fig. 3 shows an aerial view of the Kiernan reentry
relies on accurate target identification and size—shape estirmgasurement system (KREMS) facility located on Kwajalein
tion, two capabilities critical to many areas of national defensatoll in the central Pacific Ocean. This facility has been the
The primary goal of a defensive radar system is to intercemiost sophisticated and important wide-band radar research
and destroy a threat target. This objective is complicategnter in the United States for over 30 years [2]. The pho-
by the presence of many objects in the radar field of viewggraph depicts several wide-band field radars, including the
some purposefully designed to deceive radar discriminatié COR C-band radar developed in 1970 for the purpose of
algorithms. Decoys, for example, may have radar cross-sectiside-band discrimination research. ALCOR utilizes a wide-
(RCS) levels similar to those of the warhead, which makésnd chirp waveform with a bandwidth of 512 MHz to
robust target selection based solely on RCS levels difficudichieve a range-resolution capability of about 53 cm. Kwa-
Narrow-band radars usually lack sufficient range resolution jalein’s millimeter-wave radar can operate at #ie-band and
allow a direct measurement of target length, although they dié-band and is capable of a transmission bandwidth of 2000
generally useful for tracking and coarse motion estimationMHz, providing an impressive 14-cm range-resolution capa-
Unlike narrow-band radars, wide-band radars allow a mugiflity. These range resolution figures take into account the use
larger suite of target discrimination algorithms to be employeast a Hamming window function to reduce the sidelobe levels
for real-time range Doppler imaging and phase-derived rangethe compressed pulse. The United States also operates high-
estimation. resolution wide-band radars on ship platforms such as COBRA

JUDY. Fig. 4 shows the COBRA JUD$-band phased-array
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Fig. 1. A typical ballistic missile defense environment, which demands accurate target identification and size—shape estimation. Shorthghaftielau
warhead and decoy separate from the main body of the missile. Radar discrimination algorithms attempt to find the threat target by exploitagg differen
in size, shape, and motion dynamics between the warhead and nonthreatening objects in the radar’s field of view.
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Fig. 2. Comparison of target response—RCS levels versus relative range—for typical (a) narrow-band radar and (b) wide-band radar. The narrow-band

response can identify only the position of the target as a whole. The wide-band response provides a direct measurement of individual scattérers withi
target's length, permitting a much larger suite of target discrimination algorithms to be employed than with narrow-band radars.

cells. To improve the range resolution of a radar, we can ibands. For typical real-world radar applications, BWE typi-
crease the radar bandwidth or process the received signals wily improves the range resolution of compressed radar pulses
superresolution algorithms. Cost and design limitations aog a factor of two to three. BWE often provides striking
major drawbacks to increasing radar bandwidth. Because ingrovements in the quality of wide-band radar images. As an
want to obtain higher resolution radar data without incurringxample, Fig. 5(a) shows a radar image of a simulated three-
significant hardware costs, we researched robust superrgsuint target without BWE processing applied. The resolution
lution algorithms that can be applied to a wide range a insufficient to resolve the target points. Fig. 5(b) shows the
real-world data sets. same target with BWE processing applied to the compressed
In 1990, Lincoln Laboratory developed a superresolutiamdar pulses, first in the range dimension and then in cross
algorithm that can significantly improve the range resolutiomnge. The BWE processed image is better resolved, allowing
of processed radar return signals. The algorithm, called band- to analyze and identify the target.
width extrapolation (BWE) [3], [4], increases the effective Although BWE improves resolution, the approach has the
bandwidth of a radar waveform by predicting the target®llowing inherent limitations. The algorithm is based on
response at frequencies that lie outside the measuremsghal processing models that characterize a complex target
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concept increases processing bandwidth and improves range-
resolution and target-characterization capabilities.

To perform UWB processing, as illustrated in Fig. 6, we
must address a number of technical issues. First, we need to
develop a robust signal processing method that compensates
for the potential lack of mutual coherence between the various
radar subbands. We must then fit an appropriate UWB signal
model to the sparse subband measurements. The fitted signal
model must accurately characterize UWB target scattering and
provide for meaningful interpolations or extrapolations outside
the measurement subbands. In this article, we discuss our
approach to UWB coherent processing and then apply our
UWB coherent processing algorithms to static-range data. We
summarize the main results of this work and suggest some
research strategies for the future.

Il. UWB COHERENT PROCESSING

Fig. 3. The Kiernan reentry measurement system (KREMS) facility locates] Concept
on Kwajalein Atoll in the central Pacific Ocean. The ALCOR C-band radar _. . .
is located under the white radome in the lower left of the photograph. The Fig. 7 illustrates an overview of our approach to UWB

millimeter-wave radar is located under the smaller white radome near thgherent processing. An estimate of the target's UWB radar

center. signature is obtained by coherently combining sparse subband
measurements. While the figure illustrates UWB processing for

as a collection of point scatterers, each having a frequen@ply two subbands, it is straightforward to apply this concept

independent scattering amplitude. BWE algorithms are oftém an arbitrary number of subbands.

sufficient for typical wide-band signal processing in which The illustrated process is divided into three steps.

the waveforms have a small fractional bandwidth compared1) Process multiband data samples from the in-phée (

with the center frequency. Over ultrawide frequency bands in  and quadraturelf) channels to make the radar subbands

which the radar bandwidth is comparable to the radar center mutually coherent.

frequency, however, the scattering amplitude of the individ- 2) Optimally fit an UWB all-pole signal model to the

ual scattering centers can vary significantly with frequency.  mutually coherent subbands. The fitted model is used

Spheres, edges, and surface joins are examples of realistic to interpolate between and extrapolate outside the mea-

scattering centers that exhibit significant amplitude variations  surement bands.

as a function of frequency. ultrawide-band (UWB) signal 3) Apply standard pulse-compression methods to the en-

models must be flexible enough to accurately characterize larged band of spectral data to provide a superresolved

these nonpointlike scattering centers. range profile of the target.

The ability to measure or estimating a target's UWB radar Step 1) is important when applying UWB processing to
signature is useful for many radar discrimination and targféld data collected by separate wide-band radars. Time delays
identification applications. Not only is fine range resolutioand phase differences between the radars can make them
obtained, but the amplitude variations of isolated scatterimgutually incoherent. To cohere the subbands, we fit an all-pole
centers are useful for identifying the type of scattering centgjignal model to the spectral data samples in each subband and
Many canonical scattering centers are known to exhfBit adjust the models until they optimally match. Corresponding
type scattering behavior; e.g., the RCS of flat plates, singiprrections are then applied to the underlying data samples.
curved surfaces (cone sections), and doubly curved surfagess approach is based on the assumption that the target
(sphere) vary ag?, f*, and f°, respectively. The RCS of acan be accurately characterized by a superposition of discrete
curved edge varies ag~!, whereas a cone vertex varies ascattering elements. This assumption is often valid for targets
/~2. One goal of UWB processing is to detect these frequenttyat are large with respect to radar wavelength [5]-[7].
dependent terms in the measured data and to exploit them fom Step 2), we fit a global UWB all-pole signal model
scattering-type identification. to the mutually coherent subbands. We then use the model

Building a field model of a true UWB radar can be exfor interpolation and extrapolation purposes. All-pole models
pensive. A more practical approach is to use conventiorse well suited for UWB processing because they accurately
wide-band radars to sample the target's response overkcharacterize the target by a superposition of discrete scattering
set of widely spaced subbands, as illustrated in Fig. 6. ¢éenters, each with its own frequency-dependent term. While
this figure, the COBRA JUDYS-band andX-band radars all-pole models match best to signals that grow or decay expo-
are used to collect coherent target measurements over tmgntially with frequency, they can also accurately characterize
respective widely spaced subbands. Coherently processjfifgscattering behavior over finite bandwidth intervals.
these subbands together makes it possible in principle tdn Step 3), standard Fourier-based pulse-compression meth-
accurately estimate a target's UWB radar signature. Thisls are used to generate a range-resolved profile of the target.
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Fig. 4. The COBRA JUDY ship with a clear view of the-band phased-array andi-band dish-antenna radars.

Because the UWB process is fully coherent, superresolviedver subband have been rotated 20bckwise relative to the
radar images can also be generated by using standard tegiper subband signal poles. Fig. 8(b) shows the corresponding

nigues. compressed pulses, which do not line up because the subbands
are not mutually coherent. In effect, mutual coherence is
B. Mutual-Coherence Processing seen as a consequence of uncertainty in position and time

UWB processing requires a consistent set of spectral si ng guencing of the separate radars.
P greq P NaRe begin the mutual-cohering process by modeling the

in each subband, i.e., the all-pole models for each sub- . . ; ..
. . ; ) . sPectraI signals in each subband with a superposition of
band must be consistent. This requirement is not an issue_In

multiband radar systems specifically designed to be mutuaﬁ?/mplex exponential functions. An all-pole signal model of
. . e form

coherent. Mutual-coherence problems will most likely occur,

however, when the subband measurements are collected by r

wide-band radars operating independently. This section dis- M(fn) = Z arpy

cusses a straightforward signal processing approach that can k=1

compensate for the lack of mutual coherence between 3

number of radar subbands. The technique allows us to app

UWB processing across a wider range of radar platforms usg tainsN, data samples. Thus, the sample indexanges

in the -ﬁeld. . . fromn = 0,---, Ny — 1 for the lower subband and from
For illustration purposes, we simulate the radar returns for__

. . . ; n=N—N,, ---, N—1 for the upper subband. The all-pole
a hypothetical target consisting of two discrete scattering C&lodel parameters are physically meaningful. The number of

ters. _The scattering center closer to the radar has a scattegggttermg centers and their complex amplitudes are denoted
amplitude that decays with frequency, whereas the scatter P and a, respectively. The poleg, characterize the

center away irom ihe radar.has a scattering gmplitude ﬂ? fative ranges and frequency decay of the individual scattering
grows with frequency. The simulated spectral signal S""mpltt?énters; thef* frequency decay model indicated earlier is

s» are given by approximated by an exponential variation over the band of
-1 +1 interest. The subbands can be mutually cohered by fitting a
8, = 4<f_"> ei(ﬂ'/4)n + <f_n> ei(ﬂ'/3)n'

Yused for this purpose. As illustrated in Fig. 8(a), the lower
band containg/; data samples, while the upper subband

separate all-pole model to each subband and adjusting the
models until they are consistent.

The frequency-sampled phase terms correspond to a scatterinfgur approach to all-pole modeling utilizes the singular-
center separation of 15 cm. White Gaussian noise is adagédue decomposition of the forward-prediction matrix [8].
to each signal sample and the signal-to-noise ratio (SNR)Srgecifically, the forward-prediction matrix for the lower sub-
20 dB. band is given by
We assume that only two subbands are available for co-

herent processing of the noisy, signal samples illustrated

in Fig. 8(a). Thes, signal samples in the lower subband H, =
have been modulated by the functien’~/? to simulate the : :
effects of mutual incoherence, i.e., the signal poles for the SNy—L SN;i—L+4+1 " SNi—1

1 f1

So S1 o SL-1
51 52 ST,
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Fig. 5. Demonstration of bandwidth extrapolation (BWE) processing. (a)
The three-point target image without BWE processing is not resolved well UWB compressed
enough to identify the target. (b) The three-point target image with BWE pulse
processing allows us to identify and analyze the target.
Range
S-band C-band X-band Fig. 7. UWB process flow to estimate the target's UWB radar signature.

Sparse multiband data samples for the in-phaBeand quadrature (f)
channels are selected. Mutual-coherence processing allows two or more
independent radar subbands to be used in the model fitting step that follows.
Frequency An _aII-poIe si_gnal model is fitted_ to the sparse subband data samples and used
— for interpolation and extrapolation outside the measurement bands. Standard

Fig. 6. UWB processing concept applied to COBRA JUD¥band and pulse-compression methods are then applied to the UWB target data.
X-band wide-band signature daté-band andX-band measurements are

coherently processed together to provided an interpolated estimated of target’s . . .
UWB radar signature. resolution, but the estimates may not be as robust to noise.

The forward-prediction matrixH, for the upper subband
8onstructed in a similar way is

where L denotes the correlation window length and th
s, denote the frequency-domain radar measurements. The SN_Ny  SN—Not+l “°° SN—_Ny+l—1
special form of matrixH; is called a Hankel matrix, which SN—No+1 SN—No4+2 *° SN—No+tL
is associated with the transient response of a linear-time- H, = : : : :

invariant system. Subspace decomposition methods exploit the
eigenstructure of Hankel matrices to estimate the parameters
of linear-time-invariant signal models [8]. Using a correlation To estimate the all-pole model parameters for the lower and
window length L = N;/3 generally provides for robust upper subbands, we apply the singular-value decomposition to
parameter estimates. Larger valuesofcan provide better H; andH,, respectively, which decomposkl andH- into

SN_L SN—_L+1 SN_1
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Fig. 8. (a) Sparse multiband measurements of a target consisting of two closely spaced scattering centers. The amplitude of one scattergs (hitte) deca
frequency, while the amplitude of the other scatterer (red) grows with frequency. The two subbands illustrated are not mutually cohereny, Bayneltsrit
from only thel channel are shown. (b) The corresponding compressed pulses do not line up in range because the subbands are mutually incoherent.

the product of three matrices

€0 T T T I T

H, = Ulslvll 50 Lower subband =

and 3 o Upper subband i
_ 1 fd

H, =U,S;V), [ |
where the prime symbol denotes the hermitian operator.SThe E’zo
matrices contain the singular values for the two subbands. The @ AIC and MDL model-order estimates
U andV matrices contain the corresponding eigenvectors. In 10 ]
particular, the columns of th& matrices correspond to the 0 - ’ : '
eigenvectors of the respective subband covariance matrices. By 1 2 3 4 5 6 7 8
decomposindd; andHj in this way, we can estimate the all- Model order
pole model parameters for each subband with the followifgy o singular-value spectra for the two subband data set in Fig. 8. The
four-step process. AIC and MDL model-order estimates are equal to two. The SNR is 20 dB.

1) The singular-value matriceS; and S, are used to

estimate the model order$y and P, for the two ;5eq as an estimate of the model order. At higher noise levels

subbands. N _ the transition from large to small singular values is smooth,
2) P, and P, are used to partitionV; and V, into

ort_hogonbal subsp:cesafaf\_sggnal—pltlja—snlcéi:se Slft?slpac_e a%(ﬁike information criterion (AIC) [9], [10] and minimum
noise subspace. A modified root- (mu tlpes'gn"’&escription length (MDL) [11], [12] are two model-order

classification) algorithm described below is applied t8stimation methods that often work well in these cases. Fig. 9

estimate the signal poles for each subband. shows the singular-value spectra for the two-subband data set

3) The all-pole model amplitude coefficientg are deter- . " :
mined by using a linear least-squares fit to the measurJQdF'g' 8. The AIC and MDL model-order estimates are both
data. correctly equal to two.

4) The resulting subband signal models are adjusted toonce the model orde_rf’l gnd %, have been estimated_,_
optimally match. we proceed to Step 2), in which the subspace decomposition
properties ofV; and V, are used to estimate the dominant

I 1), the singul I [ [ : .
n Step 1), the singular values & are used to estimate ynal poles for each subband. The matricés and V.
a

appropriate model orders for the two subbands. The relativel tioned | h | sianal-ol ; d noi
large singular values i correspond to strong signal compo- T) partitioned into orthogonal signal-plus-noise and noise
ybspaces

nents, while the small singular values generally correspond%
noise. For low noise levels there is a sharp transition between
the large and small singular values. The transition point can be Vi =|Vi* Vi
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and ] I I | | 1]
Vo = | V3" V. 'S Lowersubband |
10 X signal
The partitioning is performed so thaf;™ and V3" have P, ' poles
and P, columns, respectively. The noise subspace matrices 05 |- Sl
V¢ and V% haveL — P, and L — P, columns, respectively.
Pole estimates for each subband are obtained by employing oL il Re
a modified root MUSIC algorithm. MatriceA; and A, are 5
defined from the noise subspace vectors for each subband as 05 |- =l
A :V?V?, s B |
A, =ViVy. o %
We denoter;; as the elements of the first row &, andb,; =15 0 ' ’- ' b
as the elements of the first row &,. These elements are -5 -0 05 0 05 10 15
used to form the polynomiald, (z) and A»(z) given by @)
L
Ai(z) = a2 [T i | T | T
¥ ; *# | Upper subband o Dominant“
L ) b signal |
Ax(z) = bz Y. YE o \\ﬁ"es
=1 05 [ o 5
The roots ofA;(z) and A(z) correspond to pole estimates
for bands 1 and 2, respectively. 0 i
This approach can be viewed as a variant of the traditional
root MUSIC algorithm described in [13]. Our approach has -05 |- . =
the important advantage of providing high-resolution pole %
estimates while eliminating the symmetric pole ambiguities -1.0 - K
that result from the traditional root MUSIC approach.
Pole estimates can also be obtained by applying the spectral- -1.5 [ L PEX | I ]
estimation techniques described in [14]-[20]. In our algorithm, -5 -10 05 0 05 10 15

the pole estimates are obtained for each subband by applying
the modified root MUSIC algorithm tov} and V. The ) ] o

t MUSIC al ithm find | dina to the si Fl?. 10. Pole estimates for the two subband data set illustrated in Fig. 8.
roo algorithm 1nds poles corresppn INg 10 th€ SIgN§he gominant signal poles in the lower and upper subbands are shown in blue
vectors that are most orthogonal to the noise-subspace vectats.red, respectively.
In general, thef< variation of the signal model leads to poles

that are displaced from the unit circle in the compleglane. to accomplish the match. A straightforward method involves
Over each subband, however, the variatioryofis small, so modulating and phase aligning the lower subband signal model

the dominant signals correspond to poles that lie close to tti it closely matches the upper subband signal model. For
unit circle. After estimating model orders in Step 1), we usgxample, the coherence function

(b)

the P, poles closest to the unit circle in Step 2) to characterize
the dominant lower subband signals and fhepoles closest

to the unit circle to characterize the dominant upper subband
signals.

Fig. 10 shows the resulting pole estimates for the t
subband data set illustrated in Fig. 8. The poles shown in bif
and red are considered the dominant signal poles for the lowWef
and upper subbands, respectively. Notice that a lack of mutu

coherence prevents the signal poles in the lower subband fr§ErE

lining up with the signal poles in the upper subband.

In Step 3), we estimate the all-pole amplitude coefficients
for the lower and upper subbands. An optimal set of amplitude
coefficients can be found by solving a standard linear leas!
squares problem. Step 3) completes the all-pole modeli
process for each subband. The lower and upper subband si
models are denoted by/,(f,,) and Mz (f,,), respectively.

In Step 4), the subband signal moddis ( f,,) and M>(f,,)
are adjusted until they optimally match. There are many ways

Sp = Sn€

N—-1

C = Z |AM1(fn)CiA9n - MQ(fn)

n=0

{[A8" ntarg(A™)]

?

| 2

wean be minimized with respect to the pole rotation angyte
ed complex amplitude coefficiemt. Another approach for
tching the subband signal models is to find an appropriate
rgﬁation matrix that best aligns the signal subspace vectors
tained inV; andV,. Whichever method is employed, the
band model-alignment process tends to promote a strong
sense of mutual coherence between the two subbands.
In Fig. 11(a), we show the mutually incoherent subband
gnal models. In Fig. 11(b), an optimal pole rotation angle
* and complex amplitude coefficiedt* were applied to the
er subband signal model and corresponding data samples,
.e., the lower subband data samples were replaced by mutually
coherent data samples given by

n=0,---, N —1.
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Fig. 11. Mutual-coherence processing applied to the sparse subband data set illustrated in Fig. 8. Lower and upper subband signal models are shown (a)
before and (b) after mutual-coherence processing. The mutually cohered signal models are consistent over much of the UWB processing interval.

Although the two signal models in Fig. 11(b) may nofDetailed information about the Newton—Raphson algorithm
entirely agree, it is important to recognize that they hawman be found in many standard texts on numerical analysis
approximately the same signal poles. The corresponding §#41].) If the initial parameter estimates are close to optimal, the
pole model coefficients;, however, significantly differ. The standard nonlinear least-squares algorithm rapidly converges
lower subband favors the decaying signal component, wheréaghe all-pole model parameters that minimize
the upper subband favors the growing signal component. Many methods will give an initial estimate of the global

all-pole model parameters. One method is to construct the

C. UWB Parameter Estimation and Prediction multiband prediction matrix given by
Once the radar subbands have been mutually cohered, a H— H,
global all-pole signal model is optimally fitted to the measured T He |

data. Our approach determines the all-pole model parame

S .
that minimize the cost functiod given by t%e submatricesH; and H, correspond to the forward-

prediction matrices for the lower and upper subbands, respec-
J = Z Qn|Sn — M(fn)|2- tively. We call this approach subaperture processing because
() it combines the data samples from both subbands, providing
] ) the potential for robust parameter estimates from noisy data.
The indexn ranges over all of the available data samples. |; js 150 possible to obtain multiband parameter estimates

The coefficientsg,, are used to weight the measurementsy 5jiowing for cross-correlation between the subbands, i.e.,
appropriately. The function/. measures the total we|ghtedby defining H as

error between the model given by
H=[H, H;]

r
M(f.) =Z arpr We refer to this method as extended-aperture processing,
k=1 which provides the potential for true UWB resolution. How-

and the mutually coherent data samples in each subband. €Ver, the resulting pole estimates are typically more sensitive
Minimizing .J with respect to the all-pole model parameter¥ noise than those from subaperture processing. In princi-

is a difficult nonlinear problem with no closed-form solutionP!€, the two methods—subaperture processing and extended-

Brute-force numerical solutions are not feasible because &terture processing—can be combined to provide robust high-

the potentially large number of signal parameters that my§golution estimates of the dominant signal poles. In both

be estimated. Fig. 12 illustrates an alternative approach @@ses, multiband parameter estimates are obtained by decom-

solving this dilemma. Initial estimates of the all-pole modd?osingH into the product of three matrices

parameters are obtained by using the technique based on H = USV’

singular-value decomposition. These initial estimates are then

iteratively optimized by using a standard nonlinear leasin estimatel” of the model order is obtained by applying the

squares algorithm, such as the Newton—Raphson algoritdiC or MDL techniques to the spectrum of singular values
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X
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' -15 =10 05 0 05 10 15
Modified
root-MUSIC Fig. 13. Multiband pole estimates for the mutually coherent subbands illus-
algorithm trated in Fig. 11(b). The dominant signal pole inside the unit circle corresponds
to the f—1 scattering center. The dominant signal pole outside the unit circle
corresponds to thg¢+! scattering center.
A 4
Initial . .
pole Fig. 14(a) shows a comparison between the global all-pole
\ estimates ! signal model and the actual signal; the all-pole model agrees
Fp—— with the actual signal over the entire UWB frequency range.
The corresponding compressed pulses are shown in Fig. 14(b).
Nonlinear The sparse subband compressed pulse uses the mutually co-
> ‘e?ist:rsa‘:i“';')“s herent radar measurements within the two subbands and the
global all-pole model in the vacant band. With this approach,
the two target points are well resolved and the estimated UWB
Y .
/**—L\ response closely matches the actual signal.
G'“::'oi'lm'e This example also demonstrates the potential for using

parameters all-pole signal models to accurately characterf2etype scat-
W tering behavior over ultrawide processing bandwidths. In fact,
Fig. 12. UWB parameter estimation. Initial parameter estimates are obtair*&? UWB pole estimates can be transformed into equivalent

by using a singular-value decomposition technique. These initial parame@$timates of thex exponents for f*-type signal models.
estimates are iteratively optimized with a standard nonlinear least-squayge can always find ary® function that best matches the
algorithm. exponential behavior of an UWB signal pole over a given
frequency range. We can also derive an approximate analytical
. . ] relationship between the pole magnitudes and the correspond-
contained inS. For the sparse subband data set |IIustrate7,qig « exponents by matching the functioig* and |px|” at

in Fig. 11(b), both the AIC and MDL model-order estimateg,e owest and highest UWB frequencies. This relationship is
are correctly equal to two. The model-order estimate is US@ﬂ/en by

to partition'V into orthogonal signal-plus-noise and noise sub-
spaces. Initial pole estimates are obtained by using the methods
of a previous section, “Mutual-Coherence Processing,” or any o =
other superresolution spectral-estimation technique.

Fig. 13 shows a plot of initial pole estimates for the sparse
subband data set illustrated in Fig. 11(b). Including bEth

andH, into the Hankel matrix correctly identifies both signa WB frequency, respectively. The constahit denotes the

. 1 ) :
poles and asgomates_ them A$" and /™ pole pghaymr. total number of UWB frequency samples. In the two scattering
The two dominant signal poles are used to initialize the . . : .
. center example discussed previously, the two dominant signal
Newton—Raphson algorithm. lesp, andp, are aiven b
This algorithm uses the initial parameter estimates to firPuo P P2 9 y
the global all-pole model parametess and p; that locally
minimize the cost function/. The model orderP remains
fixed during this iterative process and the algorithm typically
converges to a local minimum dfin only a few iterations. We
test the approach by optimally fitting a global all-pole signal By substituting these poles into (1), we obtain an accurate
model to the two subbands illustrated in Fig. 11(b). estimate of the truer exponents used in the simulation. Thus,

df
log <1 + (N - 1)ﬁ>

heredf and f; denote the spectral-sample spacing and lowest

p1 =0.992¢7/4
ps = 1.005¢/3,
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Fig. 14. (a) Comparison between the fitted UWB signal model (brown curve) and truth (black curve). (b) Corresponding compressed pulses. The two
scattering centers are well resolved with UWB model closely matching truth.

£3

First groove 104 First -1 =
| |
g -

R 105 ‘ .

Q10 | Frequency

I © | range for ]

_ L uwB ]

Second groove Midbody groove Midbody | gxperiments |

groove ‘ 1

108 ] | | | |
6 8 10 12 14 16 18

Fig. 15. Testtarget for UWB processing experiments. This monoconic model
of a reentry vehicle is 1.6 m long. The spherical nose tip has a radius of 0.22 Frequency (GHz)

cm. The nose section is made from a solid piece of machined aluminum with . .
three grooves—two near the front of the model and one at midbody. Fig. 16. Moment-method RCS calculations for the three major grooves on

the target, which was at a 20aspect angle. All three grooves exhibit the
expectedf? scattering behavior at low frequencies, with break points that
. . . . . _depend on the size of the groove.

the UWB pole locations provide information on scattering P “ groov
type. This information is useful for analyzing the details

of targets with the viewpoint of constructing an accuratg |ocated 44 cm from the reentry-vehicle nose tip. The

measurement-based model. midbody of the reentry vehicle is made from a single sheet
of rolled aluminum with one groove, one slip-on ring, and
[ll. TATIC-RANGE EXPERIMENTS three seams. The aluminum slip-on ring (not shown in the

In the previous section, we presented the basic concepfOt0) is approximately 5 mm thick and 10 mm wide, and is
behind our UWB processing algorithms. In this section, w/aced 1.4 m from the reentry-vehicle nose ftip.
utilize static-range data to demonstrate the applied aspects of Ne reentry vehicle shown in Fig. 15 is ideal for UWB
UWB processing. processing experiments because it has several scattering cen-
Fig. 15 shows our target for the UWB processing demoters that exhibit significant RCS variations as a function of
stration—a monoconic model of a reentry vehicle with lengtiequency. Fig. 16 shows a moment-method RCS calculation
of 1.6 m. The spherical nose tip of the reentry vehicle hasfer the three major grooves on the reentry vehicle. The
radius of 0.22 cm; the nose section is made from a solid piegeoves exhibit the expectgd scattering behavior at the low-
of machined aluminum with two grooves and one seam. Tiiequency end of the spectrum, with break points that depend
first groove—approximately 3 mm deep and 6 mm wide—ign the size of the groove.
located 22 cm from the reentry-vehicle nose tip. The secondThe Lincoln Laboratory static-range radar facility was used
groove is approximately 2 mm deep and 4 mm wide artd collect coherent radar measurements over a wide range of
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Fig. 17. (a) Uncompressed radar pulse of the test target shown in Fig. 15 with viewing aspdotritnhose-on. (b) Sparse-subband measurements used

to predict the target’s response over the fullband from 12 to 18 GHz. (c) Compressed pulses for the sparse subbands and full-band data setsd The full-ba
compressed pulse (black) resolves all of the significant scattering centers on the target.

frequencies and viewing aspects of the target. Measurements

were taken from 4.64 to 18 GHz in 40-MHz increments. The 1.5 - Mumlband : m =
target viewing angles, relative to nose-on, ranged froB? signal poles Base od
: - 1.0 - ClEe

to 95 in 0.25 increments. Ring

To demonstrate UWB processing, we focused on a segment os B Groove |
of data collected in the 12-18-GHz region shown in Fig. 16. ’
Fig. 17(a) shows an uncompressed radar pulse corresponding A Re
to an aspect angle of 20 To test our UWB processing
algorithms, we reduced the bandwidth of the uncompressed 05 &
radar pulses to two 1.0-GHz-wide subbands, as illustrated in Grooves
Fig. 17(b). Fig. 17(c) shows the compressed pulses for the two 1.0 - Nose tip
subbands and for the full-band data set. The bandwidth of the
two subbands is insufficient to resolve many scattering centers ~-1.5 [ L ! I I I~
on the target, while the full-band compressed pulse resolves =15 10 05 0 05 10 1§

all th_e signifigant scattering centers on the target. The pur_p(ﬁ& 18. UWB pole estimates obtained by using the sparse subband data set
of this experiment was to use UWB processing to obtainsaown in Fig. 17(b).

result highly consistent with the full-band result. We then

demonstrated the ability to coherently process the subbandrig. 18 shows the UWB pole estimates obtained by applying
measurements so that we can accurately estimate the targ#iés sparse subband spectral-estimation technique discussed

UWB response.

earlier in the section entitled “UWB Coherent Processing.”
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Fig. 19. Comparisons between the estimated UWB target response and the true UWB radar measurements. (a) Uncompressed radar pulse for the prediction
model (brown line) and the actual radar measurements (black line). (b) The corresponding compressed pulses that resolve the scatteringectargpes on th

The pole locations are consistent with the physical scatterimg compressed pulses over the full range of available viewing
centers on the target. The pole corresponding to the nosedgpects. We used target symmetry to process the data as if we
response is close to the unit circle, indicating it has a nealtad sampled a range of viewing aspects fref%° to 95°. The
constant RCS as a function of frequency. The grooves and slip#VB images provide a clear picture of the target and show
on ring have nonconstant RCS’s as a function of frequenaygnsiderable detail. The sparse subband image closely matches
the corresponding poles are either inside or outside the uthie full-band image and provides an accurate estimate of the
circle, as predicted by the moment-method RCS calculatiolesations ande exponents of the many realistic scattering

in Fig. 16. centers on the target.

Estimating the corresponding exponents for these major These experimental results suggest that UWB processing of
scattering centers is straightforward—the magnitude of tisparse subband measurements can significantly improve range
signal poles is related to the exponents via (1). A more resolution and provide accurate characterizations of targets
accurate relationship can be obtained by solving for dhe over ultrawide bandwidths. We are currently investigating fun-
exponents that produce the best match between the functidagnental limitations and practical payoffs of UWB processing.
f* and |px|™ over the frequency range of interest, i.e.,
from 12 to 18 GHz. Using this approach, we estimated the
« exponents for the first, second, and midbody grooves,

. : IV. SUMMARY
respectively, on the reentry vehicle to bg = —1.1, ap =
2.3, andaz = 2.9. These estimates are consistent with the This paper presents an approach for accurately estimating a
moment-method RCS calculations shown in Fig. 16. target's UWB radar signature from sparse subband measure-

Fig. 19(a) and (b) shows comparisons between the estimatednts. To apply this technology to field data we developed
UWSB target response and the true UWB radar measuremeris.algorithm that could compensate for the potential lack of
The model and the measurements are in excellent agreememitual coherence between the various radar subbands. Ro-

Because radar measurements were taken over a wide ralbget mutual-coherence processing was performed by optimally
of viewing aspects, we could generate two-dimensional (hatching the all-pole signal models for each subband. With
D) radar images of the target. Fig. 20(a) and (b) shows tkiee radar subbands mutually cohered, a single UWB all-pole
lower and upper subband images, respectively. The resolutgignal model was optimally fitted to the available data. The
is insufficient to resolve many of the scattering centers on tfigked model was used to interpolate between and extrapolate
target. Fig. 20(c) and (d) shows the true and estimated UWiitside the measurement bands. Standard pulse-compression
target images, respectively. All four images were generated imethods were applied to the enlarged band of spectral data to
applying extended coherent processing [4] to the correspomievide a superresolved range profile of the target.
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Fig. 20. Comparison of 2-D radar images. (a) The upper left and (b) right images show the lower and upper subband images, respectively. (c) The
full-band image in the lower left uses actual radar measurements over the full 12-18-GHz frequency range. (d) The sparse subband image in the lower
right uses the sparse subband measurements with UWB prediction.

These UWB processing concepts were demonstrated ddfymeasured data to total processing interval) are important
using simulations and static-range data. We showed thatU¥VB processing concerns. While the nonlinear optimization
was possible to accurately estimate a target's UWB respommecess cross correlates the subbands, it may be possible to
when the radar measurements fill only a small fraction @btain more resolved UWB signal models by better exploiting
the total processing bandwidth. The practical payoff of thihe cross-band correlation information during the initial pole
technology is that radar measurements need not be talestimation stage. We are currently investigating these issues
over the full UWB processing interval; signal processing caand considering some potential real-time applications of this
be used to a certain extent to compensate for any missehnology.
ing data. Another important benefit of UWB processing is
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