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Abstract—Transmission line antennas are widely used elements.
Analytical formulations for the coupling between transmission
line antennas, e.g., loops and inverted-L’s, are developed. Fur-
thermore, corrected current distributions that exhibit nonzero
input current at the antiresonances of such elements are derived.
The analytical results are compared with finite-difference time-
domain (FDTD) calculations and measurements. Also, the physics
of coupling is discussed. Finally, an FDTD technique that effi-
ciently computes the two-port network parameters of a system
of two antennas is developed based on a source with an internal
resistance.

Index Terms—FDTD methods, mutual coupling, transmission
line antennas.

I. INTRODUCTION

T RANSMISSION line antennas are widely used wire
antennas. Due to their low profile they find a variety

of applications in different areas of communications such
as missile telemetry, mobile telephony, aeronautical mobile
communications, and airborne platforms (such as helicopters,
airplanes, missiles, etc.). Different shapes and configurations
such as inverted-L, inverted-F, loop (“towel-bar”), and
antennas have been used to shift the resonance of the trans-
mission line antennas. Also, other designs such as planar
inverted-F antennas (PIFA) have been proposed in order to
reduce the size and increase the bandwidth of the antenna.

Transmission line antennas were analytically analyzed by
King and Harrison [1] who derived formulas for the driving
point impedance of such elements. Also, Wunschet al. were
able to derive closed-form expressions for the driving point
impedance of a small inverted-L antenna [2]. Even though
transmission line antennas are widely used in today’s com-
munication systems, they have not been extensively discussed
in the literature, especially in terms of analytical formulations
and measurements. In this paper, the coupling between two
transmission line elements such as loops and inverted-L’s,
is analytically formulated by using two different integral
definitions of the mutual impedance. These two definitions of
coupling form the basis of theinduced electromagnetic force
(EMF) method. All the analytical results are compared with
numerical computations obtained by finite-difference time-
domain (FDTD) and also with measurements. The theory
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of FDTD will not be discussed or illustrated here as it is
well documented and has been successfully applied to a
variety of problems. The FDTD method is based on Yee’s
algorithm [3] and is thoroughly examined in [4] and [5].
In this paper, an efficient technique that calculates the two-
port network parameters of a system of two antennas is
developed. Furthermore, the behavior of coupling is discussed
and physical interpretations are provided.

II. DEFINITION OF MUTUAL COUPLING

The mutual coupling between two antennas was initially
modeled using the parameters of the equivalent two-port
network. Assuming that is the current distribution
in the first antenna due to an applied voltage at and

is the electric field intensity produced by this current
along the second antenna, the mutual impedancebetween
the two antennas is written as

(1)

where is the current distribution in the second antenna
due to an applied voltage across its terminals at and

and are the input currents of the antennas. Equation
(1) was first derived by Carter [6] and assumes that the field

is known.
Schelkunoff and Friis [7] generalized the definition of (1) by

introducing one more integration in order to compute .
Consider the free-space transmission factor between
two antenna elements and , which is defined as the
ratio of the electric field intensity at along the tangent to the
element to the moment of the current at flowing through
the element . Then the electric field intensity can
be written as

(2)

Consequently, the function can be obtained from the electric
field of an infinitesimal electric current element. Finally, the
generalized definition formula for the mutual coupling between
two antenna elements is obtained by substituting (2) in (1)

(3)

This method that analytically computes coupling between two
wire antennas and is described by (1) or (3) is referred to as
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Fig. 1. Loop antennas and their images.

induced EMF method[8]. The accuracy of the first approach
based on (1), depends on the knowledge of the electric field
radiated by one antenna and the current distribution on the
other antenna. However, the electric field radiated by complex
wire antennas, especially in the near-field zone, is not usually
known. On the contrary, the accuracy of the second approach,
based on (3), depends only on the knowledge of the current
distributions along the two antennas, which are usually known
or easy to derive even for multijunction wire antennas.

III. A NALYTICAL FORMULATION OF COUPLING

In this section, the mutual coupling between two wire
antennas is analytically formulated. The approach followed
herein is based on the induced EMF method and involves
either the single or double integration described by (1) and
(3), respectively. The interference between wire antennas that
are mounted on infinite ground planes can be analytically
computed by using image theory. Therefore, by applying
image theory a rectangular loop antenna becomes a two-wire
short-circuited transmission line, and an inverted-L antenna
becomes a two-wire open-circuited transmission line. It should
be pointed out that the mutual impedance of two antennas
placed on an infinite ground plane is equal to one-half of the

of the equivalent problems computed by image theory.
Furthermore, application of image theory in the case of finite
ground planes should give fairly accurate results as the mutual
coupling is not greatly influenced by the finite dimensions of
the ground plane, provided the ground plane is not very small
or the feed is not very near one of the edges.

A. Mutual Coupling Between Rectangular Loop Antennas

Two loop antennas along with their images are shown in
Fig. 1. These configurations of the loops are often referred
in practice as “towel bar” antennas and find wide application
in airborne platforms such as helicopters, airplanes, missiles,

etc. Obviously, a loop antenna becomes a short-circuited
transmission line (SC-TL) antenna after the use of image
theory. The mutual impedance between two SC-TL antennas
will be computed in two ways.

The first approach is based on the assumption that one an-
tenna is located at the far-field of the other antenna. Therefore,
the electric field involved in (1) is the far-zone field of the
SC-TL antenna. The electric field of a SC-TL antenna in the
far-field can be deduced by the vector potential derived by
King for a transmission line antenna [1]. A SC-TL antenna
exhibits and components of the vector potential, as
it consists of currents along the and directions. These
two components and can be deduced from King’s
formulations. Additionally, the electric field components in
the far field can be written in terms of the vector potential
components as [8]

(4)

(5)

However, the calculation of the mutual impedance involves
the tangential components of the electric field to the branches
of the SC-TL antenna, which are the and components.
These Cartesian components can be computed by performing
a coordinate transformation of the spherical components given
by (4) and (5). Obviously, the integration of (1) can be
separated into four integrals

at (6)

at (7)

at (8)

at (9)

where and are the electric field components in
the far-field zone of the first SC-TL antenna. Moreover, the
integrations of (6)–(9) can be carried out numerically if the
current distribution along a SC-TL antenna is known. Different
current distributions of SC-TL antennas are examined later in
this paper and their advantages and disadvantages are outlined.

The second approach for computing the mutual impedance
between two loop antennas is based on (3), which consists of
a double integration. In the case of SC-TL antennas, there are
two transmission factors and , as currents exist along the

and axes, respectively. The factor expresses the field
of an infinitesimal current element along theaxis, and
expresses the field of an infinitesimal current element along
the axis. Notice that the transfer function considers only
the tangential components of the electric field to the wire
antenna, which, in this case, are the and components.
Therefore, the function has two components namely
and and the function has also two components
and . The mutual impedance of two loop antennas can be
calculated from (3) by double integrating the product of the
transfer functions and the currents of the respective SC-TL
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antennas. The integration can be separated into 16 different
integrals.

B. Mutual Coupling Between Inverted-L Antennas

The mutual coupling between two inverted-L antennas
can be formulated following a similar procedure to the one
illustrated for the loop antennas. The details of the formulation
are described in [9].

IV. CURRENT DISTRIBUTIONS ALONG

TRANSMISSION LINE ANTENNAS

The current distribution of a shunt-driven reactively ter-
minated transmission line was developed by King [1]. In
this paper, only loop and inverted-L antennas are examined.
Their current distributions can be derived using either King’s
derivations or the transmission line theory for a short and open
circuited lossless transmission line [10]. Moreover, additional
terms in these current distributions are added to treat the
parallel type of resonances (antiresonances).

A. Current Distribution of a Loop Antenna

Following either King’s formulations or the transmission
line theory for a short-circuited lossless transmission line, the
current distribution along a loop antenna can be written as

(10)

(11)

where is the actual length of the loop antenna,
is its height, and its effective length derived by
King showed to account for the variation of the transmission
line parameters, , , , and near the end of the line.

This current distribution can be used in conjunction with
the induced EMF method to compute the self and mutual
impedances of loop antennas. The accuracy of the results
obtained by the induced EMF method, depends greatly on the
accuracy of the current distribution. The current distribution of
(10) gives accurate results at all frequencies, except the ones
where the input current becomes zero. This occurs when the
effective length of the antenna is an odd multiple of quarter-
wavelength, i.e., ; these frequencies correspond
to the parallel resonances of the loop (antiresonances). Conse-
quently, the division with the input currents, that is involved
in (1) and (3) does not give valid results at the antiresonances
of either antenna. This problem can be treated by adding a
quadrature term that will prevent the current from vanishing.
The approach illustrated below follows the approach presented
by Friis and Schelkunoff [7] for dipole antennas. In order for
the current on a loop not to vanish at its parallel resonances, an
appropriate weighted sinusoidal term is added to the current
distribution

(12)

The only remaining task is to determine the values of the
coefficient . The input resistance and the input reactance

of a SC-TL antenna were derived by King as

(13)

where is the characteristic impedance of the two-wire
transmission line model. The input resistance and reactance
of a SC-TL antenna can be referred to the maximum current
of a SC-TL antenna as follows:

(14)

where is the input current and is the maximum current.
Considering that the currents and according to King’s
derivations are

(15)

the input resistance and reactance of a SC-TL antenna referred
to the maximum current become

(16)

The radiated power may be expressed in terms of either the
input voltage or the maximum current as

(17)

where is the input conductance, i.e., the reciprocal of the
input resistance and is the radiation resistance. At
resonance, the maximum stored magnetic energyshould
be equal to the maximum stored electric energy. The loop
antenna will be treated again as a short-circuited transmission
line (SC-TL) antenna. Considering the first parallel resonance
of the SC-TL antenna the maximum magnetic energy
can be obtained from

(18)

where is the wire inductance per unit length and is the
cosinusoidal current distribution along the antenna. Similarly,
the maximum electric energy can be obtained from

(19)

where is the capacitance per unit length and is the
sinusoidal voltage distribution along the antenna. Equating
the magnetic and electric energies, the following relation is
obtained:

(20)

Similarly, it can be shown that (20) holds at all the parallel
resonances of the antenna. Furthermore, using (17) and (20),
the input conductance can be written as

(21)

Combining (21) and (14), the following relationship is derived:

(22)
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where is the radiation resistance of a SC-TL antenna at
its parallel resonances, i.e., , ,
which can be written according to (16) as

(23)

Moreover, when the SC-TL antenna operates at one of its
antiresonances, the corrected current distribution described by
(12) becomes

(24)

From (22)–(24) the coefficient can be written as

(25)

Notice that (25) is correct only at the antiresonances of an
SC-TL antenna. However, the standard current distribution
is significantly affected by the correction term only at the
antiresonances. Therefore, (25) can be used to provide values
of at all frequencies. Hence, the corrected current distribution
can be written as

(26)

Furthermore, the input resistance of a SC-TL antenna, referred
to the corrected current at the input terminal, can be deduced
from (14) and (16), i.e.,

(27)

where is the corrected input current of the SC-TL antenna
given by

(28)

Notice that the input resistance and reactance of a loop antenna
is equal to one-half of the input resistance and reactance of
the corresponding SC-TL antenna given by (27).

B. Current Distribution of an Inverted-L Antenna

The formulation of the current distribution of an inverted-L
antenna is not described here as it follows similar methodology
with the loop antenna [9]. Note, that the derivation of the
corrected current distribution for an inverted-L differs to that
of the loop only in the fact that the inverted-L exhibits a
sinusoidal current distribution.

V. EFFICIENT COMPUTATION OF

TWO-PORT NETWORK PARAMETERS

The computation of the input impedance of an antenna or
the network parameters of a system of antennas by FDTD
involves the Fourier transform of the input voltages and
currents. Therefore, using a transient excitation (pulse) the
impedance or the network parameters can be determined over
a frequency band by fast Fourier transforming (FFT) the time-
domain data. The basic requirement for the FFT to work is
to allow enough simulation time for the transient phenomena
to decay. However, one of the main difficulties involved in

Fig. 2. Augmented system of two generic antennas with voltage sources.

FDTD simulations is that in some applications, e.g., resonant
lossless structures, tens or even hundreds of thousands of time
steps may be required for the transient fields to decay.

A novel, effective, and very simple excitation technique to
implement for reducing the FDTD simulation time is based on
a source with an internal resistance. Initially, this method was
used in [11] to excite microstrip patch antennas. In addition,
the expression for a voltage source with an internal resistance
in parallel with the free-space capacitance of the FDTD cell is
given in [12]. However, the advantages of this method were
illustrated and outlined explicitly only in [13]. Besides, when a
problem involves the calculation of the network parameters of
a system of antennas, then a modified approach should be used.
The augmented system of two generic antennas along with the
voltage sources is shown in Fig. 2. This system can be thought
of as the cascade connection of three two-port networks, as
illustrated in Fig. 2.

The proposed approach requires to initially compute the
parameters of the entire system including the antennas and
the load resistors. Then, the parameters of the system are
converted to ABCD parameters. It can be readily shown that
the ABCD matrix of the overall antenna system can
be computed by the following expression:

(29)

The computed matrix of the two antennas can be
converted (if needed) to any other type of two-port network pa-
rameters using the appropriate conversion formulas. Following
the method described, computation of the ABCD parameters of
the two antennas can lead to great savings in the computational
time.

VI. DISCUSSION ON THEBEHAVIOR OF MUTUAL COUPLING

Here the coupling between two side-by-side dipoles is
examined in order to discuss the physics of coupling between
wire elements and draw some general conclusions. The admit-
tance parameters can be used to model the two dipoles
as a two-port network. The mutual admittances and ,
which express the coupling between the two dipoles, are equal
for reciprocal systems. The mutual admittance is chosen
to be used in the following formulation. Using the sinusoidal
current distribution for a very thin dipole [8] (ideally zero
diameter) along with the definition of the parameters it can
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be shown that the mutual admittance can be written as

(30)

where is the self admittance of antenna 1 referred
to the current maximum and and are the am-
plitudes of the sinusoidal current distributions of the dipoles.
A similar expression for can also be derived. It can
be concluded from (30) that the coupling between the two
dipoles depends on and the factor .
Therefore, the coupling can be intense if is large;
i.e., antenna 1 operates near one of its odd resonances, or if
the product of the sinusoids is large. The sinusoid
peaks when the length of antenna 1 is an odd multiple of
half-wavelength, i.e., antenna 1 operates at one of its odd res-
onances (or series resonances). Similarly, the sinusoid
peaks when antenna 2 operates at one of its odd resonances.
Combining the above, the factor may peak
when the operating frequency is close to one of the odd
resonances of either antenna. However, if one of the antennas
operates at one of its even resonances (or parallel resonances)
then its respective sinusoidal term vanishes and therefore the
coupling or also vanishes. Summarizing, the
interference between the two dipoles can be intense if the
operating frequency is near one of the odd resonances of either
antenna. Another important conclusion is that the factor of the
two sinusoids describes the behavior of coupling.

The conclusions asserted by this example can be gener-
alized for any kind of antenna. An antenna has two types
of resonances: the series and the parallel type of resonances.
The series type of resonances are more broad band than the
parallel type of resonances (antiresonances), and they are much
easier to match as they exhibit input resistances close to the
characteristic impedances of standard transmission lines. On
the contrary, the antiresonances are extremely narrow band and
exhibit very large values of input resistances that are difficult
to match with practical transmission lines. Consequently, an
antenna usually is operated at one of its series resonances
where it provides a good match to a transmission line and,
therefore, can radiate efficiently. Thus, if no coupler is used to
match an antenna to its feeding transmission line, the antenna
will radiate effectively only at or near its series resonances.
Moreover, when an antenna operates at one of its antires-
onances, it does not only transmit power inefficiently, but
also receives inefficiently, according to reciprocity theorem.
Therefore, it can be concluded that the coupling between two
antennas that are connected directly to their transmission lines
(no matching circuit is used) can be intense at or near one
of the series type of resonances of either antenna, provided
it is not near an antiresonance of the other. On the contrary,
the coupling between such antennas is low at or near one
of the antiresonances of either antenna, independently of the
electrical length of the other. These conclusions are very
important because they describe the behavior of coupling and
predict the locations of possible peaks and nulls.

(a)

(b)

Fig. 3. Input impedance of two identical loop antennas. (a) Magnitude. (b)
Phase.

VII. RESULTS

A. Loop Antennas on Ground Planes

Loop antennas are widely used transmission line antennas.
In this section, the mutual coupling between two loops is
analytically computed. Moreover, the analytical results are
compared with the corresponding FDTD calculations and
measurements. In order to validate our approach, a geometry
of two identical loops mounted on a finite ground plane (often
referred to in practice as “towel bar” antennas) is initially
examined (see Fig. 3). The two loops are 10 cm long, placed
1 cm above the ground plane, the distance between them is
10 cm and their wire radius is 0.4 mm.

First, FDTD was used to calculate the parameters of
the two loops without any modeling of their wire radius.
Loop antennas are extremely resonant as they exhibit a short-
circuited end. Therefore, a voltage source with an internal
resistance was used in order to calculate efficiently
the parameters of the two antennas and reduce substantially
the computation time. In the FDTD simulation the cell size
was 2 mm, the computational space was 120120 26
cells, and the computational time was 4 000 time steps. The
parameters were converted toparameters by assuming that
the characteristic impedance of the transmission line is 50.
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In order to compare the accuracy of the different current
distributions, i.e., standard versus corrected, the analytically
computed input impedance of the two identical loops is
compared with measurements in Fig. 3. The magnitude of
the input impedance computed using the standard current
distribution blows up at the antiresonances of the loops
whereas the corrected one provides levels that remain finite
and close to the measured ones [see Fig. 3(a)]. On the other
hand, the phase of the input impedance is the same for both
current distributions as the resonant frequencies are the same
for both of them [see Fig. 3(b)]. Notice, that the analytically
computed input impedance does not agree very well with
the measurements at the higher frequency band and the
resonances are shifted. This error is attributed to the formulas
derived by King that compute the self impedance of a loop
and will be readily explained later in this section. It should
be emphasized that although the analytical calculations
apply image theory, i.e., infinite ground plane, that does not
significantly affect their accuracy because the input impedance
is not strongly influenced by the ground plane dimensions
as other antenna characteristics such as the patterns.

Additionally, the coupling between the two loops was ana-
lytically computed by three different approaches by assuming
that the ground plane is infinite. The radius of the wires was
taken into account only in the computation of the characteristic
impedance in (20). The first approach is based on the
assumption that one of the loops is located at the far-field zone
of the other loop and their mutual impedance was computed
as described in Section III. The second approach uses the
near fields produced by the loops in order to calculate more
accurately the mutual impedance and it is also discussed in
Section III. In both approaches the current distribution of (10)
(which vanishes at the antiresonances of either loop) was
used and the self impedances were calculated by the formulas
derived by King. The third approach computes the mutual
impedance by using the near-field formulation along with
the corrected current distribution of (26) that is valid at all
frequencies. Moreover, the self impedances of the loops were
calculated by referring them to the corrected input current
as presented in Section IV. All the integrations involved in
the calculation of the mutual impedance were carried out
numerically by using a 16-point Gaussian quadrature.

Fig. 4(a) illustrates the results of the first two analytical ap-
proaches and compares them with the FDTD calculations and
measurements. Obviously, the FDTD results exhibit excellent
agreement with measurements. Moreover, the parameter
computed by the analytical far-field method does not agree
very well with the measured data. However, as expected,
the analytical near-field method gives improved accuracy and
compares fairly well with measurements. The discrepancy
between measured and analytically computed coupling is more
profound at the higher end of the band and is due to the shift of
the analytically predicted resonances of the loops (see Fig. 3).
As already stated above, the source of this error will be iden-
tified later this section. Furthermore, the analytical solutions
based on the noncorrected current distribution do not give valid
results at the antiresonances of the loop antennas [observe the
deep nulls in Fig. 4(a)]. On the contrary, when the near-field

(a)

(b)

Fig. 4. S12 of two identical loop antennas. (a) Standard current distribution.
(b) Corrected current distribution.

method is used along with the corrected current distribution it
leads to valid results at all frequencies as it does not vanish
at the antiresonances. The calculations of this method along
with the FDTD results and measurements are demonstrated in
Fig. 5(b). Evidently, the near-field method combined with the
corrected current distribution is the most accurate approach of
the three analytical methods. It should be also pointed out that
the two methods (far-field and near-field methods) that use the
standard current distribution cannot be applied to accurately
compute coupling between two unequal loop antennas. In
such a case, the resonances of the antennas will be different;
thereby, invalid results will be obtained at the antiresonances
of either antenna. Therefore, the results will be greatly dis-
turbed at and near these frequencies yielding poor accuracy at
a substantial part of the bandwidth under examination.

After validating our procedure and establishing the most
accurate way to analytically compute coupling, the geometry
of two different loop antennas, shown in Fig. 5(a), was ana-
lyzed. The parameters were computed by FDTD following
a procedure similar to the previous case. All the simulation
parameters, including cell size and total number of time
steps, were the same as previously. In addition, the mutual
impedance of the two loops was analytically computed by
combining the near field method with the corrected current
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(a)

(b)

Fig. 5. S12 of two loop antennas. (a) Legs 10 mm long. (b) Legs 4 mm long.

distribution. The analytically computed is illustrated in
Fig. 5(a) along with the FDTD results and the measurements.
Obviously, the FDTD computations compare very well with
the measurements. Also, the agreement between the analytical
and measured data is very good in the lower frequency band,
but it deteriorates at the higher band. This can be partially
attributed to the failure to predict accurately the resonances of
each antenna at the higher frequencies. It should be pointed
out that King derived the current distribution of a loop antenna
based on the assumption that the length of its two legs is small
compared to the wavelength. This assumption assures that the
current along the two legs is constant. However, in the geom-
etry analyzed above, the length of the legs of the loop is 1 cm
or at 5 GHz. Therefore, at the frequencies close to 5 GHz,
the length of the legs is comparable to the wavelength. This
fact causes the disagreement exhibited mainly at the higher end
of the band, between the analytical and the measured data.

To verify our interpretation, another geometry was analyzed.
This geometry was exactly the same as the one illustrated in
Fig. 5(a) except that the length of the legs of the loops was
smaller; the legs were 4 mm long (2.5 times smaller than
before). Fig. 5(b) shows the analytically computed param-
eter for the second geometry and compares it with the FDTD
results and measurements. It is evident that the agreement
between the analytical results and the measurements becomes

(a)

(b)

Fig. 6. S12 of two identical inverted-L antennas. (a) Standard current
distribution. (b) Corrected current distribution.

better as the length of the legs of the loops becomes smaller.
Consequently, it is suggested that the analytical procedure
should be used to compute the parameters between two
loops only when the length of the legs of the loops is small
compared to the wavelength.

B. Inverted-L Antennas on Ground Planes

Inverted-L antennas are widely used transmission line anten-
nas. In this section, mutual coupling between two inverted-L’s
is analytically computed. Additionally, the analytical com-
putations are compared with the respective FDTD results
and measurements. A geometry of two identical inverted-L’s
10 cm long placed 1 cm above a finite ground plane is
examined here (see Fig. 6). The distance between them is 10
cm and their wire radius is 0.4 mm.

First, FDTD was used to calculate the parameters of
the two inverted-L’s. The procedure followed to compute the
coupling as well as the simulation parameters were the same
with the ones described in the analysis of the loops. In addition,
the analytical computations were performed for the same three
cases as for the identical loop antennas, namely: a) far-field
approach with standard current distribution and b) and c) near-
field approach for standard and corrected current distributions,
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respectively. The analytical calculations along with the FDTD
results and the measurements are demonstrated in Fig. 6.

VIII. C ONCLUSION

In this paper, the coupling between transmission line type
of antennas, such as loops and inverted-L’s, was analytically
formulated. The analytical formulations were based on differ-
ent definitions of coupling and the use of image theory. The
definition of coupling as derived by Carter is not very useful
as it requires the knowledge of the field radiated by one of the
antennas. However, the definition of coupling by Schelkunoff
and Friis is more versatile as it requires only the knowledge of
the current distributions along the two antennas. Furthermore,
corrected current distributions that exhibit nonzero input cur-
rent at the antiresonances of such antennas were developed
in order to compute accurately the coupling between such
elements at all frequencies. The coupling between two loop or
inverted-L antennas was computed analytically and by FDTD.
The FDTD results always exhibited excellent agreement with
the measurements. Also, the analytical computations compared
fairly well with the FDTD and measured data. Notice, that
these formulations can be easily extended to analytically
formulate the coupling between any type of transmission line
antennas, e.g., inverted-F’s, antennas, etc. By formulating
the coupling between two dipoles, the physics of coupling
was discussed and conclusions for the general behavior of
coupling were drawn. It was shown that the coupling between
two antennas depends on the electrical length of either element.
An interesting observation is that the series type of resonances
of a loop are the antiresonances of the equal length inverted-
L and vice versa. Combining this fact with the discussion on
the physics of coupling (see Section VI) can explain why the
peaks and nulls illustrated in Figs. 4 and 6 alternate frequency
positions. Also, an efficient technique for calculating the two-
port network parameters of a system of two antennas was
developed.
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