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Diffraction of Electromagnetic Plane
Wave by a Rectangular Plate and a
Rectangular Hole in the Conducting Plate

Kohei Hongo and Hirohide Serizawa

Abstract—The problems of diffraction of an electromagnetic
plane wave by a perfectly conducting rectangular plate and E’
its complementary problem—diffraction by a rectangular hole
in an infinite conducting plate—are rigorously solved using the
method of the Kobayashi potential. The mathematical formula-
tion involves dual integral equations derived from the potential
integrals and boundary condition on the plane where a plate x
or hole is located. The weighting functions in the potential
integrals are determined by applying the properties of the We-
ber—Schafheitlin’s integrals and the solution is obtained in the
form of a matrix equation. lllustrative computations are given for
the far diffracted field pattern and the current densities induced
on the plate. The results of the patterns are compared with the
results obtained from physical optics (PO) and the physical theory
of diffraction (PTD). The agreement is fairly good, particularly
with the PTD solutions.
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Fig. 1. Geometry of problem. (a) Perfectly conducting rectangular plate. (b)
Rectangular hole in perfectly conducting plate (plate and hole are 2b).
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I. INTRODUCTION A
HE problem of electromagnetic diffraction by an aperture |
in a perfectly conducting plane of infinite extent has %,, y
2

received considerable attention [1]-[4]. The solution can be

applied to the complementary problem; that is, diffraction

by a perfectly conducting plate using the Babinet's principle N s

when the plate is negligibly thin. Most researchers have used SN

an integral equation for unknown equivalent surface current .

density on the aperture or plate. This integral equation is

reduced to a matrix equation via the method of moments A2 4 «

(MOM)'. . . Fig. 2. Integration region subdivided into many subregions. Gauss Legendre
In this paper, rigorous solutions to the problem of a plangiadrature applied in regions 1-3 and asymptotic approximation of Bessel

wave scattering by a rectangular conducting plate and fegctions applied to integrand in regions 4-6.

complementary problem (diffraction by a rectangular hole in

a perfectly conducting plane) are derived using the method gikte waveguide [13], anV-slit array [14], a circular disk

the Kobayashi potential (KP method) [5], [6]. This method he[§5], [16], etc.

been applied to various kinds of problems such as the potentiairhe KP method resembles the MoM in its spectrum domain,

problems of electrified circular disks [7], [8], the diffractiongyt the formulation is different. The MoM is based on an

of acoustic waves by a circular disk (or disks) [9], and thgtegral equation, whereas the KP method starts from dual

diffraction of acoustic plane wave by a rectangular plate [1Qhtegral equations. The MoM in a space domain has been used

[11]. The KP method has also been used for diffraction @fostly in the diffraction problems of electromagnetic waves.

electromagnetic waves by a thick slit [12], a flanged parallejye can cite the following advantages of the KP method over

the current numerical techniques (mainly over MoM).

1) In contrast to the MoM in a space domain, the KP
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method does not involve singularities of the Green’s
functions, so we can obtain very accurate results.

2) Since each function involved in the integrand of the po-
tential functions satisfies a part of the required boundary
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normal incidence ( #)=0deg., ¢,=0deg., $=0deg ) normal incidence ( 6, =0 deg., ¢, =0 deg., =90 deg. )
10! T T T T T

Fig. 3. Far-field pattern diffracted by a perfectly conducting rectangular plate for normal incitfanee 0°, o = 0°). Plate isk = ka = 5 for (a)—(d).
First subscript ofc denotes diffracted field component and second subscript denotes incident wave polarization.

conditions, the convergence is very rapid. In this respeftinctions). The equations are solved by using the properties
the present method may be regarded as eigenfunctighthe Weber—Schafheitlin discontinuous integrals. At this
expansion of the geometries. The required matrix sigep, we can incorporate the required edge condition into the
in the present case is roughlyi)? x 2(ka)?, where solution. The results include two kinds of arbitrary discrete
a is the linear dimension of the plate akds the wave parameters, so that the general solution is obtained by su-
number. perposing these results. By imposing the remaining boundary
3) As in two-dimensional (2-D) problems, the KP methogonditions on the plate or on the aperture, we have a matrix
may be applied to more complex problems with reme%_guation for the'e>.<pan'sion coeffici_ents. Matrix elements are
configurations. These problems may be formulated §{ven by double infinte integrals as in the method of moments

a manner similar to the eigenfunction expansions i the spectral domain. We apply an algorithm, which is
cylindrical and spherical geometries effective at computing these integrals [11], to compute these

4) For 2-D problems, the solution to a two-slit diffractior'ml,fafmxt ec:em(:tnts. W‘; presentt dr.‘“tm; r;f:al resu(ljts for the Iﬁr
can b used to rdit e coupng benween ne ST PR 0 e Sskbutore o e b
asymptotically [17]. This is also expected in three- . ap . . P 9
: : PTD solutions. Their agreement is fairly good, but the PTD
dimensional (3-D) problems.
. . . results are closer to results presented here.
The disadvantage is that the tractable geometries of this
method are limited to special shapes like rectangular and Il. STATEMENT OF THE PROBLEM

circular plates and their related geometries. A similar situation

Is seen for qther co_nventlor_1al e|ger_1funct|on expansions. %re described in Fig. 1, where the dimension of the plate and
The solution begins by introducing the Fourier sine a : . o
ole is 2» x 2b. Two kinds of incident plane waves are

cosine transforms of the t_angentlal components of the Y?%%rnsidered, which are expressed by
potentials. From the requirement of the boundary conditions ‘ ) ) iy
on the plane exterior to the plate or hole, we obtain the dual E* = (Ezip + E1iy) exp[jk®*(r)] (1a)

integral equations for the transformed functions (or weighting H' = Yy(—E»ig + Erig) exp[jk®*(r)] (1b)

The geometry of the problem and the associated coordinates
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normal incidence( 6, =0 deg., ¢,=0deg., ¢=0deg. ) normal incidence ( §, =0 deg., ¢, =0 deg., ¢=90 deg. )
10' T T T T T

— — — k=2

<
T
!

normal incidence( 6,= 0 deg., ¢,=0deg, ¢=0deg. )
10! . . . T . 10' T . . " T
ka=9 S C e ka=9
_ ba=07 5

(9)

Fig. 3. (Continued) Far-field pattern diffracted by a perfectly conducting rectangular plate for normal incidénce 0°, g = 0°). Plate isx = 9 for
(e)—(h). First subscript of denotes diffracted field component and second subscript denotes incident wave polarization.

where I1l. ANALYTICAL DEVELOPMENT
1 = cos B cos Polz + cos b sin doly, — sin foi. A. Solution of the Diffracted Field
1y = —sin ol + cos doi, (1c) We use the tangential components of the magnetic vector

®'(r) = zsinby cos ¢o + ysinbosingy + zcosbp.  (1d) potentialAZ and A¢ to derive the field diffracted by a perfectly
conducting plate. From the duality of the electromagnetic
We refer to parallel polarization in which the electric fieldields, the complementary problem may be solved using the
of the incident wave is proportional &, while the wave electric vector potentiald’¢ and F¢. With the Fourier sine

proportional to £, is called perpendicular polarization. Inand cosine transforms, these vector potentials are given in a
the above equationgfo, o) are angles of incidence andform

Yo = \/% is an intrinsic admittance of free-space. When th A uYo " ;
planez = 0 is occupied by an infinite conducting plate, a\ F¢ | — fcc ;3) cos a cos B

reflected wave is produced and it is given by n fcs( /3 cos a£ sin 31 + fu(cv, ) sin aé cos B
E" = [(sin ¢l — cos ¢oly ) E1 — (cos b cos ol + fes(e, B) sin a sin Bn] exp[F((a, /3)75(:,] dodf
+ cos By sin ¢oiy + sin Ooi. ) Es] exp[jhkP”] (2a) . z0 (3a)
H" = Yy[(cos 8y cos ¢oir + cos bp sin ¢oly + sin foi.) Fy <?Z ) <N5/(J )/ / [gee(ct, B) cos af cos B
o (sin ol = cos o, ) Ea] explike’] (20) ! + ges(v, ) cos a€ sin B + gsc(av, B) sin o€ cos fn
where + ges (v, 3) sin o€ sin 3] exp[FC (v, §) 2, dev dB
z0 (3b)

®"(r) = zsinfby cos Po + ysinbpsin pg — zcosbfy  (2C)
where the intrinsic admittanck, is included withAZ and A¢
is the phase of the reflected wave. for convenience. The tangential components of the magnetic
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oblique incidence( 6, =30deg, ¢,=0deg, #=0deg ) oblique incidence ( §,=30deg., ¢, =0deg., ¢=0deg. )

10! T T T T T 10' T T T T T
= — — — nk=2 =
ka=s = ; ka=9 e
ba=071 bla=0.7 oo
10° m—— 9 0

Fig. 4. Far-field pattern diffracted by a perfectly conducting rectangular plate for oblique incidénce 30°,¢q = 0°). Observation point lies in
¢ = 0° plane. Plate isc = ka = 5 for (a) and (b) andk = 9 for (c) and (d). First subscript o denotes diffracted field component and second
subscript denotes incident wave polarization.

and electric vector potentials are symmetric and antisymmetéit; behave like

with respect toz, respectively. This is because the tangential ) o1 ,o )
components of the electric field and thecomponent of the Hy ~ (0 —27)72(0° —y)
magnetic fields must be continuous at the plane 0. The H, ~ (a* - 332)%((,2 — )"
symbols in the above equation are defined by

NJ=

(4¢)

(SIS

=z y near the edge of the plate.
ClayB) =2 +p2p2—r2, €== n== 2) Hole: The tangential components of the diffracted elec-

» a b “ b (3c) tric field must vanish on the platgz| > a, |y| > b, z = 0);
Za=—, P=-, q=—, k=ka. that is
a b a .
The integrands are the elementary solutions to the 3-D wave gl - 198y _ 0. El_ _loFy 0 (5a)
equation in a Cartesian coordinate system. The functions T Oz ’ Y € Oz
f(a, ) and g(«, ) are unknown and are determined fromind the tangential components of the total magnetic field must
the required boundary conditions described below. be continuous on the apertufer| < a, |y| < b, z = 0)
1) Conducting Plate:The tangential components of the ) ) )
diffracted magnetic field given by H.+H;+Ht =H!, H,+H,+H" =HJ". (5h)
s 1 8A§f . loAl 4 The edge condition corresponding to (4c) is given by
T 0z Voo 0z (4a) 1

B, ~ (a® —2?) 75 (B —3P)8

1 1 (50)
By ~ (a? — 20 — ) 7E

must be continuous on the extension of the plédte >
a, lyl > b, 2 =0) and

i s _ i s _ By imposing the conditions (4a) and (4b) for the plate and

ExtEe =0 E,+E5,=0 (4b) (5a) and (5b) for the hole on the vector potentials of (3), we

on the plate(|z| < a, |y| < b,z = 0). In addition to the obtain the dual integral equations for the weighting functions

boundary condition, we seek the solution in whigh, and f(«,3) and g(«, 3).

7



HONGO AND SERIZAWA: DIFFRACTION OF ELECTROMAGNETIC PLANE WAVE

oblique incidence ( 6, =30 deg, ¢, =30 deg, ¢=130deg. )
10' T T T T T
ka=5
bla=0.7
A=1000

oblique incidence ( 6, =30 deg, ¢, =30 deg, $=30deg )
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Fig. 5. Far-field pattern diffracted by a perfectly conducting rectangular plate for oblique incitenee30°, ¢o = 30°). Plate isx = ka = 5 for (a)—(d).
First subscript ofc denotes diffracted field component and second subscript denotes incident wave polarization.

3) Matrix Equation: The solution to the equation associ{5c) by selecting appropriate relations among the orgers
ated with (4a) and (5a) can be obtained using the propertasd index\. The unknown functiong(«, 3) andg(«, 3) are

of the Weber—Schafheitlin’s integrals defined by

W (v, A5 )
< J(u€)J,
0
B w3 (p+v+1-=N)]
2 D(u+ DU[3(—p+v +1+ )]
pF+rv+l—X p—v+1-2Xx
2 ’ 2

><F|: ,u—i—l;uﬂ
(0<u<1)
Pl3(p+v+1-X)]
2)‘u”+1_)‘1_‘(1/ + 1)1_‘[%(” —v4+1+ )\)]
1-X — 1—X 1
U

2 ’ 2
(u>1)

X F{
(6)

where J,,(z) is the Bessel function of ordgr and argument

z, F(a,b,c;x) is the hypergeometric function, aldx) is

the Gamma function. The derivation of the above relation is
discussed in [18]. It is known th&¥ (ze, 1, A, u) = 0 for w > 1
when the relatiop.—v+A+1 = —2n, (n = 0,1, 2, ---) holds.

At this step, we incorporate the edge conditions of (4¢) and

Ad
Fd

(

)

DR OO/OO/OO 1
(COPR N
X = {Jama () €08 € [AG) I (9) cos

+ B Jani1(8) sin Bn)] + Jama(e)
X sin af [C’(“”)/JQ,,,(ﬁ) cos

mn

1 ,
X 3 {Jam () cos a& [Ag;l{%Jgn_,_l (B) cos fn
+ Br(fljr)LJQn-l—Q(ﬁ) sin /377] + J27n+1 (04)
x sin o [C8Y) Jon41(83) cos B

determined using these properties. The resulting expressions
are given by

(

(7a)

+ D) Jonir (B) sin ) } exp[F¢(a, B)2q] dadp
w) =) 2 [
Fg) =\ e ZE/ / Y

) Tarva(B) sin By] } exp[FC(r, f)za] dav dp

(7b)
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oblique incidence 6, = 30 deg., ¢, =30 deg., ¢=30deg. ) oblique incidence ( 6, = 30 deg., 4, =30 deg, #=30deg )
10! T 1 T T T 10' T T T T T
ka =9 - == k2 ka =9 - - = =2
ba=07 I 5
10°F E
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10" 3
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Fig. 5. (Continued) Far-field pattern diffracted by a perfectly conducting rectangular plate for oblique incidénce 30°, ¢ = 30°). Plate isk = 9
for (e)—(h). First subscript o denotes diffracted field component and second subscript denotes incident wave polarization.

where the relations between the trigonometric and Bessel Z Z
functions

m=0n=0
cosx = \/?J%(x), sing = \/?J% (x) x [AE) JQn([j) sin /377 — BY) Ton1(B) cos ]
are used when we impose the boundary and edge conditions on + J,,,42(cx) cos ad [— O 1y, () sin B
the expressions in (3). We do not give the explicit expressions D(az) J2n+1(/3) cos An] } da dB
of f(a,) and g(a,3) as these are readily obtained by m 2)
comparing (7) and (3). / / (¢®w? = B?) _ﬁ {JQm cos of
Imposing the boundary conditions on the conducting plate — On 0 /
so that the tangential components of the total electric field [A(y) Jani1(B) COS/MJFB(y) J2n+2(/3) sin S]]

vanish we have the foIIowing relations: e oW "
+ J27n+1( )Sln Oég[ n{nJ2n+l(/3) COs /377

Z Z/ / Ii —o + DY) Japy2(B) sin Bn] } decdp

/3 { Jom1 (@) sin o

"= 0 =0 = —ijPy expljk(x sin by cos o + y sin Og sin ¢o)].
X — {ng_,_l(a) cos o [Aﬁ,’;,{ Jan(f3) cos Bn (8b)
+ B,(,f%Jszrl(ﬁ) sin 8] + Jamp2(a) sin o Similar equations are derived for the rectangular hole. When
[ng Jon(3) cos B + Dr(:%,]Qn_i_l([j) sinﬁn] } docdp the concept of projection is applied, the Jacobi’'s polynomials
defined by [20]
(w) n
+P Z Z/ / {Jan Slll O‘S [An{nj2n+l(/3) Gn(Oé,’}/,.’IZ') _ MQZI_W(I _ :L,)'y—ozd_
m=0n=0 F(’}/ + 7’L) dz™
x sin Bn — B,(,f%.]gn_i_g(ﬁ) cos 1] + Jam1(c) cos af x {z" 7711 = z)* T}

X [~CW) Japy1(B) sin By + DY) Jonsa(B) cos fn) b dadB  with o = m+ 2 andy = m+1 are used as the expansion and
= —j P, exp[jk(xsin g cos ¢o + y sin O sin ¢o)] (8a) testing functions. These polynomials have the orthogonalities
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k=5, b'a=0.7, nk=5, A=1000, §,=0deg,, 4,=Odeg. ka=5, b/a=0.7, nk=5, A=1000, §,=0deg., ¢,=Odeg.
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Fig. 6. Distribution of amplitude of current densitids and .J, induced on perfectly conducting rectangular plate when plane wave is normally incident.
Plate isk = ka = 5 for (a)—(d). Superscripts andh of J denote perpendicular and parallel polarizations of incident wave, respectively.

Ka(2m+1,2n,2s4+1,2t+1) pGa(2m+1,2n+42,25+1,2¢+1)
qGp(2m+1,2n,2s+2,2t+2) Kp(2m+1,2n+2,2s+ 2,2t + 2)
y AB T [—jA(rsin o cos o, 25 + 1)A(gr sin b sin ¢o, 2t + 1) P, (9a)
DY | = J?A(rsin by cos ¢o, 2s + 2)A(gr sin G sin ¢g, 2t + 2) P,
Ks@2m+1,2n+1,2s+1,2t+2) —pGa(2m+1,2n+1,25+1,2t+2)
—qGp(2m+1,2n+1,2s+2,2t+1) Kp(2m+1,2n+1,25+2,2t+1)
o B,(,’f,)L _ [ A(rsin g cos ¢o, 25 + 1)A(gr sin Gy sin ¢g, 2t + 2) P, | (9b)
C’,(,?,), | 7 [*A(ksin g cos po, 2s + 2)A(gr sin O sin ¢g, 2t + 1) P, |
[ Ki(2m+2,2n,25+2,2t+1)  —pGa(2m,2n+ 2,25 +2,2t + 1)
|—qGB(2m +2,2n,25 + 1,2t +2)  Kp(2m,2n +2,25+ 1,2t +2)
y (o) _ [ A(ksin b cos ¢, 25 + 2)A(gr sin Oy sin ¢, 2t + 1) P, | (90)
i (w) | _qQA(/«a sin B cos ¢, 25 + 1) A(gr sin 0 sin ¢o, 2t + 2) P, |
[Ka(2m+2,2n+ 1,25 +2,2t+2) pGa(2m,2n+ 1,25+ 2,2t + 2)
19GB(Zm +2,2n+ 1,254+ 1,2t +1) Kp(2m,2n+1,2s+ 1,2t +1)
D) T [ jA(ksin B cos ¢o, 25 + 2)Agr sin O sin ¢o, 2t + 2) P, (9d)
Aﬁf{; | 7 [—i* Ak sin by cos do, 25 + 1)A(grsin by sin o, 2t + 1) P, |’
§=0,1,2,---, t=0,1,2,--

X
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ka=9, b/a=0.7, k=9, 4=1000, 6,~0deg,, ¢,~0deg. ka=9, b/a~0.7, k=9, A=1000, 6,=0deg., ¢=0deg.
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Fig. 6. (Continued) Distribution of amplitude of current densitigls and.J,, induced on perfectly conducting rectangular plate when plane wave is normally
incident. Plate isc = 9 for (e)—(h). Superscripts andk of J denote perpendicular and parallel polarizations of incident wave, respectively.

/OO q21€2 _ [32
0 a2 +p2/32 — K2

Ton(@) T (0) o (B)T,(3)

and expansion formula of the Bessel function given by Kp(m,n, ) = /
0
X

deedp  (100)

(n+1)C(r+1)

n=0( ) o /32
J2n+z/+% & 3 2 (=) o0
X 7@% Gn<l/+§,l/+1,§ ) GA(m,n,u,l/):/ / (0624-])2/32—%2)_%(],”(04)
0 0
This is derived by integrating the product of the Bessel func- Jn(B)J,(5)
tion and the Jacobi’s polynomials. According to the procedure Jula)——"———=da dp (10d)

similar to the MoM, we have the matrix equations for the oo oo
expansion coefficients, shown at the bottom of the previoug , (m,n, p,v) = / / (o +p?p3% — K2)—%
page, where o Jo

. (a)d,(a
p Eykcosfycos gy — Bk sin ¢ X M,Jn(ﬁ).],,(ﬁ) dad3 (10e)
¥ | —Ezksingg — Eyrkcosbycos¢o’ o
. (10a) J(x)
P Eskcosbysin ¢g + E1k cos ¢g Plate Az, v) = prat (10f)
Y7 | Bk cos gg — E1k cos g sin ¢ Hole
o oo y y Thus, the problem is reduced to the matrix equation for
K a(m,n, pu,v) = / / . the expansion coefficients. Once the expansion coefficients are
o Jo ad+p?p?—r? determined, electromagnetic fields may be derived from (7).
N T (@)J (@) T (). (53) The matrix size is2(nk)? x 2(nk)?, wherenk — 1 is the

a? I} dedpj(100) maximum values of indexes:, n, s, andt. The computation
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ka=5, b/a=0.7, nk=5, A=1000, §,=0deg., #,=0deg. ka=5, b/a-0.7, nk=5, A=1000, 6,=0deg., ¢,=Odeg.
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@ (b)
ka=9, b’a=0.7, nk=9, A=1000, §,=0deg., 4,=0deg. ka=9, b/a=0.7, k=9, A=1000, 8,=0deg., #,=0deg.
B B
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N Ny
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2 2 s 8
~ -
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Fig. 7. Distribution of phase of current densitids and .J, induced on perfectly conducting rectangular plate when plane wave is normally incident.
Plate isk = ka = 5 for (a) and (b) andc = 9 for (c) and (d). Superscripte and h of J denote perpendicular and parallel polarizations of incident
wave, respectively. Only copolarized components are shown.

of the matrix element# 4, K, G4, andGp is noteasy since (J, \ [2Y, 1—17? o= ymen
they are double infinite integrals that converge rather slowly.E, 1 1-¢2 2_:0 2_:0(— )

The computation of these integrals is discussed in [11].
p g [11] v AW U2n(77) +B(y) U2n+1(77) T (5)
mn 2 mn 2m
n+1 2n+2
. L Usn, o Usap,
B. Field Distribution +[C<y) 2n (1) (v) M}Tgmﬂ(ﬁ)}

mnao, | 1 + Drnn
The current density induced on the perfectly conducting 2n+1 2n+2 11b

rectangular plate and the electric field distributiBnon the whereT}, (z) andU,(z) are Chebyshev polynomials of(the Pirst

rectangular aperture are obtained from the vector potentialsy second kinds respectively. From the above equatibns
given in (7). The integration over the variablesand 3 can gnqE are proportional tq(1 — 52)5(1 _ 772)—5 and.J ahd
Yy Y

be performed since the integrals are special forms of t@e are proportional tq1 _52)_%(1 _772)%_ These variables

Weber—Schatheitlin's discontinuous integrals [18]-[20]; thgs ¢onsistent with the required edge conditions for the field
result is given by

components.
J., 2Y,\ V1 -2 XA &= ot C. Far Field
<E, ) - <_1 ) 2 Z Z(_l) " Vector potentials of (7) are transformed into the form
¥ 1- n m=0n=0 o o
T T U m I :/ / «, 3
LA Tan) + B Tana ()] 2] B

U. . . a2 /32
O Tan() + D L)) T2 | o l—ms T b R | dedB

(11a) (12a)
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ka=5, b'a=0.7, nk=5, A=1000, §,=30deg., §,=30deg. ka=5, b/a=0.7, nk=5, A=1000, §,=30deg., §,=30deg.
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Fig. 8. Distribution of amplitude of current densitids and ./, induced on perfectly conducting rectangular plate when plane wave is obliquely incident
(8o = 30°, 60 = 30°). Plate isk = ka = 5. Superscripte andh of J denote perpendicular and parallel polarizations of incident wave, respectively.

Using the transformation of the variables potentials become
Ad You 7rqa exp(— g
(m) - (Z)s = By
Y — ksin cos b, [—zksin sin 6 i "
a Y b Y (12b) N Jama1 (ka sin 6 cos ¢) [ 2) J (b sin 0 sin )
T =rsinfcos¢, y=rsinfsing, z=rcost kasinf cos ¢ min/2n(

+ B Jopy1(kbsin 6 sin ¢)]

and applying the method of the steepest descent, we have , J2m+2(kasin 6 cos ¢) [T, (Kbsin fsin ¢)
kasinfcos ¢ mn

— D) Iy 11 (kbsin @ sin ¢)

—

} (13a)
I =gr? /C g Q(v, 8) exp{—jkr[sin @ sin v cos(¢ — 6)

Ad You 7rqa exp(— g
+ cos 6 cos |} siny cos vy dy db <F§l> = <—e> ZZ
= j2rqka®Q(kasin f cos ¢, kbsin § sin ¢) Tons1 (kb sin Osin ¢) 4 AD o cost)
—ikr i in
% COS QM (12¢) kbsin @sin ¢ min 2m\ A SILY €O
' + §CY) Jopi1 (kasin 6 cos b)]
Jony2(kbsin 6sin @) (
- iBSY) Jom (kasin 6
where Q(v,6) = Q(a, ), the contoursCy (’y plane) and + kbsin fsin ¢ (183t J2m (kasin 6 cos ¢)

C, (5-plane) are given by’y : [—3m — joo, 37 + joo| and

_ DWW ;
C5 : [0,2n]. As a result, the far-field expressions of the vector Dy Jome1 (kasin cos )] } (13b)
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ka=5, b/a=0.7, nk=5, A=1000, 6,=0deg., ¢ =0deg. ka=5, b/a=0.7, nk=5, A=1000, ,=0deg., ¢,=0deg.
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Fig. 9. Distribution of modulus of current density|.J.|2 4 | J,|? induced on perfectly conducting rectangular plate when plane wave is normally and

obliquely incident. Plate isc = ka = 5. (a) and (b) Normal incidencédy = 0°,¢9 = 0°). (c) and (d) Oblique incidencéo = 30°,69 = 30°).
Superscripts: and k of J denote perpendicular and parallel polarizations of incident wave, respectively.

In the far region, the relation between the electric field and is divided into three subregions. The integrations of the vari-

the vector potential becomes ables including infinity are performed analytically with asymp-
Ep ~ —jwAg = —jwcos (A, cos ¢ + A, sin ¢) totic approximations of the integrands. Hence, double infinite
L k integrals are transformed into the finite double and single
Ey ~ —j;Fqs = j;(Fa} sin ¢ — I cos ¢) integrals plus analytical expressions. The choice ofAhalue
By ~ —juw(—Ay siné + A, cos ) (14) depends on the maximum orden/: of the Bessel functions
¢ ¥ Y included in the integrands of the matrix elements. In addition,
By~ Jé cos O(F, cos ¢ + Fysin ). the variation of A serves partly to verify the validity of the

computation since the results of the matrix elements should

These fields satisfy the radiation condition. not depend on the choice of (details are discussed in [11]).

IV. COMPUTATION AND DISCUSSION B. Radiation Pattern

A. Computations of the Matrix Elements The radiation pattern is computed using (13) and (14)
A first step in obtaining numerical results of physicahccording to the following procedure. First, the matrix el-
quantities is to compute the matrix elements defined in (1@mentsK 4 g(m,n,s,t) and G4 g(m,n,s,t) are calculated
These are double infinite integrals that converge rather slowfgr various values ofn, n, s and¢ up tonk — 1 with the
The method of computations in this paper is summarized method of Section IV-A. The matrix size Hnk)? x 2(nk)?.
follows. The full range of integration is divided into severaDnce the numerical results for the expansion coefficients are
subregions consisting of annular sectors with different raddptained, the radiation patterns are computed from (13) and
as shown in Fig. 2. The numerical integration of these annuld4). The numerical results of the far-field pattern diffracted
sectors is carried out using the Gauss Legendre quadratoyea perfectly conducting plate for normal incidence are shown
scheme. The region exterior to the maximum sector with radiirsFig. 3. The plate size i&a = 5 for (a)—(d) andka = 9 for
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ka=5, b'a=0.7, nk=5, A=1000, §=0deg., ¢ =0deg. ka=5, b'a=0.7, nk=5, A=1000, 6,=0deg., ¢,=Odeg.
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Fig. 10. Enlarged portion of modulus of current densities around vertex.

(e)—(h). The values of = b/a are fixed to 0.7 in the presentthe sidelobes. A similar trend is seen for oblique incidence
computations. The ordinate denotes the power pattern or(fp = 30°, ¢o = 0°), as shown in Fig. 4. The plate sizes are
differential scattering cross section. The first subscriptrof ka = 5 and ke = 9 and the pattern is observed in the cut-
represents the component of the diffracted field, while th@ne¢ = 0°. Since the plane of incidence and observation
second subscript refers to the polarization of the incident waw@®int lie in thexz-plane, the PO and PTD patterns are for a 2-
Copolarized patternsgs and o4, are computed inp = 0° D strip. Fig. 5 shows the patterns for oblique incidei¢e=
plane and cross polarized pattems, and o are computed 30°,¢o = 30°)when the cut plane is changed o= 30°.

in ¢ = 90° plane. The maximum indext is varied to see the Fig. 5(@)—=(d) is forka = 5 and Fig. 5(e)—(h) is foka = 9;
convergence of the results. As shown in Fig. 3, the resulfi results converge fork > 3 andnk > 5, respectively. The
converge with relatively small values ofk, saynk — 3 rate of the convergence is roughly the same as that with the
for ka = 5 andnk = 5 for ka = 9. Roughly speaking, normal incidence. Since the cross polarized components of the
solutions converge fonk ~ ka + a, wherea is a small PO solution are zero, they are not shown in the figure. In this

integer that depends on the required precision. This is Iikefllgure' a comparison is only made with the PO.

due to the fact that each summand of the expressions of theCurrent Densities

fields satisfies a part of the required boundary condition as|, this computation, we discuss the current densities
well as the edge condition. As mentioned in Section IV-A, th@duced on the plate. A similar result is expected for the
pattern should be independent.df value. We computed the gperture field distribution. Fig. 6 shows the distribution of
patterns for various parameters fdr= 400 and A = 1000.  current densities/, and J,,, when the plane wave is normally
Both results agree completely, but are not shown here to sayéident on the plate. Intrinsic impedangg is multiplied by
space. To verify the validity of the present computation, we current densities since the amplitude of the electric field
show the results produced by the physical optics (PO) aoflthe incident wave is assumed to be unified. Fig. 6(a)—(d) is
physical theory of diffraction (PTD) [21] in these figures. Théor ka = 5 and Fig. 6(e)—(h) is foka = 9. The larger values
PTD agrees with the results of the present method evendhnk and A are chosen to obtain more precise results. As
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shown in the figure/,, behaves likg1—¢2)z(1—7?)~2 and  [6]
J, behaves like(1 — ¢2)~2(1 — #?)z. The cross-polarized -
components of the current densitig$ and J; are zero for

the PO current approximation, but these are actually producdd
and undulate up and down around the PO currents as shown in
Fig. 6(a), (d), (e), and (h). The amplitude of tﬂil(j: undulation  [g]
in the n direction [Fig. 6(d) and (h)] is larger than that &f

in the ¢ direction [Fig. 6(a) and (e)]. This is considered to btﬁo
due to the nearby resonance in thalirection. Fig. 7 shows
the corresponding phase distributions (only the copolarizét!
components are shown). The cross-polarized components
have rather flat phase distributions in the main portions &f2]
the plate and phase jumps along some lines. In addition, they
show a complicated distribution near the vertex. We omittggh)
these distributions since the whole profiles are complicated.
Fig. 8 shows the current density distributions of obliqu
incidence forka = 5. In this case, there does not seem to

be a distinction between each component. [15]
The modulus of the current density = \/|J;|? + |Jy|?
is also interesting. Fig. 9 shows the distributions .bffor [16]

normal and oblique incidences. An enlarged figure around the
vertex is shown in Fig. 10/ is singular along the edge as(17]
expected, however, it remains finite at the vertex regardless of
the polarization and incident angle of the incident wave. This j

surprising, but we think it is reasonable since each component
J. and J, becomes the product of zero and infinity at thél®]
vertex. Actually, it is not difficult to show thaf, andJ, of |,
(11) approach a finite value in the limig| — 1 and|n| — 1
along the ling(1—|¢|) = g(1—|n|) with an arbitrary constant. ~ [21]

V. CONCLUSION

We derived the exact solution of the field diffracted by a
perfectly conducting rectangular plate and its complemente
problem, diffraction by a rectangular hole in a perfectl
conducting plate, using the method of the Kobayashi potenti
We presented numerical results of the far diffracted fie
pattern and current distribution on the plate (or aperture fie
distribution). This method may be regarded as an eigenfuncti
expansion of the configuration and the convergence was v
rapid. The present method promises applicability to a wich
class of problems such as radiation from a flanged rectang
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