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Diffraction of Electromagnetic Plane
Wave by a Rectangular Plate and a

Rectangular Hole in the Conducting Plate
Kohei Hongo and Hirohide Serizawa

Abstract—The problems of diffraction of an electromagnetic
plane wave by a perfectly conducting rectangular plate and
its complementary problem—diffraction by a rectangular hole
in an infinite conducting plate—are rigorously solved using the
method of the Kobayashi potential. The mathematical formula-
tion involves dual integral equations derived from the potential
integrals and boundary condition on the plane where a plate
or hole is located. The weighting functions in the potential
integrals are determined by applying the properties of the We-
ber–Schafheitlin’s integrals and the solution is obtained in the
form of a matrix equation. Illustrative computations are given for
the far diffracted field pattern and the current densities induced
on the plate. The results of the patterns are compared with the
results obtained from physical optics (PO) and the physical theory
of diffraction (PTD). The agreement is fairly good, particularly
with the PTD solutions.

Index Terms—Apertures, electromagnetic diffraction, plates.

I. INTRODUCTION

T HE problem of electromagnetic diffraction by an aperture
in a perfectly conducting plane of infinite extent has

received considerable attention [1]–[4]. The solution can be
applied to the complementary problem; that is, diffraction
by a perfectly conducting plate using the Babinet’s principle
when the plate is negligibly thin. Most researchers have used
an integral equation for unknown equivalent surface current
density on the aperture or plate. This integral equation is
reduced to a matrix equation via the method of moments
(MoM).

In this paper, rigorous solutions to the problem of a plane
wave scattering by a rectangular conducting plate and its
complementary problem (diffraction by a rectangular hole in
a perfectly conducting plane) are derived using the method of
the Kobayashi potential (KP method) [5], [6]. This method has
been applied to various kinds of problems such as the potential
problems of electrified circular disks [7], [8], the diffraction
of acoustic waves by a circular disk (or disks) [9], and the
diffraction of acoustic plane wave by a rectangular plate [10],
[11]. The KP method has also been used for diffraction of
electromagnetic waves by a thick slit [12], a flanged parallel-
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(a) (b)

Fig. 1. Geometry of problem. (a) Perfectly conducting rectangular plate. (b)
Rectangular hole in perfectly conducting plate (plate and hole are 2a� 2b).

Fig. 2. Integration region subdivided into many subregions. Gauss Legendre
quadrature applied in regions 1–3 and asymptotic approximation of Bessel
functions applied to integrand in regions 4–6.

plate waveguide [13], an -slit array [14], a circular disk
[15], [16], etc.

The KP method resembles the MoM in its spectrum domain,
but the formulation is different. The MoM is based on an
integral equation, whereas the KP method starts from dual
integral equations. The MoM in a space domain has been used
mostly in the diffraction problems of electromagnetic waves.
We can cite the following advantages of the KP method over
the current numerical techniques (mainly over MoM).

1) In contrast to the MoM in a space domain, the KP
method does not involve singularities of the Green’s
functions, so we can obtain very accurate results.

2) Since each function involved in the integrand of the po-
tential functions satisfies a part of the required boundary
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(a) (b)

(c) (d)

Fig. 3. Far-field pattern diffracted by a perfectly conducting rectangular plate for normal incidence(�0 = 0�; �0 = 0�). Plate is� = ka = 5 for (a)–(d).
First subscript of� denotes diffracted field component and second subscript denotes incident wave polarization.

conditions, the convergence is very rapid. In this respect,
the present method may be regarded as eigenfunction
expansion of the geometries. The required matrix size
in the present case is roughly 2 2 , where

is the linear dimension of the plate andis the wave
number.

3) As in two-dimensional (2-D) problems, the KP method
may be applied to more complex problems with related
configurations. These problems may be formulated in
a manner similar to the eigenfunction expansions in
cylindrical and spherical geometries.

4) For 2-D problems, the solution to a two-slit diffraction
can be used to predict the coupling between the slits
asymptotically [17]. This is also expected in three-
dimensional (3-D) problems.

The disadvantage is that the tractable geometries of this
method are limited to special shapes like rectangular and
circular plates and their related geometries. A similar situation
is seen for other conventional eigenfunction expansions.

The solution begins by introducing the Fourier sine and
cosine transforms of the tangential components of the vector
potentials. From the requirement of the boundary conditions
on the plane exterior to the plate or hole, we obtain the dual
integral equations for the transformed functions (or weighting

functions). The equations are solved by using the properties
of the Weber–Schafheitlin discontinuous integrals. At this
step, we can incorporate the required edge condition into the
solution. The results include two kinds of arbitrary discrete
parameters, so that the general solution is obtained by su-
perposing these results. By imposing the remaining boundary
conditions on the plate or on the aperture, we have a matrix
equation for the expansion coefficients. Matrix elements are
given by double infinte integrals as in the method of moments
in the spectral domain. We apply an algorithm, which is
effective at computing these integrals [11], to compute these
matrix elements. We present numerical results for the far
diffracted pattern and current distributions, and compare the
results of the far-field patterns with the corresponding PO and
PTD solutions. Their agreement is fairly good, but the PTD
results are closer to results presented here.

II. STATEMENT OF THE PROBLEM

The geometry of the problem and the associated coordinates
are described in Fig. 1, where the dimension of the plate and
hole is 2 2 . Two kinds of incident plane waves are
considered, which are expressed by

(1a)

(1b)
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(e) (f)

(g) (h)

Fig. 3. (Continued.) Far-field pattern diffracted by a perfectly conducting rectangular plate for normal incidence(�0 = 0�; �0 = 0�). Plate is� = 9 for
(e)–(h). First subscript of� denotes diffracted field component and second subscript denotes incident wave polarization.

where

(1c)

(1d)

We refer to parallel polarization in which the electric field
of the incident wave is proportional to , while the wave
proportional to is called perpendicular polarization. In
the above equations, are angles of incidence and

is an intrinsic admittance of free-space. When the

plane is occupied by an infinite conducting plate, a
reflected wave is produced and it is given by

(2a)

(2b)

where

(2c)

is the phase of the reflected wave.

III. A NALYTICAL DEVELOPMENT

A. Solution of the Diffracted Field

We use the tangential components of the magnetic vector
potential and to derive the field diffracted by a perfectly
conducting plate. From the duality of the electromagnetic
fields, the complementary problem may be solved using the
electric vector potentials and . With the Fourier sine
and cosine transforms, these vector potentials are given in a
form

(3a)

(3b)

where the intrinsic admittance is included with and
for convenience. The tangential components of the magnetic
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(a) (b)

(c) (d)

Fig. 4. Far-field pattern diffracted by a perfectly conducting rectangular plate for oblique incidence(�0 = 30�; �0 = 0�). Observation point lies in
� = 0� plane. Plate is� = ka = 5 for (a) and (b) and� = 9 for (c) and (d). First subscript of� denotes diffracted field component and second
subscript denotes incident wave polarization.

and electric vector potentials are symmetric and antisymmetric
with respect to , respectively. This is because the tangential
components of the electric field and thecomponent of the
magnetic fields must be continuous at the plane . The
symbols in the above equation are defined by

(3c)

The integrands are the elementary solutions to the 3-D wave
equation in a Cartesian coordinate system. The functions

and are unknown and are determined from
the required boundary conditions described below.

1) Conducting Plate:The tangential components of the
diffracted magnetic field given by

(4a)

must be continuous on the extension of the plate
and

(4b)

on the plate . In addition to the
boundary condition, we seek the solution in which and

behave like

(4c)

near the edge of the plate.
2) Hole: The tangential components of the diffracted elec-

tric field must vanish on the plate ;
that is

(5a)

and the tangential components of the total magnetic field must
be continuous on the aperture

(5b)

The edge condition corresponding to (4c) is given by

(5c)

By imposing the conditions (4a) and (4b) for the plate and
(5a) and (5b) for the hole on the vector potentials of (3), we
obtain the dual integral equations for the weighting functions

and .
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(a) (b)

(c) (d)

Fig. 5. Far-field pattern diffracted by a perfectly conducting rectangular plate for oblique incidence(�0 = 30�; �0 = 30�). Plate is� = ka = 5 for (a)–(d).
First subscript of� denotes diffracted field component and second subscript denotes incident wave polarization.

3) Matrix Equation: The solution to the equation associ-
ated with (4a) and (5a) can be obtained using the properties
of the Weber–Schafheitlin’s integrals defined by

(6)

where is the Bessel function of order and argument
, is the hypergeometric function, and is

the Gamma function. The derivation of the above relation is
discussed in [18]. It is known that for
when the relation , holds.
At this step, we incorporate the edge conditions of (4c) and

(5c) by selecting appropriate relations among the orders
and index . The unknown functions and are
determined using these properties. The resulting expressions
are given by

(7a)

(7b)
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(e) (f)

(g) (h)

Fig. 5. (Continued.) Far-field pattern diffracted by a perfectly conducting rectangular plate for oblique incidence(�0 = 30�; �0 = 30�). Plate is� = 9
for (e)–(h). First subscript of� denotes diffracted field component and second subscript denotes incident wave polarization.

where the relations between the trigonometric and Bessel
functions

are used when we impose the boundary and edge conditions on
the expressions in (3). We do not give the explicit expressions
of and as these are readily obtained by
comparing (7) and (3).

Imposing the boundary conditions on the conducting plate
so that the tangential components of the total electric field
vanish, we have the following relations:

(8a)

(8b)

Similar equations are derived for the rectangular hole. When
the concept of projection is applied, the Jacobi’s polynomials
defined by [20]

with and are used as the expansion and
testing functions. These polynomials have the orthogonalities
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(a) (b)

(c) (d)

Fig. 6. Distribution of amplitude of current densitiesJx andJy induced on perfectly conducting rectangular plate when plane wave is normally incident.
Plate is� = ka = 5 for (a)–(d). Superscriptse andh of J denote perpendicular and parallel polarizations of incident wave, respectively.

(9a)

(9b)

(9c)

(9d)
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(e) (f)

(g) (h)

Fig. 6. (Continued.) Distribution of amplitude of current densitiesJx andJy induced on perfectly conducting rectangular plate when plane wave is normally
incident. Plate is� = 9 for (e)–(h). Superscriptse andh of J denote perpendicular and parallel polarizations of incident wave, respectively.

and expansion formula of the Bessel function given by

This is derived by integrating the product of the Bessel func-
tion and the Jacobi’s polynomials. According to the procedure
similar to the MoM, we have the matrix equations for the
expansion coefficients, shown at the bottom of the previous
page, where

Plate
Hole

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

Thus, the problem is reduced to the matrix equation for
the expansion coefficients. Once the expansion coefficients are
determined, electromagnetic fields may be derived from (7).
The matrix size is , where is the
maximum values of indexes , , , and . The computation
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(a) (b)

(c) (d)

Fig. 7. Distribution of phase of current densitiesJx and Jy induced on perfectly conducting rectangular plate when plane wave is normally incident.
Plate is� = ka = 5 for (a) and (b) and� = 9 for (c) and (d). Superscriptse and h of J denote perpendicular and parallel polarizations of incident
wave, respectively. Only copolarized components are shown.

of the matrix elements , , , and is not easy since
they are double infinite integrals that converge rather slowly.
The computation of these integrals is discussed in [11].

B. Field Distribution

The current density induced on the perfectly conducting
rectangular plate and the electric field distributionon the
rectangular aperture are obtained from the vector potentials
given in (7). The integration over the variablesand can
be performed since the integrals are special forms of the
Weber–Schafheitlin’s discontinuous integrals [18]–[20]; the
result is given by

(11a)

(11b)
where and are Chebyshev polynomials of the first
and second kinds, respectively. From the above equations,
and are proportional to and and

are proportional to . These variables
are consistent with the required edge conditions for the field
components.

C. Far Field
Vector potentials of (7) are transformed into the form

(12a)
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(a) (b)

(c) (d)

Fig. 8. Distribution of amplitude of current densitiesJx andJy induced on perfectly conducting rectangular plate when plane wave is obliquely incident
(�0 = 30�; �0 = 30�). Plate is� = ka = 5. Superscriptse andh of J denote perpendicular and parallel polarizations of incident wave, respectively.

Using the transformation of the variables

(12b)

and applying the method of the steepest descent, we have

(12c)

where , the contours ( -plane) and
( -plane) are given by and

. As a result, the far-field expressions of the vector

potentials become

(13a)

(13b)
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(a) (b)

(c) (d)

Fig. 9. Distribution of modulus of current density jJxj2 + jJy j2 induced on perfectly conducting rectangular plate when plane wave is normally and
obliquely incident. Plate is� = ka = 5. (a) and (b) Normal incidence(�0 = 0�; �0 = 0�). (c) and (d) Oblique incidence(�0 = 30�; �0 = 30�).
Superscriptse and h of J denote perpendicular and parallel polarizations of incident wave, respectively.

In the far region, the relation between the electric field and
the vector potential becomes

(14)

These fields satisfy the radiation condition.

IV. COMPUTATION AND DISCUSSION

A. Computations of the Matrix Elements

A first step in obtaining numerical results of physical
quantities is to compute the matrix elements defined in (10).
These are double infinite integrals that converge rather slowly.
The method of computations in this paper is summarized as
follows. The full range of integration is divided into several
subregions consisting of annular sectors with different radii,
as shown in Fig. 2. The numerical integration of these annular
sectors is carried out using the Gauss Legendre quadrature
scheme. The region exterior to the maximum sector with radius

is divided into three subregions. The integrations of the vari-
ables including infinity are performed analytically with asymp-
totic approximations of the integrands. Hence, double infinite
integrals are transformed into the finite double and single
integrals plus analytical expressions. The choice of thevalue
depends on the maximum order of the Bessel functions
included in the integrands of the matrix elements. In addition,
the variation of serves partly to verify the validity of the
computation since the results of the matrix elements should
not depend on the choice of (details are discussed in [11]).

B. Radiation Pattern

The radiation pattern is computed using (13) and (14)
according to the following procedure. First, the matrix el-
ements and are calculated
for various values of and up to with the
method of Section IV-A. The matrix size is .
Once the numerical results for the expansion coefficients are
obtained, the radiation patterns are computed from (13) and
(14). The numerical results of the far-field pattern diffracted
by a perfectly conducting plate for normal incidence are shown
in Fig. 3. The plate size is for (a)–(d) and for
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(a) (b)

(c) (d)

Fig. 10. Enlarged portion of modulus of current densities around vertex.

(e)–(h). The values of are fixed to 0.7 in the present
computations. The ordinate denotes the power pattern or
differential scattering cross section. The first subscript of
represents the component of the diffracted field, while the
second subscript refers to the polarization of the incident wave.
Copolarized patterns and are computed in
plane and cross polarized patterns and are computed
in plane. The maximum index is varied to see the
convergence of the results. As shown in Fig. 3, the results
converge with relatively small values of , say
for and for . Roughly speaking,
solutions converge for , where is a small
integer that depends on the required precision. This is likely
due to the fact that each summand of the expressions of the
fields satisfies a part of the required boundary condition as
well as the edge condition. As mentioned in Section IV-A, the
pattern should be independent of’s value. We computed the
patterns for various parameters for and .
Both results agree completely, but are not shown here to save
space. To verify the validity of the present computation, we
show the results produced by the physical optics (PO) and
physical theory of diffraction (PTD) [21] in these figures. The
PTD agrees with the results of the present method even in

the sidelobes. A similar trend is seen for oblique incidence
, , as shown in Fig. 4. The plate sizes are

and and the pattern is observed in the cut-
pane . Since the plane of incidence and observation
point lie in the -plane, the PO and PTD patterns are for a 2-
D strip. Fig. 5 shows the patterns for oblique incidence

when the cut plane is changed to .
Fig. 5(a)–(d) is for and Fig. 5(e)–(h) is for ;
the results converge for and , respectively. The
rate of the convergence is roughly the same as that with the
normal incidence. Since the cross polarized components of the
PO solution are zero, they are not shown in the figure. In this
figure, a comparison is only made with the PO.

C. Current Densities

In this computation, we discuss the current densities
induced on the plate. A similar result is expected for the
aperture field distribution. Fig. 6 shows the distribution of
current densities and , when the plane wave is normally
incident on the plate. Intrinsic impedance is multiplied by
the current densities since the amplitude of the electric field
of the incident wave is assumed to be unified. Fig. 6(a)–(d) is
for and Fig. 6(e)–(h) is for . The larger values
of and are chosen to obtain more precise results. As
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shown in the figure, behaves like and
behaves like . The cross-polarized

components of the current densities and are zero for
the PO current approximation, but these are actually produced
and undulate up and down around the PO currents as shown in
Fig. 6(a), (d), (e), and (h). The amplitude of the undulation
in the direction [Fig. 6(d) and (h)] is larger than that of
in the direction [Fig. 6(a) and (e)]. This is considered to be
due to the nearby resonance in thedirection. Fig. 7 shows
the corresponding phase distributions (only the copolarized
components are shown). The cross-polarized components
have rather flat phase distributions in the main portions of
the plate and phase jumps along some lines. In addition, they
show a complicated distribution near the vertex. We omitted
these distributions since the whole profiles are complicated.
Fig. 8 shows the current density distributions of oblique
incidence for . In this case, there does not seem to
be a distinction between each component.

The modulus of the current density
is also interesting. Fig. 9 shows the distributions offor
normal and oblique incidences. An enlarged figure around the
vertex is shown in Fig. 10. is singular along the edge as
expected, however, it remains finite at the vertex regardless of
the polarization and incident angle of the incident wave. This is
surprising, but we think it is reasonable since each component

and becomes the product of zero and infinity at the
vertex. Actually, it is not difficult to show that and of
(11) approach a finite value in the limit and
along the line with an arbitrary constant.

V. CONCLUSION

We derived the exact solution of the field diffracted by a
perfectly conducting rectangular plate and its complementary
problem, diffraction by a rectangular hole in a perfectly
conducting plate, using the method of the Kobayashi potential.
We presented numerical results of the far diffracted field
pattern and current distribution on the plate (or aperture field
distribution). This method may be regarded as an eigenfunction
expansion of the configuration and the convergence was very
rapid. The present method promises applicability to a wide
class of problems such as radiation from a flanged rectangular
waveguide and patch antenna with longitudinal and horizon-
tal sources, diffraction of plane wave by thick rectangular
aperture, and so on.
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