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Abstract—In a recent work, the iterative forward–backward
(FB) method has been proposed to solve the magnetic field in-
tegral equation (MFIE) for smooth one-dimensional (1-D) rough
surfaces. This method has proved to be very efficient, converging
in a very small number of iterations. Nevertheless, this solution
becomes unstable when some obstacle, like a ship or a large
breaking wave, is included in the original problem. In this paper,
we propose a new method: the generalized forward–backward
(GFB) method to solve such kinds of complex problems. The
approach is formulated for the electric field integral equation
(EFIE), which is solved using a hybrid combination of the
conventional FB method and the method of moments (MoM),
the latter of which is only applied over a small region around the
obstacle. The GFB method is shown to provide accurate results
while maintaining the efficiency and fast convergence of the
conventional FB method. Some numerical results demonstrate the
efficiency and accuracy of the new method even for low-grazing
angle scattering problems.

Index Terms—Integral equations, iterative methods, remote
sensing, rough-surface scattering, sea scattering.

I. INTRODUCTION

T HE electromagnetic (EM) scattering from rough surfaces
such as ocean-like surfaces has been extensively treated

in the literature. A recent review can be found in a special issue
about this topic [1]. Most recent advances have been focused
on the direct numerical simulation of the scattering problem.
Numerical techniques based on integral equation formulations
such as the well-known method of moments (MoM) [2] are
apparently some of the few sufficiently accurate and robust
methods for low-grazing-angle scattering problems and have
played an increasingly important role.

Effects such as multiple scattering, shadowing, and diffrac-
tion, which are very difficult to model analytically, become
more important as the incidence angle approaches the grazing
limit. Furthermore, low-grazing angles require that a large
region of the sea surface needs to be taken into account,
which means that a large number of surface unknowns
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Universitario s/n, Vigo, 36200 Spain.

R. J. Burkholder is with the ElectroScience Laboratory, The Ohio State
University, Department of Electrical Engineering, Columbus, OH 43212 USA.

Publisher Item Identifier S 0018-926X(99)05802-0.

must be considered and, therefore, more powerful numerical
methods become necessary. Given that the usual approach
to the random ocean surface problem is a Monte Carlo
simulation in which the scattering statistics are generated over
a large number of surface realizations, the computational cost
becomes even more critical.

Different methods have been developed in recent years in
order to reduce the number of computer operations required to
analyze the rough-surface scattering problem via the method
of moments. It is worth mentioning, among others, the banded
matrix iterative approach/canonical grid (BMIA/CG method
[3]–[9], based on splitting the field/surface current interaction
into near-field and nonnear-field components; the solution is
obtained by iteratively inverting the banded near-field inter-
action matrix, while correcting the solution with the far-field
interaction. The nonnear-field interactions are expanded into
a canonical grid, which is a horizontal surface in this case,
so that the fast Fourier transform (FFT) can be applied. In a
very recent work [10], the method has been also extended to
treat scattering from one-dimensional (1-D) dielectric random
rough surfaces at near-grazing angles.

A more general iterative solution based on a multigrid
decomposition and the generalized conjugate residual (GCR)
method, has been presented in [11]. This solution is not as
efficient as BMIA/CG, but it is considerably faster than a direct
solution and besides has the important benefit of a significant
reduction in storage requirements.

Recently, a new and powerful iterative numerical technique
called the forward–backward (FB) method has been proposed
by Holliday et al. [12], [13] for solving the magnetic field
integral equation (MFIE), which describes the current induced
on a perfect electrically conducting (PEC) surface. A similar
approach called the method of ordered multiple interactions
(MOMI) has been simultaneously proposed by Kapp and
Brown [14]. Both of them are based on splitting the current at
each point into two components: theforward contribution due
to the incident field and the radiation of the current elements
located in front of the receiving element and thebackward
contribution due to the current elements located beyond the
receiving element. The forward component is first found over
the whole surface and then it is used to determine the backward
contribution. This is repeated in an iterative process until a
converged solution is reached. These methods have shown a
very fast convergence, obtaining accurate results within very
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Fig. 1. A scattering obstacle on an ocean-like surface illuminated by a
low-angle incident field.

few iterations, which makes them computationally effective.
The operational count is (of order ) and, thus, the
simulation of quite large surfaces becomes possible, even for
low-grazing angles of incidence.

In a recent paper [15], the MOMI method has been per-
formed with the inclusion of a curvature term in the diagonal
of the kernel matrix, in order to properly represent the prop-
agator matrix. This helps to eliminate the undesired sampling
sensitivity effect. In [16], the FB method is generalized to the
scattering from imperfect conductors with dielectric constants
near that of sea water at 1 GHz. Finally, in [17], a novel
algorithm has been proposed which greatly accelerates the FB
method based on the spectral representation of the Green’s
function. The computational cost and storage requirements are
reduced to . It is noted that the acceleration technique
may also be applied to the generalized method introduced in
this paper, as discussed later.

A hybrid approach has been presented in [18] where the
scattering from water waves of differing degrees of breaking
is numerically examined by combining the MoM and the
geometrical theory of diffraction (GTD). The technique is
implemented using impedance-surface boundary conditions to
handle scattering media of finite conductivity such as sea
water.

In this paper, we present a generalization of the FB method
which allows us to study the scattering from composite sur-
faces that can include one or more large arbitrarily shaped
obstacles (like a ship or a large rogue breaking wave) on
the ocean surface, as shown in Fig. 1. The conventional FB
method is not expected to exhibit convergent behavior for
such problems. The new approach, called the generalized
forward–backward (GFB) method, is based on a combination
of the conventional FB method with the MoM, where the
MoM is only applied to the region close to the obstacle.
The solution is found through an iterative procedure based
on the same general concepts as the FB method, but with
some significant differences. The computational cost of the
GFB method is similar to the FB solution. It only includes an
additional cost associated with the direct MoM solution of a
small region containing the obstacle and nearby sea surface.
The GFB method is very useful for predicting and studying the
EM scattering from targets in the presence of a rough surface.

This paper is organized as follows. The conventional FB
formulation for the solution of the electric field integral
equation (EFIE) is presented in Section II. Section III develops
the generalization of the previous method which leads to
the new GFB iterative solution. Some numerical results are
presented in Section IV and a summary and conclusions can

(a)

(b)

Fig. 2. (a) Ocean-like surface illuminated by a TM(Ey) polarized
near-grazing incident field. (b) Forward and backward regions for thenth
matching point.

be found in Section V. In the rest of the paper, the fields
and the currents will be assumed to have a time-harmonic
dependence of the form , which will be suppressed from
the field expressions. The radian frequency is, and and

are the permeability and wavenumber, respectively, of the
medium above the rough surface (generally assumed to be
free space).

II. THE CONVENTIONAL FORWARD–BACKWARD METHOD FOR

THE TWO-DIMENSIONAL EFIE SCATTERING PROBLEM

The MFIE for a two-dimensional (2-D) scattering problem
dealing with a 1-D rough surface and its solution by the FB
method has been presented in [13]. Here we are concerned
with the solution of the EFIE in a similar way. The application
of the FB method combined with the EFIE has already been
done in [17], where a new approach based on the spectral
representation of the Green’s function accelerates the compu-
tation of the forward and backward matrix–vector products.
In this section, the formulation of the FB method is briefly
reviewed, starting with the EFIE followed by a discretization
process using the MoM to establish the corresponding matrix
equations which will be solved in an iterative way.

Consider a 1-D ocean-like surface depicted in Fig. 2(a).
The sea water is modeled here as a PEC material, so there
is no penetration into the sea surface. The permittivity and
conductive lossiness of sea water at microwave frequencies
are very high, so the PEC model is expected to be very
accurate for radar scattering problems. This is especially true
for low-grazing angles. The method may also be applied to
impenetrable material surfaces without loss of generality.

The horizontal and vertical coordinates of the parametric
surface of Fig. 2(a) are, respectively, and , both
functions of the path length on the surface. For such a
surface, illuminated by a TM polarized incident field,
the EFIE can be obtained by imposing the tangential electric
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field boundary condition on the PEC surface

(1)

where is the incident field at a point ,
is the induced current, and is the second-
kind Hankel function with order zero [2]. The current
radiates in free-space and generates the scattered fields. This
equation is to be solved through discretization by using the
MoM. Although the surface extends from minus infinity to
infinity in , the incident field is considered to be tapered so
that the illuminated rough surface and, thus, the integration in
(1) can be confined to a finite region of length.

For our purposes, we will apply the most simple formulation
of the MoM using a set of pulse-basis functions and point-
matching weighting at the center of each current element [2].
Typically, about ten pulse basis functions per wavelength are
used. After the discretization process, (1) is transformed into
a matrix equation

(2)

The elements of the impedance matrixare given by

(3)

where is the Euler constant 0.577 216, is the width of
the pulse basis and is the position vector of theth pulse-
basis center. Matrix is a column vector that contains the
unknown coefficients that are used
to approximate the current

(4)

where denotes the unit pulse-basis function centered
at . The column vector elements are given by minus the
incident field at the matching points

(5)

For brevity, the expressions have been developed only for
the TM polarization. Similar equations can be easily
derived for the TE polarization. Nevertheless, the FB method
that will be described below is applicable to both polarizations.

The FB method will be formulated using the matrix notation
of (2), instead of the integral equation (1). First, consider the
following decomposition applied over the matrices involved
in (2)

(6)

(7)

where is the forward component (i.e., the current contribu-
tion due to the waves propagating in the forward direction),

is the backward component (or current contribution due to

the waves propagating in the backward direction), and, ,

and are, respectively, the lower triangular part, the diagonal
part (self impedance terms), and the upper triangular part of.

Using (6) and (7), (2) can now be split into forward-
propagation and backward-propagation matrix equations, re-
spectively, as follows:

(8)

(9)

Here, (8) has been assumed by definition to describe the
forward-propagation, so (9) then follows from (2), (6), and (7)
and describes the backward propagation. It can be seen that for
a given th matching point located at , the right-hand side
(RHS) of (8) contains the incident field and the contribution
of the current elements located in the front of this receiving
element, which corresponds to theth forward region in
Fig. 2(b). Likewise, the RHS of (9) contains the influence
of the current elements in the rear of the receiving element,
so it represents theth backward region contribution as in
Fig. 2(b). From this it is clear thatthe MoM current elements
must be numbered sequentially as a function of increasing x in
the FB method, i.e.,

(10)

Equations (8) and (9) can be solved iteratively, where the
currents in the th stage of the algorithm are
obtained as

(11)

(12)

The algorithm starts with . It must be noticed that
the matrices involved in this iterative process do not need to be

factorized or inverted because is a lower triangular

matrix and is an upper triangular matrix; so, (11)
and (12) can be solved for and by forward and
backward substitution, respectively. The convergence has been
shown to be extremely rapid for moderately rough surfaces,
generally requiring fewer than ten iterations. However, it
should be noted that the algorithm may become unstable
for re-entrant surfaces, i.e., for surfaces where

for one or more points . This violates the sequential
number requirement of (10). The GFB method developed next
overcomes this limitation for the case of one or more arbitrarily
shaped scattering obstacles on the surface.

III. T HE GENERALIZED FORWARD–BACKWARD METHOD

Consider now the composite problem depicted in the Fig. 3,
where one or more PEC obstacles (like a ship or large rogue
breaking wave) are included in the surface contour. For
this kind of problem the conventional FB method does not
exhibit convergent behavior, because the presence of the
obstacle highly disturbs the propagation process assumed by
the conventional FB method. There are strong interactions
between the obstacle and the nearby ocean-like surface, and
within the obstacle itself, all of which may not be taken into
account with the conventional formulation involved in the
standard FB method.
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Fig. 3. Composite problem and matrix decomposition in the GFB method.

In order to overcome this drawback, the GFB method is
presented in this paper. The GFB method consists of a gen-
eralization of the conventional FB approach which enhances
the scope of application of the previous method to composite
scattering problems as the one depicted in Fig. 3. This method
is based on the same general concepts previously stated for the
FB method, but includes some significant differences mainly
in the decomposition of the matrix that will be detailed
next. For the sake of simplicity, the GFB formulation will be
presented for a simple problem consisting of a sea surface
containing only one obstacle (see Fig. 3); the extension of the
formulation to several obstacles is obvious as will be seen later.

Again starting with (2), which has been obtained from (1)
after the MoM discretization process. In the same way as done
in the FB method, the current is expressed as the sum of two
contributions (forward and backward)

(13)

but now the impedance matrix is split in a different way

(14)

where the matrix is the diagonal part of with an addi-
tional block including the impedance submatrix corresponding
to the ship and nearby sea region (Region 2 in Fig. 3); while

and are, respectively, the lower triangular part and
the upper triangular part of but excluding the matrix ,
as illustrated in Fig. 3. With this decomposition, matrix
contains both the self (diagonal) terms and the interaction of
the whole obstacle and nearby sea region together.

Then, the original system is transformed in a similar way as
in the conventional FB method, yielding the following matrix
equations:

(15)

(16)

which can be iteratively solved for and as

(17)

(18)

starting with in (17).

The solution of (17) and (18) differs from (11) and (12)

because neither nor are triangular
matrices. Nevertheless, the equations can also be easily solved
by combining forward or backward substitution together with
the direct factorization of the square block of whose
dimension depends only on the number of current elements
in Region 2, namely the ship and nearby sea (see Fig. 3).
A description of the solution procedure can be found in the
Appendix. Qualitatively, the solution proceeds as follows. For
each iteration :

1) find over Region 1 using the forward propagation
principle;

2) direct solve for over Region 2 using the fields
radiated by the Region 1 currents plus the incident field
as excitation;

3) find over Region 3 by the forward propagation
principle;

4) find over Region 3 by the backward propagation
principle;

5) direct solve for over Region 2 using the fields
radiated by the Region 3 currents;

6) find over Region 1 using the backward propagation
principle.

The computational cost of the GFB method is practically
the same as the conventional FB method. It only has the
additional computational cost of factorizing the square block
of , which corresponds to the MoM matrix of Region 2.
Nevertheless, due to the limited size of this block matrix, its
factorization can be performed once and stored, thus reducing
the computational work in subsequent iterations and for other
excitations. So, it can be concluded that the GFB method has a
computational cost of per iteration as in the FB method
[17]. The storage requirement is to store the iterated
currents as in the FB method with the additional storage of
a square matrix of size , where is the number
of current elements included in the MoM region (Region
2 in Fig. 3). Generally, but the matrix
storage requirement may be comparable to the storage
of the currents. It is noted that the storage requirement
assumes that the full matrix is not stored, so it is necessary
to recompute the matrix elements at each iteration (except for
the inner MoM matrix associated with Region 2). However,
the simple closed form of the matrix elements allows them
to be computed very quickly, and the number of iterations
is usually very small (typically less than ten). Finally, it is
noted that the new spectral technique introduced in [17] for
accelerating the FB method may likewise be used to accelerate
the GFB method with some minor modifications.

IV. NUMERICAL RESULTS

In this section, results are presented to validate the con-
vergence and accuracy of the new GFB method and to
investigate some of the effects of a random rough surface
on the backscatter pattern of a target on the surface. In the
following, the sea surfaces are randomly generated using a
Pierson–Moskowitz wave model for a given wind speed [19].
The excitation antenna is a linear array of 15 equally spaced
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Fig. 4. Source and target geometry on a sea surface with wind speed 15 m/s.
Target dimensions:a = 9:14, b = 5, c = 4, d = 6, � = 100

�. Units are
in meters.

(a)

(b)

Fig. 5. Magnitude of the currents as a function of`. (a) The moment method.
(b) The GFB method (tenth iteration).

electric line sources with a cosine aperture weighting function.
This source array produces a 9main beam with low sidelobes.
(Low sidelobes are important so that the sea surface near
the source is not strongly illuminated). The polarization is
horizontal, as in the derivation for the TM EFIE earlier.

Fig. 4 shows the source location and pattern function rela-
tive to a PEC ship-like target on a PEC rough sea surface. For
this example, the sea surface is 204.8 m in length, the wind
speed is 15 m/s, and the wavelength is 1 m. The wave height
for a wind speed of 15 m/s is about 3 m, which corresponds
to Sea State 5 of the World Meteorological Organization
(WMO). The source is 10 m high on the extreme left and
points horizontally. The MoM region shown within the dashed
vertical lines contains the ship and 5 m of sea surface on either
side. For validating the new method with this example, the
current obtained with GFB is compared with the solution given
by MoM applied to the whole surface in Fig. 5, as a function
of . For the GFB results, the MoM region is within the outer
dashed vertical lines, and the ship is within the inner dashed
lines. Ten iterations are used. The difference between the two

Fig. 6. Magnitude of the difference between GFB and MoM currents as a
function of `.

Fig. 7. Residual and absolute errors versus the number of iterations.

currents is shown in the Fig. 6. After only ten iterations, the
maximum difference in the currents is on the order of 10
mA/m.

The residual error is used for monitoring the convergence
of the GFB in terms of the number of iterations. The residual
error vector after theth iteration is defined as

(19)

By substituting (17) and (18) in (19), the residual error vector
can be evaluated in a more efficient way as

(20)

The residual error is defined as

residual error (21)

where denotes the vector norm. The residual error of
the GFB for this example is shown in Fig. 7; it decreases
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Fig. 8. Geometry for backscatter patterns. Wind speed is 15 m/s for Surfaces
#1 and #2, and 7 m/s for Surface #3. The ship is the same in all three cases.

exponentially with the number of iterations. The residual error
of the FB method has also been plotted and as for reasons
explained in Section III, the FB method generally cannot
achieve a convergent solution when an obstacle is present in
the sea surface. Fig. 7 also plots the absolute error of the GFB
method, defined by

absolute error (22)

where is the MoM reference solution for the currents. It
is seen that the absolute error also falls exponentially, but after
about 14 iterations it levels out. This is often a characteristic
of iterative methods in general and is caused by the finite
numerical precision of the computer. To judge convergence of
the solution, the residual error is a very good indicator and is
easy to compute at each iteration using (20) and (21). Halting
the algorithm when the residual error reaches about 10or
10 yields very accurate scattering results. For this example,
6–10 iterations is found to be quite sufficient.

To investigate the scattering behavior of a ship on a rough
surface, the geometry of Fig. 8 is considered. The ship and
the source are the same as in Fig. 4, but the length of the sea
surface is 409.6 m and the source antenna moves in elevation
at a constant distance from the ship to generate a backscatter
pattern (i.e., the pattern of the scattered field at the source
position as a function of elevation angle). The antenna beam
points directly at the ship and the source starts at a height of
10 m above the surface. The wavelength is again 1 m. Three
different randomly generated sea surfaces are shown in the
figure. Surfaces #1 and #2 are at a wind speed of 15 m/s and
Surface #3 is at 7 m/s. The wave height is 1.4 m for wind
speed 7 m/s, which corresponds to Sea State 4 of the WMO.
It is noted that the ship remains upright and does not roll with
the waves in the results that follow.

Fig. 9 shows the backscatter patterns for the ship on Surface
#1 and for the ship on a finite flat surface of the same length
for comparison. Also shown is a reference MoM solution for
the ship on an infinite flat surface found using image theory.

Fig. 9. Comparison between the backscattered field of a ship on a rough
surface (Surface #1) and on a flat surface. A reference solution for an infinite
flat surface found using MoM and image theory is also included.

Fig. 10. Comparison between the backscattered field for Surfaces #1 and #2
with the ship. The backscattering from surface #1 without the ship is also
plotted.

The very close agreement between the image theory result and
the GFB result for the finite flat surface show that end-point
effects are negligible, and further validates the GFB method
for scattering problems. The figure also shows that the rough
surface greatly affects the backscatter pattern compared with
a flat surface.

Fig. 10 shows the backscatter patterns for the ship on the
two rough surfaces depicted in Fig. 8. It is seen that the
patterns are significantly different for these two surfaces that
have the same roughness scale, although it could be argued
that the patterns are at about the same average level. The
backscatter due to Surface #1 without the ship is also plotted
to show the level of the background clutter for this wind speed.
The clutter level computed here is quite low, but it should be
mentioned that this ocean model does not include the effects of
breaking waves that generally dominate the backscatter return
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Fig. 11. Comparison between the backscattered field for a ship on Surface
#1 and on a randomly generated surface with wind speed= 7 m/s.

from the ocean in the absence of a ship. In fact, the clutter
level is due almost entirely to direct reflection of the downward
pointing low-sidelobe beams. However, as noted earlier, the
GFB method could be used to analyze an isolated breaking
wave in the presence of an otherwise smoothly varying ocean
surface simply by replacing the ship geometry with that of
the wave.

Fig. 11 shows the backscatter patterns for the ship on Sur-
face #1 and on a randomly generated surface with wind speed
7 m/s. Again, the patterns are significantly different although
they are at about the same average level. Furthermore, the 7
m/s result does not appear any closer to the flat surface result
of Fig. 9 than the 15 m/s result, even though the roughness
scale is smaller. Any further conclusions about these results
requires a more thorough statistical study, which is beyond
the goals of this paper.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a new computational
algorithm, the GFB method, which enhances the scope of
application of the conventional FB method to composite
2-D scattering problems consisting of a randomly varying
smooth ocean-like surface with abrupt target obstacles present
like ships, rogue waves, etc. The new approach has been
shown to provide very accurate results and maintains the
same fast convergence (usually in less than ten iterations) and

computational cost associated with the conventional
FB solution. The storage requirement is , where
is the number of basis functions used in the small MoM region
around the target. Nevertheless, the computational
cost makes the method inefficient for very large surfaces. In
order to overcome this limitation, the GFB could be combined
with modern integral equation acceleration algorithms such
as the asymptotic fast multipole method [20] or the novel
spectral acceleration method [17], which could reduce the
computational cost to . The improvement of the GFB
method, combining it with novel acceleration algorithms, will
be addressed in a future submission.

Fig. 12. Block decomposition of a “quasi” lower triangular matrix.

The numerical results show that different random ocean
surfaces greatly affect the backscatter patterns of a ship-like
target, although the patterns tend to have about the same
average level. It is difficult to make any further conclusions
at this point about how the wind speed affects the backscatter
patterns. One would expect, for example, that higher wind
speeds (and, therefore, larger roughness scales) would cause a
larger variance in the backscatter. A more thorough statistical
investigation is necessary, which is beyond the scope of this
paper. The purpose of the GFB method introduced here is to
provide a numerical tool for studying this class of scattering
problems; the Monte Carlo simulations will be considered in
a future submission.

APPENDIX

In this Appendix, a description of the procedure used
to solve (17) and (18) is presented. It must be pointed

out that neither nor are triangular
matrices; nevertheless, these equations can be easily solved
by combining forward or backward substitution together with
the direct factorization of a square-block submatrix whose
dimension is just the extent of the MoM region. For brevity,
we will explain only the resolution of (17) which concerns the

matrix . Equation (18) can be solved in a similar
way.

Equation (17) has the general form

(23)

where , , and .
is a “quasi” lower triangular matrix as depicted in Fig. 12. In

order to solve these equations in an efficient way, the matrices
, , and of (23) are subdivided into blocks as shown in

Fig. 12. Thus (23) can be expressed in terms of the blocks
as follows:

(24)

(25)

(26)

The solution is then obtained as follows.

1) Equation (24) is a lower triangular matrix, so can be
easily obtained by forward substitution.
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2) Once is has been calculated, can be obtained from
(25) by the direct solution of

(27)

LU decomposition may be used so that needs to
be factorized only once for a given Region 2 geometry.
The factorized matrix may then be saved for subsequent
iterations and for other excitations.

3) Finally, once and have been calculated, can be
obtained from (26) again by forward substitution from

(28)

because is a lower triangular matrix.

A similar procedure is applied for the solution of (18).
The only difference is that in this case we will define upper
triangular component matrices that can be solved by back
substitution.
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