
1050 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 6, JUNE 1999

Efficient Calculation of Lattice Sums for
Free-Space Periodic Green’s Function
Kiyotoshi Yasumoto,Senior Member, IEEE, and Kuniaki Yoshitomi,Member, IEEE

Abstract—An efficient method to calculate the lattice sums
is presented for a one-dimensional (1-D) periodic array of line
sources. The method is based on the recurrence relations for
Hankel functions and the Fourier integral representation of the
zeroth-order Hankel function. The lattice sums of arbitrary high
order are then expressed by an integral of elementary functions,
which is easily computed using a simple scheme of numerical
integration. The calculated lattice sums are used to evaluate the
free-space periodic Green’s function. The numerical results show
that the proposed method provides a highly accurate evaluation
of the Green’s function with far less computation time, even when
the observation point is located near the plane of the array.

Index Terms—Green’s function, lattice sums, periodic array.

I. INTRODUCTION

T HE calculation of the free-space periodic Green’s func-
tion is a key to the efficient numerical analysis of

electromagnetic scattering by periodic structures. The spatial
form of the Green’s function for a one-dimensional (1-D)
periodic array of line sources is expressed as an infinite
sum of Hankel functions multiplied by trigonometric angular
dependencies. Its spectral form is represented by an infinite
sum of plane waves which satisfy Floquet’s theorem. It is well
known that both of two forms converge very slowly whenever
the observation point lies near the plane of the array. Various
analytical or numerical techniques [1]–[8] have been devised
to overcome the slow convergence in the periodic Green’s
function in the spatial or spectral domain.

An alternative to evaluating the periodic Green’s function is
to use a Neumann series expansion with coefficients given by
the lattice sums [9]. This series converges sufficiently rapidly.
The lattice sums depend only on the geometrical parameters
of the structure and are independent of the location of the
observation point. For a given problem of scattering, we
need to calculate the lattice sums only once. This decreases
remarkably the time of numerical evaluation of the Green’s
function at any point of the observation. Then the usefulness
of the Neumann series expansion is greatly enhanced when
combined with an efficient method to calculate the lattice
sums. Recently, a hybrid technique [9], based on the recurrence
formula and lattice sum identities, has been devised for calcu-
lating the lattice sums of arbitrary high order. However, this
technique requires much computation time. It should be noted
[9] that the overall time to evaluate the Green’s function at one
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observation point is dominated by the time needed to compute
the lattice sums. The efficient and accurate evaluation of the
lattice sums is of significant importance from another point
of view. When the electromagnetic scattering by a periodic
structure is formulated using the T-matrix method, one needs
inevitably to calculate a large number of the lattice sums [10].

In this paper, we shall present a very efficient numerical
method to calculate the lattice sums. The approach is based
on the recurrence formula for Hankel functions [11] and
the Fourier integral representation of the zeroth-order Hankel
function. The lattice sums of arbitrary high order are then
represented by an integral form of elementary functions. The
integration is easily performed by using a simple trapezoidal
formula of numerical integration. The accuracy and efficiency
in computation of the proposed method are examined by the
numerical tests for certain typical cases. The numerical results
show that the method provides a highly accurate evaluation
of the Green’s function with far less computation time, even
when the observation point is located near the plane of the
array.

II. FORMULATION

When the time dependence with is assumed, the
Green’s function for a 1-D array of line sources spaced
units apart along the axis is given by

(1)

where is the zeroth-order Hankel function of the second
kind, is the wavenumber of the medium, is the incidence
angle of a hypothetical plane wave with respect to the
axis, and the location of the reference source is assumed at
the origin. The infinite series in the spatial domain Green’s
function (1) converges very slowly. The spectral domain form
of (1) is represented by

(2)

where

(3)

(4)

0018–926X/99$10.00 1999 IEEE



YASUMOTO AND YOSHITOMI: EFFICIENT CALCULATION OF LATTICE SUMS FOR FREE-SPACE PERIODIC GREEN’S FUNCTION 1051

The infinite series (2) in the spectral domain converges rapidly
for the off plane case . This occurs because as
increases, the plane wave response changes from propagating
waves to exponentially decaying evanescent waves. For theon
planecase , however, the series converges very slowly
because it no longer has the exponentially decaying factor.

An alternative to evaluating the free-space periodic Green’s
function is to use a Neumann series representation for (1).
Within the domain defined by and

, Graf’s addition theorem for the Hankel functions
is used and (1) is expanded in terms of Bessel functions as
follows [9]:

(5)

with

(6)

where , is Bessel function of theth order, and
and are the polar coordinates

in the – plane. The coefficient in the expansion
is usually referred to as the lattice sum of theth order.

The lattice sums depend only on the geometrical parameters
of the structure and are independent of the location of the
observation point . For a given problem of scattering, we
need to calculate the lattice sums only once. This decreases
remarkably the time of numerical evaluation of the Green’s
function at any point of observation. However, we notice again
that the lattice sums given by two semi-infinite sums of the
Hankel functions are unfortunately slowly convergent. Since
the Neumann series itself converges rapidly, the advantage of
using (5) is greatly enhanced when combined with an efficient
method to calculate the lattice sums. In what follows, we shall
discuss a method to evaluate efficiently two semi-infinite sums
in (6).

Consider the evaluation of the first sum in (6). The second
sum can be treated in the same manner. To do this, we use the
recurrence formula [11] for Hankel functions

(7)

and the Fourier integral representation of the zeroth-order
Hankel function of the second kind

(8)

where

.
(9)

Substituting (8) into (7) and assuming that , ,
and , we obtain the following formula for Hankel
functions:

(10)

Using this formula by letting , the first sum in (6) is
expressed as

(11)

with

(12)

where . When the limit is taken,
the function oscillates very rapidly for and
decays very fast for . Then the second term in the
numerator of (12) vanishes after the integration and (11) leads
to

(13)

Using the normalization of variables, (13) is rewritten as

(14)

where

(15)

(16)

To avoid the difficulties of integration near the singular
points of , the integration in (14) is evaluated
along the straight line which makes the angle of rad with
respect to the real axis in the complexplane. After several
manipulations, the integration in (14) can be approximated
with a high enough accuracy as follows:

(17)
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where and is a positive real number which
is chosen so that the integration converges with a required
accuracy.

The presence of exponential function in (16),
which decays very rapidly for , enables us to approx-
imate the infinite integral (14) in terms of the finite integral
(17). The choice of the upper limit in the integration depends
on the value of parameter and is determined by
the numerical testing.

Following the same procedure, the second sum in (6) can
be expressed as follows:

(18)

The integrals in (17) and (18) can be accurately and efficiently
calculated using a standard formula of numerical integration
for elementary functions. The advantage of using (17) and (18)
is that both the real and imaginary parts of the lattice sums of
arbitrary high order are simultaneously evaluated by a simple
FORTRAN implementation. Although the hybrid technique
[9] is an accurate approach, it involves much complicated
intermediate formulas using special functions and requires
to evaluate separately the real and imaginary parts of the
lattice sums. Moreover, the numerical algorithms used in the
calculation are different for the lower order lattice sums and for
the higher order ones. Those features of the hybrid technique
inevitably increases the computation time.

III. N UMERICAL EXAMPLES

To confirm the validity of the proposed method, (17) and
(18) were used to calculate the lattice sums (6). Although a
substantial number of numerical tests could be generated, we
will present here only the results related to certain typical cases
with rad and and . These
cases have been investigated by using the hybrid technique
[9] and the numerical results obtained by a MATHEMATICA
program run on a SPARC-10 workstation have been given in
tabular form. For the comparison of computation time, we also
used a SPARC-10 workstation for the calculation.

The integrals in (17) and (18) were evaluated using a
trapezoidal formula, which is the simplest scheme in numerical
integration. The upper limit and a small division in the
integration were chosen so that the values of the lattice sums
are obtained with the accuracy of eight significant figures.
Since the integrands and in (17)
and (18) are smooth as functions of, the results of numerical
integration are not so sensitive to the choice of division.

The first 50 values of the lattice sums calculated by the
present method are given in Table I for and
compared with those of the hybrid technique. and

denote the real and imaginary parts of the lattice sum of
th order. The results of the hybrid technique are reproduced

from [9, Table I] by changing the signs, since their lattice

TABLE I
THE FIRST 50 VALUES OF LATTICE SUMS Sn(kd; cos �i) CALCULATED FOR

�=d = 0:23 AND �i = 5�=8 rad.Re[Sn] AND Im[Sn] DENOTE THE REAL

AND IMAGINARY PARTS OFSn. THE RESULTS TERMED BY “HYBRID TECHNIQUE”
HAVE BEEN REPRODUCED FROM[9, TABLE I] (a) S0 � S24. (b) S25 � S49

(a)

(b)

sums are defined using Hankel functions of the first kind. The
results of the imaginary part of odd order and the real part
of even order have not been given in [9]. The present results
were obtained by choosing and . We can
see that both results are in close agreement for
and . However, there appears a slight difference
between them for .
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TABLE II
THE FIRST 30 VALUES OF LATTICE SUMS Sn(kd; cos �i) CALCULATED FOR

�=d = 0:46 AND �i = 5�=8 rad.Re[Sn] AND Im[Sn] DENOTE

THE REAL AND IMAGINARY PARTS OFSn. THE RESULTS TERMED BY

“HYBRID TECHNIQUE” HAVE BEEN REPRODUCED FROM[9, TABLE II]

The hybrid technique utilizes a set of lattice sum identities
which is a system of linear equations for the lattice sums. The
linear system for was numerically solved [9]
by incorporating the recurrence relations and nearest-neighbors
estimate for lattice sums to avoid a problem of ill condition for
the system. The linear system becomes larger and the dynamic
range of the matrix elements rapidly increases as the order of
lattice sums concerned increases. In the present method, on
the other hand, each of the lattice sums of arbitrary order is
calculated separately by using (17) and (18). This difference
in the calculation process may cause such a small discrepancy
as mentioned above. Due to the simpler equations involved,
the numerical procedure of the present method is much more
efficient than that of the hybrid technique [9]. The total central
processing unit (CPU) time to calculate the first 50 lattice
sums by the present method was only 40 s, whereas the hybrid
technique requires 1231 s for the same computation.

The first 30 values of lattice sums calculated by the present
method for and are shown in Tables II
and III, respectively, and compared with those of the hybrid
technique [9]. The present results in Tables II and III were
obtained by choosing for and ,
respectively, in the numerical integration of (17) and (18). It
is seen that both results are in good agreement. Although the
computation time needed for the hybrid technique has not been
described in [9], the total CPU times in computation were 48
and 84 s for the present method in Tables II and III. When
increases, the exponentially decaying factor involved in (16)

TABLE III
THE FIRST 30 VALUES OF LATTICE SUMS Sn(kd; cos �i) CALCULATED FOR

�=d = 1:77 AND �i = 5�=8 rad.Re[Sn] AND Im[Sn] DENOTE

THE REAL AND IMAGINARY PARTS OFSn. THE RESULTS TERMED BY

“HYBRID TECHNIQUE” HAVE BEEN REPRODUCED FROM[9, TABLE II]

TABLE IV
COMPARISON BETWEEN DIFFERENT METHODS TO EVALUATE THE GREEN’S

FUNCTION FOR�=d = 0:23 AND �i = 5�=8 rad. IN THE FIRST COLUMN,
“DIRECT SUM” AND O(1=n3) INDICATE A STRAIGHTFORWARD SUM OF THE

SERIES (2) AND THE CALCULATION USING A THIRD-ORDER ACCELERATION

TECHNIQUE [7], RESPECTIVELY. x AND y ARE THE LOCATION OF THE

OBSERVATION POINT, Re[G(x; y)] AND Im[G(x; y)] GIVE THE REAL AND

IMAGINARY PARTS OF THE GREEN’S FUNCTION, N REPRESENTS THENUMBER

OF TERMS IN THE CORRESPONDINGSERIES, AND T IS THE COMPUTER

CPU TIME IN SECONDS. THE RESULTS OF THEDIRECT SUM, O(1=n3),
AND THE HYBRID TECHNIQUE ARE REPRODUCED FROM[9, TABLE III]

decreases and a larger value ofis required for the integration
in (17) and (18) to retain the accuracy of the results. This leads
to a longer computation time as increases.

When the lattice sums were calculated, the Green’s function
at any observation point can be evaluated by using
(5). The values of the Green’s function evaluated by the
present method for rad and are
shown in Table IV and compared with those of other three
different methods. The “direct sum” and “ ” in the
first column indicate a straightforward sum of the series (2)
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Fig. 1. Computer CPU time versus the number of independent evaluations
of Green’s function for four different methods. The values of parameters are
the same as those given in Table IV.

and a calculation using a third-order acceleration technique [7].
and denote the real and imaginary

parts of the Green’s function and represents the number of
terms in the corresponding series. The results of the direct sum
“ ” and the hybrid technique are reproduced from [9,
Table III] by taking into account the difference in the kind of
Hankel functions used. The hybrid technique and the present
method used the first 50 values of lattice sums given in Table I.
It is seen that the results of the present method show a closer
agreement with the rigorous values of “direct sum” than those
of the hybrid technique. This fact suggests that the present
method based on (17) and (18) provides a more accurate
evaluation of the lattice sums than the hybrid technique [9].

Fig. 1 shows the computer CPU time versus the number of
independent evaluations of Green’s function for four different
methods. The values of parameters are the same as those
given in Table IV. When the configuration parameters
and for a periodic structure are specified, the lattice sums
are determined independently of the location of observation
point. The Green’s function at any observation point can
be evaluated from (5) using the same set of the lattice
sums. Then the computation time is remarkably reduced,
when the repeated evaluations of the Green’s function at
different points are required. This is an advantage of the
hybrid technique and the present method for evaluating the
Green’s function. However, the hybrid technique needs much
more time for the computation of the lattice sums, though the
MATHEMATICA program has been used in [9]. It is seen that

for 100 independent evaluations of Green’s function, the total
CPU time in the hybrid technique is dominated by the time
(1231 s) for computing the lattice sums. In contrast, the present
method requires far less computation time for the evaluations
of the Green’s function as well as the lattice sums, even when
the observation point is located near the plane of
the periodic sources. The comparisons in Tables I, IV, and
Fig. 1 demonstrate that the present method is very accurate
and computationally efficient one in the evaluation of the
free-space periodic Green’s function.

IV. CONCLUSION

The free-space Green’s function for a 1-D periodic array
of line sources may be expressed by the Neumann series
with the lattice sums as the expansion coefficients. However,
the lattice sums are given by a semi-infinite sum of Hankel
functions which is very slowly converging. In this paper,
an efficient method to calculate the lattice sums of arbitrary
order with high accuracy has been presented. The method is
based on the recurrence relations for Hankel functions and
the Fourier integral representation of the zeroth-order Hankel
function. Then the real and imaginary parts of the lattice sums
can be simultaneously evaluated using a simple trapezoidal
formula of numerical integration. This greatly simplifies the
computational procedure and, therefore, drastically reduces
the computation time. Numerical results have shown that the
proposed method provides a computationally efficient way of
evaluating the Green’s functions when the observation point
is located near plane of the array and a highly accurate result
is required.
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