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Efficient Calculation of Lattice Sums for
Free-Space Periodic Green’s Function

Kiyotoshi Yasumoto Senior Member, IEEEand Kuniaki YoshitomiMember, IEEE

Abstract—An efficient method to calculate the lattice sums observation point is dominated by the time needed to compute
is presented for a one-dimensional (1-D) periodic array of line the lattice sums. The efficient and accurate evaluation of the
sources. The method is based on the recurrence relations for |aiice sums is of significant importance from another point
Hankel functions and the Fourier integral representation of the . - . g
zeroth-order Hankel function. The lattice sums of arbitrary high of view. When the electrpmagnetlc scattering by a periodic
order are then expressed by an integral of elementary functions, Structure is formulated using the T-matrix method, one needs
which is easily computed using a simple scheme of numerical inevitably to calculate a large number of the lattice sums [10].
integration. The calculated lattice sums are used to evaluate the |n this paper, we shall present a very efficient numerical

free-space periodic Green’s function. The numerical results show method to calculate the lattice sums. The approach is based

that the proposed method provides a highly accurate evaluation )
of the Green’s function with far less computation time, even when on the TeC‘_Wence formula for Hankel functions [11] and
the observation point is located near the plane of the array. the Fourier integral representation of the zeroth-order Hankel

function. The lattice sums of arbitrary high order are then
represented by an integral form of elementary functions. The
integration is easily performed by using a simple trapezoidal
|. INTRODUCTION formula of numerical integration. The accuracy and efficiency

HE calculation of the free-space periodic Green's fund? computation of the proposed method are examined by the
I tion is a key to the efficient numerical analysis ofumerical tests for certain typical cases. The numerical results

electromagnetic scattering by periodic structures. The spaffaPW that the method provides a highly accurate evaluation
form of the Green's function for a one-dimensional (1-D5’f the Green'’s function with far less computation time, even

periodic array of line sources is expressed as an infinihen the observation point is located near the plane of the

sum of Hankel functions multiplied by trigonometric angulaf' Y-
dependencies. Its spectral form is represented by an infinite
sum of plane waves which satisfy Floquet's theorem. It is well Il. FORMULATION
known that both of two forms converge very slowly whenever \when the time dependence withi“! is assumed, the
the observation point lies near the plane of the array. Varioggeen’s function for a 1-D array of line sources spackd
analytical or numerical techniques [1]-[8] have been devisg@its apart along the axis is given by
to overcome the slow convergence in the periodic Green’s
function in the spatial or spectral domain. Gz, y; k, d, ¢)

An alternative to evaluating the periodic Green’s function is 1 & HO (1 5 5\ inkd cos
to use a Neumann series expansion with coefficients given by =~ 4 Z 0 ( V(z —nd)? +y )‘3 (1)
the lattice sums [9]. This series converges sufficiently rapidly. n=Tee
The lattice sums depend only on the geometrical parametgfiSa e iy

. ) 82) is the zeroth-order Hankel function of the second
of the structure and are independent of the location of tl&ﬁ]d k is the wavenumber of the medium, is the incidence
observation point. For a given problem of scattering, ’

W§ngle of a hypothetical plane wave with respect to the

need to calculate the lattice sums only once. This decreages; "5,y the location of the reference source is assumed at
remarkably the time of numerical evaluation of the Green§ origin. The infinite series in the spatial domain Green'’s

function at any point of the observation. Then the usefulnegg, tion (1) converges very slowly. The spectral domain form
of the Neumann series expansion is greatly enhanced wQﬁn(l) is represented by

combined with an efficient method to calculate the lattice

sums. Recently, a hybrid technique [9], based on the recurrence o 1 =1 Bz |y
formula and lattice sum identities, has been devised for calcu- Gl@, yi K, d, di) = 25d Z %C (2)
lating the lattice sums of arbitrary high order. However, this
technique requires much computation time. It should be notathere

Index Terms—Green’s function, lattice sums, periodic array.

n=—o&

[9] that the overall time to evaluate the Green'’s function at one 2rn
Bn = 4 k cos ¢; 3)
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The infinite series (2) in the spectral domain converges rapidbubstituting (8) into (7) and assuming that= 0, ¥ > 0,

for the off plane case(y # 0). This occurs because as and ¢ = 7/2, we obtain the following formula for Hankel

increases, the plane wave response changes from propagdtingtions:

waves to exponentially decaying evanescent waves. Farrthe a1 €= ir(O o,

planecase(y = 0), however, the series converges very slowly H,(f)(ky) =(=D Tk [ %e IO dg

because it no longer has the exponentially decaying factor. (y>0 noi 0). (10)
An alternative to evaluating the free-space periodic Green’s i T

function is to use a Neumann series representation for (1sing this formula by lettingy = md, the first sum in (6) is

Within the domain defined by-d/2 < = < d/2 and—d/2 < expressed as

y < d/2, Graf's addition theorem for the Hankel functions =

is used and (1) is expanded in terms of Bessel functions asz HP (mkd)e/mkd eos @i
follows [9]: m=1
L = €= gr@I"
1 — (1Y L JMG/
Gl 15 b s 69) = - UHS (k) + Sol0d, 6:)Jn(h) 0 im [ S © @
C o= with
+2) " Salkd, ¢;)Jn(kp) cos(ng)] M
n=1 T]\l (S) — C—j[kw +x(&)Imd
© >
. _ o dlket+r(O]Md
with _ —ilketr©nal =’
- ¢ 1 o—ilkatr(@)]d (12)
Sn(kd, ¢;) = Z HP (mkd)eimke «os @i where k, = —k cos ¢;. When the limitAl — oo is taken,
m=1 the functione=7#(© M4 oscillates very rapidly fof¢| < k& and

decays very fast fol¢| > k. Then the second term in the
numerator of (12) vanishes after the integration and (11) leads
to
wherekd = 2rd/ A, J, is Bessel function of theth order, and o0 '
p = /22 +y2 and¢ = cos~!(z/p) are the polar coordinates Z H (mkd)eimkd cos @i
in the z—y plane. The coefficien$,,(kd, ¢;) in the expansion  m=1
is usually referred to as the lattice sum of thidh order. P e Ikad /°° [ —jr(O]r e inOdge

The lattice sums depend only on the geometrical parameters — ko rw(€) 1 — e—ilkntns(€)]d
of the structure and are independent of the location of the (n > 0). (13)
observation poinfz, y). For a given problem of scattering, we o ) ) )
need to calculate the lattice sums only once. This decreabtsing the normalization of variables, (13) is rewritten as
remarkably the time of numerical evaluation of the Green's = ,
function at any point of observation. However, we notice again Z Hr(f)(mkd)cjmkd cos &
that the lattice sums given by two semi-infinite sums of the ™=!

3 (1) HR (mkdyeimhd s 6 ()

m=1

. . Jkd cos ¢; oo
Hankel functions are unfortunately slowly convergent. Since = (-1 nC / Go(DF(t; kd, cos ;) dt
the Neumann series itself converges rapidly, the advantage of k" e T !
using (5) is greatly enhanced when combined with an efficient (n>0) (14)

method to calculate the lattice sums. In what follows, we shall

discuss a method to evaluate efficiently two semi-infinite Sum@ere "

in (6). Go(t) = (t V1= t2) (15)
Consider the evaluation of the first sum in (6). The second

gk /1 —¢42
sum can be treated in the same manner. To do this, we use the,. N e IRV
) t; kd, cos ¢;) . = . (16)
recurrence formula [11] for Hankel functions V1= £2[1 — e 7kd(V1=t2—cos ;)]
. 1/ 8 a\" To avoid the difficulties of integration near the singular
2 . —jng __ n 4 ).
HP (kp)e™ " =(-1) = <% _Ja_y) Hy™ (kp) points of F'(¢; kd, cos ¢;), the integration in (14) is evaluated
along the straight line which makes the anglergfl rad with
(n>0) (7

respect to the real axis in the compléxplane. After several
and the Fourier integral representation of the zeroth-ordemnipulations, the integration in (14) can be approximated

Hankel function of the second kind with a high enough accuracy as follows:
1 7/~ 1 : oo
HD (L) = _/ _ = ikl g 8 jmkd cos &;
o (kp) T ) Ii(g)@ 3 ) 221 H® (mkd)eimkd cos ¢
where ; ' N
- e " = (1)l (7/4tkd cos ¢i)7 / (G (T) + G (—7)]
O =1V o h (©) 0
-V =k €] > k. - F(7; kd, cos ¢;) dt (17)
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wherer = (1+5)t anda(>>1) is a positive real number which

accuracy.
The presence of exponential functien?*¢v1=** in (16),

TABLE |

is chosen so that the integration converges with a requweﬁ*E FIRST 50 VALUES OF LATTICE SUMS Sy (kd, cos ¢;) CALCULATED FOR
A/d =0.23 AND ¢; = 57 /8 rad. Re[S,] AND T[S, ] DENOTE THE REAL
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AND IMAGINARY PARTS OF S;,. THE RESULTS TERMED BY “H YBRID TECHNIQUE’
Have BEEN REPRODUCED FROM[9, TABLE ] (&) So ~ S24. (b) S25 ~ Sag

yvhlch decgys very rapidly fot > 1, enables us to approx- Prosont mothod Hybrid tochnique [9
imate the infinite integral (14) in terms of the finite integral, Re[S,] m[S,] Re[S,] Tm[S,
(17). The choice of the upper limitin the integration depends o | 0.73329394 -0.16104658 -0.16104658
on the value of parametérd = 2xd/\ and is determined by ; 8232%3 851";757’2222 0.15571020
-0.745 17175 0.17175436
the numerical testing. -0.21469466 -0.96391981 -0.21469466
Following the same procedure, the second sum in (6) caq 0.78034690 ~0.20898202 ~0.20898202
be expressed as follows: 5 | 0.33567720 0.97644809 0.33567720
6 | -0.83144551 0.28765032 0.28765032
> n 2r(2) _jmid cos 7 | -0.51161439 -0.94708194 -0.51161439
> ()"HP (mkd)e 7 8 | 0.87553498 -0.42758564 -0.42758564
m=1 9 | 0.70236456 0.83201906 0.70236456
V2 10 | -0.86297714 0.63440080 0.63440080
eI (7 /4=kd cos &) V = / )+ Gn(—7)] 11 | -0.82304880 -0.62643188 -0.82304881
12| 0.73043828 -0.86221953 -0.86221953
F(r; kd, — cos </>7¢)dt. (18) 13| 0.79590391 0.42642515 0.79590391
14 | -0.46970407 0.99299669 0.99299669
The integrals in (17) and (18) can be accurately and efficiently? | -0-69407376 -0.40323220 -0.69407376 o
lculated using a standard formula of numerical integration. | U-2277171 092542628 092542628
ca gas _ gration; | 4 g574556 0.54742971 0.80574556
for elementary functions. The advantage of using (17) and (18)g | -9.19868483 0.78977182 0.78977182
is that both the real and imaginary parts of the lattice sums of9 | -0.12340508x10"  0.41845553 -1.23405074
arbitrary high order are simultaneously evaluated by a simpl%‘l) g-zggigggf o 'g-gigggﬂz 3245681 -0.92086218
. . . . . QX -U. -
FORTRAN implementation. AIic_)ugh the hybrid techr]lque 99 | -0.99393100%10~2  0.11880266x 101 T,
[9] is an accurate approach, it involves much complicateds | _g s6196266 0.46392024 -0.66196236
intermediate formulas using special functions and requires4 | -0.36957004 -0.93854258 -0.93854254
to evaluate separately the real and imaginary parts of the @

lattice sums. Moreover, the numerical algorithms used in the

calculation are different for the lower order lattice sums and for

Present method

Hybrid technique [9]

the higher order ones. Those features of the hybrid techniquer Re[S.] Tm[S,] Re[Sy] Tm{S,]
H H H H H 25 | 0.73723907 0.14123900 0.73723782
inevitably increases the computation time. 56 | 010726318 0.34071544 0.84071354
27 1-0.12529709x 10" 0.53186404 -1.25296581
28 | -0.63515270 -0.12523502x 10! -1.25235165
I1l. NUMERICAL EXAMPLES 29 | 0.27216853 -0.25754992 0.27214775
. o 30 | 0.62154229 0.21205696 0.21206723
To confirm the validity of the proposed method, (17) and 31 | -0.23244301x10"  0.75454460 -2.32434610
. = A4 1 =
(18) were used to calculate the lattice sums (6). Although ag'f; 8§§i1£§33x " g})zgf;;g;““ 04452690 -1.90261541
substantial number of numerical tests could be generated, wes | o.63690724 -0.35468005x 10! -3.54638672
will present here only the results related to certain typical cases?’ gigiggzgmz PO G -1.35236736:10" 688876 10!
-U. 1 -0, X -1. A0 X
with ¢; = 57/8 rad and\/d = 0.23,0.46, and 1.77. These 37 -0.57831833x10° -0.67810897 -5.78366481x 10
cases have been investigated by using the hybrid techniques | 0.10458025x10!  -0.77834468x 10? -7.7828061410"
39 | -0.30502285x10%  0.78508182 -3.05006107x 10?

[9] and the numerical results obtained by a MATHEMATICA
program run on a SPARC-10 workstation have been given in41
tabular form. For the comparison of computation time, we also ﬁ

-0.12206668 x 10"
-0.18597208x 101
0.97522540

-0.13034606x 10°

-0.44456867x 10%
-0.11909475% 10"
-0.29127886 % 10*
0.11398686x 10

-1.85977359x 10°

-1.30344632x 10*

-4.44594709x 10?

-2.91269330x 103

used a SPARC-10 workstation for the calculation. 44 | -0.73891601 -0.21760249x 10° -2.17605509x 10
; ; ; 45 | -0.10354615x10°  -0.78817533 -1.03546461 x 10°

The !ntegrals In (17,) qnd (18_) were evaluatgd USING & 5 | o9503037 -0.18335270x 10° -1.83351911x 10°
trapezoidal formula, which is the simplest scheme in numerical 47 | -0.92341365x10°  0.10417498x 10" | -9.23413193% L0°

48 | -0.96806457 -0.17271239x 107 -1.72712539 % 10°

integration. The upper limit and a small divisiomA¢ in the

-0.91708155x 107

-0.12702343x 10!

-9.17081576x 10°

integration were chosen so that the values of the lattice sums
are obtained with the accuracy of eight significant figures.
Since the integrand&,,(+£7) and F'(7; kd, £ cos¢;) in (17)
and (18) are smooth as functionstothe results of numerical

(b)

integration are not so sensitive to the choice of divisiph ~ Sums are defined using Hankel functions of the first kind. The
The first 50 values of the lattice sums calculated by tti@sults of the imaginary part of odd order and the real part

present method are given in Table | foyd = 0.23 and of even order have not been given in [9]. The present results

compared with those of the hybrid techniquge[S,] and were obtained by choosing = 10 and At = 0.01. We can

In[S,,] denote the real and imaginary parts of the lattice sum s¢e that both results are in close agreemendfer n < 27

nth order. The results of the hybrid technique are reproducadd42 < n < 49. However, there appears a slight difference

from [9, Table I] by changing the signs, since their latticbetween them fo28 < n < 41.
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TABLE I
THE FIRST 30 VALUES OF LATTICE SuMs Sy, (kd, cos ¢;) CALCULATED FOR

TABLE 1l
THE FIRST 30 VALUES OF LATTICE SuMs Sy, (kd, cos ¢;) CALCULATED FOR

A/d =0.46 AND ¢; = 57/8 rad. Re[S,] AND Im[S,,] DENOTE
THE REAL AND IMAGINARY PARTS OF S,,. THE RESULTS TERMED BY
“HYBRID TECHNIQUE' HAVE BEEN REPRODUCED FROM[9, TABLE 1]

A/d = 1.77 AND ¢;

= 57/8 rad. Re[Sy] AND T[S, ] DENOTE

THE REAL AND IMAGINARY PARTS OF S,,. THE RESULTS TERMED BY
“HYBRID TECHNIQUE' HAVE BEEN REPRODUCED FROM[9, TABLE ]

Present method Hybrid technique [9] Present method Hybrid technique (9]
n Re[S,] Im[ S, Re[Sy] Im[S,,] n Re[5,] Im[S,] Re[Sn) Im{S,]
0! 0.17509589x10'  -0.36093071 -0.360931 0 |-0.39017104 -0.16365463 -0.163655
1| 0.89475179x10~"  0.18094945x 10* | 0.0894750 1 | -0.43784085 -0.23337144 -0.437841
2 | -0.17623173x10"  0.41827505 0.418275 2 | 0.43121420 -0.28365501 x 10! -0.028366
3 | -0.21886359 -0.19280760x 10" | -0.218864 3| 0.35413150 -0.56340850 0.354132
4 | 0.17671156x10'  -0.58616202 -0.586162 4 | -0.55511151x107%  0.51775604 0.517756
5 0.56058592 0.20883932 0.560586 5 0.20800865x 10" -0.56340850 2.080086
6 | -016061641x10'  0.81729453 0.817395 6 | -0.43121420 0.10142624x 10" 1.014262
7 | 0 11547476x 100 -0.20374T47x 10" | -1.154748 7| 014619401107 023337144 | 1.461940x10'
8 | 015527227x 100  -0.97811658 0.978117 8 | -0.60982896 0.10091414x 102 ) 1.009441x 10!
9 | 0.16470135x10'  0.14681032x 10" | 1.647013 9 | 0.21630080>107  0.23337144 =} 2.163098x10 o
10 | 2015763000 100 0.105668655 10" 1056687 10048121420 022089246x10° | ) | 220892510
11 | 013309795100 -0.86357884 1330980 11} 0.56547325x101 056340850 | 5.654733x10° ;
. ) 12 | -0.24374458x 107 0.73062387x 10 7.306236 x 10
12| 0.17470268x10'  -0.15994934x 10 -1.599493 - A ! ° .
13| 0114409425100 01462268010 | 1.144024 13| 0.22414508x 10 0.56340850 | 224145110 o
: . 14| 0.43121421 0.34636693 x 10 3.463672x10
14} -0.84241711 0.23278766 > 10 2.327871 15| 0.12456013x108  0.23337029 1.245602x 107
15 | -0.2471472210" 074549368 | -2.471472 , 16 | 0.60983177 022344388 10° | 2.234435x 107
16 | 0.56169444 -0.11933666x10 -1.193368 17 0.92197054x10°  -0.23348172 9.219702x 10°
17 | -0.38019380 0.94680026 -0.380201 18| 0.43103218 0.18813547x 1010 1.881359% 10°
18 | -0.29538596 0.40325986 > 10" 4.032610 19| 0.87580459x 10" -0.53361320 8.7580495 1010
19 | -0.10925872x 102 -0.57725945 -10.925802 20 | 0.99304199% 1071 0.20023677x 1012 9.002362% 101"
20 | 0.37271660 095525666 10' 9.552479 91 | 0.10378297x 10" 041621004 10! | 1.037829x 10!
21 -(].47/-17458[)><10Z -0.26163727 744747525><10] 29 0.63125000><10] 0.26272121)(1014 2.627217)(]013
22 | -0.14741115 077429865)(102 . 7743048)(101 23 0.1500]095><1016 —0.13023125><104 ]500109)(1015
23 | -0.38098195x10°  0.62913403 -3.809760x 10° 24 | -0.23060000x 10* 0.41645451x 106 4.164540% 1013
24 | -0.35823161 0.64512325x10° 6.451198x 102 25 | 0.25970259%10'%  -0.20670800x 108 | 2.597026x10"7
25 | -0.36403182x10*  -0.12414223 -3.640365x 10% 26 | -0.37081600x 107 0.78444922x 108 7.844496 x 10"7
26 | 0.54539488 0.68948919x 10 6.894904 x 10° 27 | 0.53041486x10%  0.67972403x10° | 5.304149x10'°
27 | -0.42757079% 10°  0.87841418 -1.275678x 10" 98 | -0.15229256x 100 0.17316680% 102" 1.731668% 102
28 | -0.14445204 % 10! 0.88702853x10° 8.870288 % 10* 29| 0.12618264x10%*  -0.13551351x10'2 | 1.261826x 10?2
29 | -0.60026345x10°  -0.71529771 -6.002649x 10°

TABLE IV

The hybrid technique utilizes a set of lattice sum identities ComPARISON BETWEEN DIFFERENT METHODS TO EVALUATE THE GREEN'S

which is a system of linear equations for the lattice sums. The':DIRECT Sum

linear system for{ Sy, ---, Sig} was numerically solved [9]

UNCTION FORA/d = 0.23 AND ¢; = 57/8 rad. N THE FIRST COLUMN,
" AND O(1/n®) INDICATE A STRAIGHTFORWARD SUM OF THE
SERIES (2) AND THE CALCULATION USING A THIRD-ORDER ACCELERATION

by incorporating the recurrence relations and nearest-neighbors TECHNIQUE [7], RESPECTIVELY. & AND y ARE THE LOCATION OF THE

estimate for lattice sums to avoid a problem of ill condition for

OBSERVATION POINT, Re[G(x, ¥)] AND Im[G(x, y)] GIVE THE REAL AND
IMAGINARY PARTS OF THE GREEN'S FUNCTION, /N REPRESENTS THENUMBER

the system. The linear system becomes larger and the dynamiC or Terus in THE CORRESPONDINGSERIES, AND T IS THE COMPUTER
range of the matrix elements rapidly increases as the order of CPU Time IN Seconps THE ResuLTs oF THEDIRECT Sum, O(1/n?),

lattice sums concerned increases. In the present method, o

n

AND THE HYBRID TECHNIQUE ARE REPRODUCED FROM[9, TABLE IlI]

the other hand, each of the lattice sums of arbitrary order is

calculated separately by using (17) and (18). This difference

in the calculation process may cause such a small discrepangyfre Temia

as mentioned above. Due to the simpler equations involved:

the numerical procedure of the present method is much mor&urid Tectmique [9]
efficient than that of the hybrid technique [9]. The total central’rese Method

processing unit (CPU) time to calculate the first 50 latticeo

afd  y/d Re[G(z,y)] Im[G(z,y)] N T

Direct Sum [9] 0.2 003 | 0.117120006144932 0.108131857633201 154 )
(1/n%) [9] 0.117120006144931 0.108131857633201 | 121 8
rid Technique [9] 0.117120006141860 0.108131857633197 301232
0.117120006144941  0.108131857633206 ) 40

irect Sum (9] 0.2 0.003 | 0.115891895634567 0.103497063599642 | 1386 36
001 /n) [9] 0.115891895634567 0.103497063599613 | 836 48
0.115891895630095  0.103497063599643 50 1232

0.115891895634577  0.103497063599646 50 40

Direct Sum [9] 0.2 0.0003 | 0.115881138140449 (.103450147416784 | 12681 366
(1/n%) 9] 0.115881138140448  0.103450147416785 | 5416 301
Hybrid Technigue {9] 0.115881138135960  0.103450147416785 Sy 1232
rsent Method 0.115881138140457  0.103450147416788 50 40

sums by the present method was only 40 s, whereas the hybr
technique requires 1231 s for the same computation.
The first 30 values of lattice sums calculated by the present

method for\/d = 0.46 and\/d = 1.77 are shown in Tables || decreases and a larger valuezd$ required for the integration
and I, respectively, and compared with those of the hybril (17) and (18) to retain the accuracy of the results. This leads
technique [9]. The present results in Tables Il and IIl wer® a longer computation time ag/d increases.

obtained by choosing\t = 0.01 for & = 20 and a = 35,

When the lattice sums were calculated, the Green’s function

respectively, in the numerical integration of (17) and (18). &t any observation pointz, y) can be evaluated by using

is seen that both results are in good agreement. Although {6¢ The values of the Green’s function evaluated by the
computation time needed for the hybrid technique has not bggnesent method fokp; = 57/8 rad andA/d = 0.23 are
described in [9], the total CPU times in computation were 48hown in Table IV and compared with those of other three
and 84 s for the present method in Tables Il and Ill. Whg¢d  different methods. The “direct sum” and){1/n3)” in the
increases, the exponentially decaying factor involved in (16)st column indicate a straightforward sum of the series (2)
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for 100 independent evaluations of Green’s function, the total
CPU time in the hybrid technique is dominated by the time
(1231 s) for computing the lattice sums. In contrast, the present
method requires far less computation time for the evaluations
of the Green'’s function as well as the lattice sums, even when
the observation point is located near the plgpe= 0) of

the periodic sources. The comparisons in Tables I, IV, and
Fig. 1 demonstrate that the present method is very accurate
and computationally efficient one in the evaluation of the
free-space periodic Green'’s function.

IV. CONCLUSION

The free-space Green'’s function for a 1-D periodic array
of line sources may be expressed by the Neumann series
with the lattice sums as the expansion coefficients. However,
the lattice sums are given by a semi-infinite sum of Hankel
functions which is very slowly converging. In this paper,
an efficient method to calculate the lattice sums of arbitrary
order with high accuracy has been presented. The method is
based on the recurrence relations for Hankel functions and
the Fourier integral representation of the zeroth-order Hankel
function. Then the real and imaginary parts of the lattice sums
can be simultaneously evaluated using a simple trapezoidal
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formula of numerical integration. This greatly simplifies the
computational procedure and, therefore, drastically reduces

Fig. 1. Computer CPU time versus the number of independent evaluaticms["1 computation time. Numer'cal reSUIt_S have shoyvn that the
of Green’s function for four different methods. The values of parameters gaoposed method provides a computationally efficient way of

the same as those given in Table IV. eval

uating the Green'’s functions when the observation point

is located near plane of the array and a highly accurate result
and a calculation using a third-order acceleration technique [1f. "équired.

Re[G(z, y)] and Im[G(x, )] denote the real and imaginary
parts of the Green’s function amdl represents the number of
terms in the corresponding series. The results of the direct sum)
“O(1/n3)” and the hybrid technique are reproduced from [9,
Table IIl] by taking into account the difference in the kind of 2
Hankel functions used. The hybrid technique and the present
method used the first 50 values of lattice sums given in Table [
It is seen that the results of the present method show a cIose}
agreement with the rigorous values of “direct sum” than those
of the hybrid technique. This fact suggests that the preseﬁ"t]
method based on (17) and (18) provides a more accurate
evaluation of the lattice sums than the hybrid technique [9]. ]
Fig. 1 shows the computer CPU time versus the number of
independent evaluations of Green’s function for four different
methods. The values of parameters are the same as thd€e
given in Table IV. When the configuration parameterél
and ¢; for a periodic structure are specified, the lattice sum#’]
are determined independently of the location of observation
point. The Green’s function at any observation point cang]
be evaluated from (5) using the same set of the lattice
sums. Then the computation time is remarkably reducedy
when the repeated evaluations of the Green’s function at
different points are required. This is an advantage of the;
hybrid technique and the present method for evaluating the
Green'’s function. However, the hybrid technique needs much
more time for the computation of the lattice sums, though tl”l!ﬁ]
MATHEMATICA program has been used in [9]. It is seen that
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