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Current Marching Technique for
Electromagnetic Scattering Computations

Andrew A. Zaporozhets and Mireille F. Leviember, IEEE

Abstract— An iterative solver is used to compute the 5
electromagnetic field scattered by perfectly conducting three- <
dimensional (3-D) objects of arbitrary shape. The unique solution
of the dual-surface integral equation is approached by successive
forward/backward calculations of the current. Convergence is
very fast, giving accurate results in about a dozen iterations
for convex objects. The method handles successfully single and
multiple objects, convex objects, and cavities. Calculations can
be carried out on a desktop computer for relatively large objects,
with dimensions of ten wavelengths and more. Fig. 1. Geometry for dual-surface integral equation.

Index Terms—Electromagnetic scattering, integral equation
method, radar cross section. problem see [10]). The second internal surface acts as an
absorber for the field inside the object.

The method converges very fast, in about a dozen itera-

tions for convex objects. By using conditioning techniques,

I N this paper, we are concerned with electromagnetic scghnyergence of the CMT algorithm is obtained for nonconvex
tering by perfectly conducting objects. A number of integrggjes.

equation methods for solving scattering problems in the fre-The gyal-surface integral equations are given in Section Il.

quency domain have been described in the literature [1]. gection 11l describes the CMT iterative solver and Section IV

Iterative methods with extremely fast convergence (in jugiscusses a number of examples, including spheres, double
a few iterations) have recently been applied to scattering Qkﬂheres cubes, and a semi-open cavity.
open rough surfaces [2]-[4] and to acoustic scattering [5].

The methods in [2]-[4] are based on the forward/backward
updating procedure for the surface electric current. In [2], IIl. - DUAL-SURFACE INTEGRAL EQUATIONS
this technique was called the method of ordered multiple We work with the dual-surface integral equation for the
interactions (MOMI). We discovered this idea independentlyagnetic field [8], [9]. For a perfect conductor with smooth
stimulated by our work on parabolic equation methods [6$urfaceS, we define the surfacés as in Fig. 1. For small
[7] and applied it to scattering by closed bodies in threenough &, this surface is insideS. We define a natural
dimensions. We use the phrase current marching technigquegrespondence between points Snand points onSs by
(CMT) to describe the method. Forward current marching &ssociating point on S with point r — én on S5, where
very similar to the forward marching of the field in parabolia is the outer normal to the surface at pointr.
equation techniques. The parabolic approximation splits theWe assume harmonic dependence of the fields on time. Let
vector wave equation into two terms corresponding to forwald; be the incident magnetic field and letbe a real number.
and backward propagation, respectively, and these can We define the following hybrid field, which is a combination
solved by marching methods. However, current marching doefsthe magnetic fields or$ and S5
not have the paraxial limitations of the parabolic equation
method and also has the great advantage that iteration automat- Ho(r) = Hi(r) — taH;(r — ém). 1)
ically deals with the coupling between backward and forward ) _ , )
generated currents. We also define the hybrid Green’s function

The main difficulty was that the method in its original no_ N '
(similar to [2]-[4]) formulation did not converge for a closed Go(r,r) = G(r,r') —iaG(r — én.r’) @
surface. The solution is to use the dual-surface magnetic figiflere & is the three-dimensional (3-D) Green’s function for
equation [8], [9], which is not plagued by the internal resqne Helmholtz equation in vacuum
nance problems (for some references on the internal resonance

I. INTRODUCTION

eik|r7r'|
G(I‘, I‘/) = m (3)
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at the dual-surface magnetic field integral equation for the the method of moment terminology, this corresponds to

current densityK pulse basis functions, using delta functions as testing functions.
1 If the size of the patches is small enough, is a good
n x Hy(r) = §K(r) —n approximation off” and the linear system
X / K(r') x grad,. (Go(r,r')) dS(r').  (4) {(I - U)F}i = 20; x Ho(r;), i=1,---,N  (10)
S

. . . . . has a unique solution which is close to the desired solddon
The integral is an improper integral, taken in the sense o

gy of the continuous integral equation.
Cauchy principal value. For reat and small enougls, (4) Current marching technique solves the system of linear
has a unique solution [8], regardless of wheth@orresponds . 9 nq y .
L . equations (10) by an iteration process that computes successive
to a resonant frequency of the interior problem far Since

. . . induced currents. These are marched forward and backward
the current corresponding to the unique solution to Maxwell’s

equations for incident fieldE;, H; automatically satisfies (4), relative to the direction of the incident wave until convergence

the unique solution of (4) is the desired current. Choices Iosf\?vtc))tiliaed;/vith Cartesian coordinate& we assume
o between 0.5 and 1, and close to)\/4, where A is the that the ingcident field propagates alone( th?é’ Z()),slii\direction
wavelength of the incident field, give good results. In wh [1eld propag g IN€ PoStcH '

. e now use this direction as our splitting direction for the
follows, we usex = 0.5 andé = A/4.

We briefly recall the reasons why the dual-surface integrgr_ward/backward iteration. From now on, we assume our grid

equation is well behaved. A detailed proof is given in [8]. Thgo\'/cgsézlffrfé’t'ﬁé’Igjéglared(;rg:reg g‘r;rfEIZ?S'ggntrahges
uniqueness property is based on the fact that boundary condi- : updating op pointr; by

tions are effectively enforced on both surfaces. By linearity, if N N

two currentsK; andK, are solutions of (4) then the magnetic (ViF); = 2n; x Ho(r;) + QZni x (F; x C,; ;)

field H radiated by the difference currei = K, — K; j=1

satisfies the vector wave equation and for aron S we have (V;F); =F,, j#i. (11)
H(r) — iaH(r — 6n) = 0. (5)

Hence, V; replaces the current at point by the current
induced by the magnetic field radiated by the old current
without modifying the current at other points. This corresponds
to Gauss—Seidel iteration of the process, updating one point at

waveguide arguments to conclude titis zero everywhere & time [11]. We are now gqing to define forward and backward
because the cavity formed b§ and Ss cannot support any operators4 and B by applying these local operators repeatedly

resonant modes. HencK is zero, too, and unicity is proved. !0 Points with increasing and decreasing ranges, respectively.
We defineAF = G inductively by

If 6 is small enough, the phase &f will not vary much
between the two surfaces. For realthis implies thatH is
zero on both surfaces. & is less than\/2, one can then use

[ll. I TERATIVE CURRENT MARCHING N
We denote byZ’ the operator Gy =2 x Ho(rr) +2)_mi x (F; x Cy )
j=1
TF(r) = 2n x / F(r') x grad,, (Go(r, ")) dS(').  (6) Gz = 2nz x Ho(rz2) + 2n2 X (G1 x Cz,1)
S N
The operatofl” is defined on suitably smooth vector functions +2 Z nz x (Fj x Co,j)
F on the surfaces. It is clear that the current density we seek =2
is the unique solution to
i—1
{(Z = T)F}(r) = 2n x Ho(r). (7) G; =2n; x Ho(r;) + 2Zn7; x (G; x C; ;) (12)
In other words, we need to invert the operatoer 7. We now i=1
define a discretized version @f as follows: first discretize the N
surfaceS into patchesS; with centergry,ro, - - -, ry). We put +2 Z n; x (F; x C; ;)
Jj=1
Ci; :/ grad,, (Go(r;, 1)) dS(r'). 8)
S; :
3 N—-1
The discretized versiolV of 7" is obtained by assuming that Gy =2ny x Ho(ry) + 2 Z ny X (G; x Cn ;)
the current is constant on each patch. It is defined on discrete j=1
functionsF = (F,F,,---,Fx) representing the current at +2ny X (Fy x Cnp1).

points (ry,rs,---,ry) by putting
In other words, we have applied the local updating operators

N . . . .
. successively to all points in increasing range order
(UF); =23 m; x (B, x Cy ). 9) y P g rang
J=1

G=VyVy_1 - -VF. (13)
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forward direction is attained with a very small number of iterations regardless
EEEE—— of object size or shape, as we shall see in the examples
below. However, the sequence does not converge in general
for nonconvex objects and we must seek a modified version
of the algorithm.
We notice that for any fixed numberwe can replace the
operators4 and B by A, and B, defined by

. . . . . . AF =tF + (1 — t)AF
Fig. 2. Schematic representation of current marching technique. In the white . . .
area, the current has not yet been updated. In the striped area before:range B,F =tF + (1 —t)BF. a7
the current has already been marched forward.

X

If the corresponding sequence converges, it will also be
. ) ) to the desired value. For both convex and nonconvex objects,
Physically, this corresponds to marching tle current 5),es oft strictly between zero and one produce a converging
forward in range, as illustrated in Fig. 2. We start off withyeqence. This behavior would be readily explained if the
F. We update the magnetic field and the current at successiyRctral radius of the linear operatBiwas, at most, one [12]:
ranges, replacing the current a given range by that induced ¥ one is not an eigenvalue @t the operatorZ, would
the new magnetic field values before that range and the ¢igh, have spectral radius strictly less than one &nd T,
field values after that range. Similarly, we can defil = G ¢q|q pe inverted by an iterative procedure, writing formally

by the Neumann series
N o0
Gy =2ny X Ho(I‘N) + ZZHN X (Fj X CNJ') (I — Tt)_lF = Z thnF (18)
Jj=1 =0
Gy-1=2ny-1 x Ho(ry-1) The forward/backward marching procedure is equivalent to
+2ny_1 X (Gy x Cn_1,n) computing this series. If the first gued&" does not have
N-1 any components corresponding to spectral values of modulus
+2Y ny_1 x (F; x Cy_y)) one, as is probably the case for convex objects, the series will
j=i converge fort = 0. However, in general convergence is not

guaranteed fot = 0 and we have to use a positive value of
t. We found that in general, the best results are obtained for

al t = 1/3, which would be expected if the eigenvaluesTof
Gi = 2n; x Ho(ri) +2 Z n; x (G x Ci.j) were all real and located betweerl and 0.
‘ =i+l Since the required number of iterations does not depend on
. object size, execution times are of the orderf, which
+2Zlni x (Fj x Cij) means that relatively large objects are still tractable on a
i=

desktop computer. We would like to point out that the march-
ing nature of the method is essential for fast convergence:

N—1 with Jacobi iteration where all the points are updated at once
G, =2n; x Hy(ry) 42 Z n; x (G; x Cyp ). [11], the method fails. It is also worth pointing out that
j=1 the forward/backward sequence fails to converge when the

(14) dual-surface quantitieso, Hy are replaced with the single
surface G and H;: the reason for this is that because of
So we have again applied the local updating operators repgfkcretization, parasitic resonance always interferes with the
edly, this time marching back results, producing an internal field which blows up instead
G =VV,-- VyF. (15) (_)f decaying to_ zero. We b(_elieve that the _second s_urfa(_:e acts
like an absorbing layer which damps the internal field in the
We now define a sequence of functions as follows. We stantanner of the Bfenger perfectly matched layer [13].
with F° = 0 and for nonnegative,, we put Even though the single-surface iteration fails to converge,
F _ 4p2n interesting resuIFs are optaingd with a single forward iteration.
N N For convex objects, this single-surface forward CMT (or
F?2 = BF? (16) sSCMT) provides quite a good approximation to the forward

In other wordsF* is the marched forward current induced b)zcgttered f|_e|d. Th'S. is similar to the forward marching para-
olic equation solution [6], [7].

the hybrid incident fieldf'2, the current marched back from
F!, and so on. It is easy to see that if the sequefie®)
I fnd i IV. EXAMPLES
converges, the limit will be the desired inverse of the operator
I-U. In all that follows, the incident field is a plane wave of
It turns out that for convex objects, the sequence does camplitude one, vertically polarized. We use rectangular patches
verge and that convergence is very rapid. Excellent accuragith maximum dimensiona /10 to mesh the surfaces. Due to
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TABLE |
s BEHAVIOR OF CMT SOLUTION FOR SPHERE OF RADIUS A
20/ . s analytical
‘\‘ ————— 1 iteration, single surface
‘\ ---------- 1 iteration, dual surface
Max Max Max error Max error
current internal in radiation | in radiation
10; Iter | diffe- magnetic pattern for pattern for
= rence field vertical horizontal
o plane (dB) | plane (dB)
e 1 2.996 0.999 3.13 3.29
30 2 | 2867 0278 1.03 2.3
- 3 | 0256 0.101 0.71 0.68
4 | 0093 0.048 0.31 0.40
5 0.038 0.037 0.18 0.25
-104 6 0.015 0.033 0.18 0.20
7 0.008 0.033 0.16 0.17
0 30 60 90 120 150 180 8§ | 0002 | 0033 0.16 0.17
angle, degrees 9 | 0001 0.033 0.16 0.16
' 10 | 0.000 0.033 0.16 0.16
(@)
20 . ————— analytical .
S 0 mm-=- 1 iteration, single surface 204 ——— analytical
N eeseesaess 1 iteration, dual surfface | | N = ~"=== 2 iterations
---------- 4 iterations
10/
104
= o
~ <
m ~
s 3
(23] .
g % o
[sng
-10
-10
0 30 60 90 120 150 180 : ’ : : :
angle, degrees 0 30 60 90 120 150 180
’ angle, degrees
(b) @
Fig. 3. Single iteration of CMT for sphere of radius (a) Vertical plane
pattern. (b) Horizontal plane pattern.
20 ——— analytical
L . P L N 2 iterati
PC memory limitations (a Pentium 200 MHz PC with 64 Mb | '\  .......... 4218,312222
memory was used) we did not store the linear system matrix
[see (10)] but recomputed it at each iteration. Because of the 1]
small number of iterations required, the penalty on integration «,
time is acceptable. P
We first look at convex bodies for which the standard CMT 0
algorithm is convergent. Perfectly conducting spheres provide & |
a good test of the method since theoretical solutions in the
form of Mie expansions [14] are available for comparison.
We start with a sphere of radius. Fig. 3 shows the RCS 10
results obtained with the forward SCMT and also with a single
forward iteration of the dual-surface CMT. For comparison, 0 30 60 90 120 150 180
the theoretical solution is also shown. Fig. 3(a) and (b) shows angle, degrees
results for the horizontal and vertical polarization planes, (b)

respectively. The first CMT iteration does not give as goQgly 4. pual-surface CMT for sphere of radivs two and four one-way

an approximation as SCMT, which is understandable sintations. (a) Vertical plane pattern. (b) Horizontal plane pattern.

it corresponds to the current induced by the dual-surface

magnetic field and Green’s function, rather than the moreTable | shows the behavior of the solution when CMT is

physical single-surface quantities. SCMT provides quite igerated, counting each one-way iteration (forward or back-
good approximation for forward scatter for scattering anglegard) separately. The second column gives the maximum
up to 120 or so. difference in the currents computed by successive iterations
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TABLE I
BEHAVIOR OF CMT SOLUTION FOR SPHERE OF RADIUS 5A
20 ——— analytical
---------- 6 iterations
Max Max Max error Max error
10 current internal in radiation | in radiation
g Iter | diffe- magnetic pattern for | pattern for
% rence field vertical horizontal
% plane (dB) | plane (dB)
@ o 1 3.000 3.06 3.06 3.63
8 1 2 2.797 2.17 2.17 4.71
3 0.362 2.86 2.86 3.49
4 0.088 0.32 0.32 0.79
10 5 0.060 0.41 041 0.56
1 6 0.038 0.30 0.30 0.39
0 30 60 90 120 150 180
angle, degrees
50.
(@)
analytical
---------- 1 iteration, single surface
40/ - a i i
20] analytical vector parabolic equation
---------- 6 iterations
=, 30
10/ o
o
=< 19
-~ Q
% T 20/
Bo
T
10]
-10] e v y
0 30 60 90 120 150 180
angle, degrees
0 30 60 90 120 150 180 )
angie, degrees
() 50.

Fig. 5. Dual-surface CMT for sphere of radidssix one-way iterations. (a)

analytical
Vertical plane pattern. (b) Horizontal plane pattern.

1 iteration, single surface

404 vector parabolic equation

starting with zero current and using the 3-D Euclidean norm to
measure magnitudes. Another useful quantity to look at is the., 3o
maximum value of the magnetic field on the internal surface g
using the 3-D Euclidean norm again; this should tend to zero;—
as the algorithm converges. Table | also gives the maximum@ 20/
deviation from the theoretical Mie solution in terms of far-field

radiation pattern. -
Table | shows that after the sixth iteration, the field inside  10; ‘\
the sphere no longer decreases significantly and the solution |
becomes stationary and the algorithm has essentially con- 0 30 60 90 120 150 180
verged. The reason for a small error in results is discretization: angle, degrees
we used the simplest pulse/delta functions approximation. (b)

Good agreement with theoretical results is in fact obtainedy. 6. Single iteration of CMT for sphere of radius.5a) Vertical plane

after six iterations with a maximum error of less than 0.2 dpgttern. (b) Horizontal plane pattern.

in both polarization plane patterns. These results are illustrated

in Figs. 4 and 5, which show the dual-surface CMT resultspnvergence is very fast; the accuracy limit is reached after six

respectively, for two and four one-way iterations and for siiterations as for the sphere or radiugnd the results compare

iterations. Execution time on a 200 MHz Pentium machingery well to theory.

was less than 30 s for each iteration. Fig. 6 shows SCMT results together with forward vector
We now consider a metallic sphere of radius. Jable Il parabolic equation results and theoretical values. A single

gives information on the convergence of the solution. Agafiorward run of the vector parabolic equation algorithm [7]
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50
analytical
---------- 6 iterations
40
o, 304 -
> E
©
%)
8 20
10.
0 30 60 90 120 150 180
angle, degrees
@ Fig. 8. Double sphere geometry.
50. 20
6 iterations CMT
analytical
---------- 6 iterations
40
=
%, 304 o
m %)
- (@]
g))' o
T 20]
10]
0 30 60 90 120 150 180 0 60 120 180 240 300 360
angle, degrees angle, degrees

(b) Fig. 9. CMT results for two spheres of rading2 with centers separated
Fig. 7. Dual-surface CMT results for sphere of radius, Six one-way DY 1.25\, six one-way iterations.
iterations. (a) Vertical plane pattern. (b) Horizontal plane pattern.

20
produces accurate results in an angular cone of directions T Slertions cMT
within 20° or so of the paraxial direction, because the method

uses a narrow-angle approximation of the forward propaga- 19
tion operator. By contrast, very acceptable SCMT results are_
obtained at all scattering angles, which shows that SCMTg
provides an excellent high-frequency approximation. °

Fig. 7 shows dual-surface CMT results for six iterations §
together with the theoretical results. Execution time on a 200
MHz Pentium machine was 4 h for each iteration. The results '
for 1A and 5\ radius spheres give some indications that CMT
convergence might not depend on object size.

The CMT works well with more complicated situations: we
look at the case of two metallic spheres as shown in Fig. 8.
Figs. 9 and 10 show RCS results obtained with five CMT
iterations and with FDTD techniques [15] for two spheres of _ .
radius /2, with centers separated, respectively, by 3.25d ¢ Slig'onim;e;g:gigstwo spheres of radiig2 with centers separated
2). In these figures, the vertical plane pattern is plotted taking' '
as the zero reference the forward direction joining the centers
of the spheres, as in [15]. Agreement is excellent. In botlue to the graphical extraction of FDTD results from [15]. For
cases, the small differences between the two methods couldfiese examples, execution time for each iteration was less than

0

0 60 120 180 240 300 360
angle, degrees
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TABLE IV
BEHAVIOR oF CMT SoLuTioN FOR RouNDED CUBE OF SIDE 3A

Max Max Max Max
current internal difference difference
Iter | diffe- | magnetic | with 10" with 10®
rence field iteration iteration
radiation radiation
pattern for pattern for
vertical horizontal
. plane (dB) plane (dB)
Fig. 11. Rounded cube. 1 | 3.000 1.001 6.44 453
2 2.715 0.383 0.63 2.23
TABLE Il 3 0.536 0.141 2.65 0.98
BEHAVIOR OF CMT SOLUTION FOR SHARP-EDGED CUBE OF SIDE 3\ 4 0.220 0.079 1.90 0.45
5 0.086 0.058 0.52 0.15
6 0.049 0.051 0.40 0.07
Max Max Max Max 7 0.019 0.050 0.18 0.03
current internal difference difference 8 0.009 0.050 0.05 0.0t
Tter | diffe- magnetic with 10" with 10™ 9 0.004 0.050 0.04 0.01
rence field iteration iteration 10 0.002 0.050 0.00 0.00
radiation radiation
pattern for | pattern for
vertical horizontal
plane (dB) plane (dB)
1 3.000 1.001 9.54 3.49
2 2.488 0.651 745 2.83 6 iterations CMT, smooth edges
3 0.646 0.310 561 L.77 304 6 iterations CMT, sharp edges
4 0.440 0333 2.24 063 [N DMFIE
5 0.237 0.295 1.96 0.29
6 0.159 0.289 0.75 0.13 20
7 0.087 0.298 0.65 0.10
8 0.057 0.295 0.22 0.04 -
9 0.032 0302 0.19 0.03 10] RN
10 | 0023 0.301 0.00 0.00 5 / S N
2 d N
S { ® \
[99] H \ ¥
10 s. The accuracy limit was reached after the tenth iteration & \
for both cases. Even though the object now has two convex \
components, the standard CMT still works, probably because ‘
i 4
no standing waves are generated petween the twp spheres. 5 % v e 30 %0 180
Perfectly conducting cubes provide a challenging test, as angle, degrees
they do not have symmetry of revolution and generate edge
and corner diffraction. The fact that the surface is not smooth @

produces errors in the CMT solution, because of singular
edge currents. We consider a cube of sideuBder broadside 30,
plane wave incidence. To avoid numerical difficulties we tried
replacing the sharp edges with rounded edges, using a radius
of A/10 for the edge cylinders and corner spherical caps, as 20,
shown in Fig. 11. Tables lll and IV give the behavior of the
solution for the sharp and rounded cubes, respectively, this
time using the tenth iteration solution as a reference. The
accuracy limit is reached after seven iterations for the rounded\
cube and the tenth iteration for the sharp-edged cube. It |s°. o/
interesting to note that convergence is faster for the roundedo
cube and also that the internal field decreases to much smaIIer
values. For the sharp-edged cube, the edge singularities clearly-1%
affect the internal field, which remains substantial even after ‘
ten iterations. Fig. 12(a) and (b) shows bistatic RCS results 0 30 60 90
in the horizontal and vertical planes, respectively. Results

6 iterations CMT, smooth edges
6 iterations CMT, sharp edges

10

120 150 180

angle, degrees

after six CMT iterations are shown for both the sharp and (b)
rounded cubes and DMFIE resglts graphlcally extracted frOﬁb_ 12. CMT results for perfectly conducting cube of side 8ix one-way
[9] are also shown for comparison. The sharp and roundesations. (a) Vertical plane pattern. (b) Horizontal plane pattern.
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TABLE V

BEHAVIOR OF CMT SOLUTION FOR SEMI-OPEN CAVITY

1023

Max Max Max Max
current internal difference difference
Iter | diffe- magnetic with 30® with 30"
rence field iteration iteration
radiation radiation
Fig. 13. Semi-open cavity. The inner and outer cylinder radii are)0at&i pattern for | pattern for
0.96\, cavity length 2.64. vertical horizontal
plane (dB) | plane (dB)
1 2.000 0.981 11.17 18.18
2 2.804 0.479 14.06 11.38
3 0.996 0.387 11.75 14.40
4 0.663 0.223 7.53 5.05
5 0.335 0.193 4.72 2.30
6 0.226 0.167 3.10 1.44
7 0.175 0.114 1.32 1.52
8 0.110 0.091 1.27 0.81
9 0.121 0.074 0.82 0.93
10 0.068 0.071 0.91 0.54
15 0.017 0.075 0.18 0.15
20 0.005 0.080 0.06 0.04
25 0.002 0.080 0.03 0.01
30 0.001 0.079 0.00 0.00
TABLE VI
BEHAVIOR OF MoDIFIED CMT ALGORITHM
WITH ¢ = 1/2 FOR SPHERE OF RADIUS A
Max Max Max error Max error
current internal in radiation | in radiation
Iter | diffe- magnetic pattern for pattern for
rence field vertical horizontal
plane (dB) | planc (dB)
1 2.000 0.999 5.87 9.03
2 2.905 0.467 3.12 6.25
3 0.694 0.227 1.90 2.62
4 0.212 0.187 1.24 1.54
5 0.318 0.107 1.21 0.73
6 0.103 0.087 0.85 0.43
7 0.103 0.049 0.70 0.25
8 0.042 0.043 041 0.21
9 0.033 0.036 0.29 0.19
10 0.015 0.033 0.18 0.18

not converge for this case and we used the modified CMT with
a coefficientt = 1/3. This produced very satisfactory results
) (shown in Fig. 14), which give transverse and longitudinal
views of the magnetic field inside the cavity. Table V shows
Fig. 14. Amplituc_je of_the,l/ component of rr_1agnetic field around _the cavitythe behavior of the algorithm; convergence is now slower
after 20 one-way iterations. (a) = 0 plane view. (b)y = 0 plane view. . . . .
and it takes about 20 iterations to reduce the far-field pattern
differences to less than 0.1 dB. Of course, further work is
cube solutions are noticeably different, showing the effect eéquired to test CMT on more general cavities, particularly on
the edges. The sharp cube CMT results are in better agreemanjer cavities supporting many modes.
with DMFIE results in the nulls, but the smooth cube results An obvious question is whether one should use the modified
seem more accurate for facet scattering. For this case, e@WT for all cases, since it seems that it always converges.
iteration took 7 min. The answer to this is that convergence is slightly slower for
Finally, we treat the case of the cylindrical semi-open cavigonvex objects. In Tables VI and VII, we give the convergence
shown in Fig. 13, closed by half-spheres and torus-shapeperties of the CMT algorithm for a sphere of radiks
elements. For this nonconvex object, standing waves doe values 1/2 and 1/3 of the conditioning parametet,
formed inside the cavity. The standard CMT algorithm dode conclude that the performance of the algorithm is very
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TABLE VII [2] D. A. Kapp and G. S. Brown, “A new numerical method for rough-
BEHAVIOR OF MODIFIED CMT ALGORITHM surface scattering calculationdEEE Trans. Antennas Propagatcol.
WITH ¢t = 1/3 FOR SPHERE OF RADIUS A 44, pp. 711-721, May 1996.

[3] D. Holliday, L. L. DeRaad Jr., and G. J. St-Cyr, “Forward-backward: A
new method for computing low-grazing angle scatteringEE Trans.
Antennas Propagatvol. 44, pp. 722-729, May 1996.

Max . Max .Max error _Max error [4] P. Tran, “Calculation of the scattering of electromagnetic waves from
current | internal | inradiation | in radiation a two-dimensional perfectly conducting surface using the method of
Tter | diffe- magnetic | pattern for | pattern for ordered multiple interaction,Waves Random Mediaol. 7, no. 3, pp.
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