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Current Marching Technique for
Electromagnetic Scattering Computations

Andrew A. Zaporozhets and Mireille F. Levy,Member, IEEE

Abstract— An iterative solver is used to compute the
electromagnetic field scattered by perfectly conducting three-
dimensional (3-D) objects of arbitrary shape. The unique solution
of the dual-surface integral equation is approached by successive
forward/backward calculations of the current. Convergence is
very fast, giving accurate results in about a dozen iterations
for convex objects. The method handles successfully single and
multiple objects, convex objects, and cavities. Calculations can
be carried out on a desktop computer for relatively large objects,
with dimensions of ten wavelengths and more.

Index Terms—Electromagnetic scattering, integral equation
method, radar cross section.

I. INTRODUCTION

I N this paper, we are concerned with electromagnetic scat-
tering by perfectly conducting objects. A number of integral

equation methods for solving scattering problems in the fre-
quency domain have been described in the literature [1].

Iterative methods with extremely fast convergence (in just
a few iterations) have recently been applied to scattering by
open rough surfaces [2]–[4] and to acoustic scattering [5].
The methods in [2]–[4] are based on the forward/backward
updating procedure for the surface electric current. In [2],
this technique was called the method of ordered multiple
interactions (MOMI). We discovered this idea independently,
stimulated by our work on parabolic equation methods [6],
[7] and applied it to scattering by closed bodies in three
dimensions. We use the phrase current marching technique
(CMT) to describe the method. Forward current marching is
very similar to the forward marching of the field in parabolic
equation techniques. The parabolic approximation splits the
vector wave equation into two terms corresponding to forward
and backward propagation, respectively, and these can be
solved by marching methods. However, current marching does
not have the paraxial limitations of the parabolic equation
method and also has the great advantage that iteration automat-
ically deals with the coupling between backward and forward
generated currents.

The main difficulty was that the method in its original
(similar to [2]–[4]) formulation did not converge for a closed
surface. The solution is to use the dual-surface magnetic field
equation [8], [9], which is not plagued by the internal reso-
nance problems (for some references on the internal resonance
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Fig. 1. Geometry for dual-surface integral equation.

problem see [10]). The second internal surface acts as an
absorber for the field inside the object.

The method converges very fast, in about a dozen itera-
tions for convex objects. By using conditioning techniques,
convergence of the CMT algorithm is obtained for nonconvex
bodies.

The dual-surface integral equations are given in Section II.
Section III describes the CMT iterative solver and Section IV
discusses a number of examples, including spheres, double
spheres, cubes, and a semi-open cavity.

II. DUAL-SURFACE INTEGRAL EQUATIONS

We work with the dual-surface integral equation for the
magnetic field [8], [9]. For a perfect conductor with smooth
surface , we define the surface as in Fig. 1. For small
enough , this surface is inside . We define a natural
correspondence between points onand points on by
associating point on with point on , where

is the outer normal to the surfaceat point .
We assume harmonic dependence of the fields on time. Let
be the incident magnetic field and letbe a real number.

We define the following hybrid field, which is a combination
of the magnetic fields on and

(1)

We also define the hybrid Green’s function

(2)

where is the three-dimensional (3-D) Green’s function for
the Helmholtz equation in vacuum

(3)

Here, stands for the magnitude or 3-D Euclidian norm of
the vector and is the vacuum wave number. We now look
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at the dual-surface magnetic field integral equation for the
current density

(4)

The integral is an improper integral, taken in the sense of
Cauchy principal value. For real and small enough, (4)
has a unique solution [8], regardless of whethercorresponds
to a resonant frequency of the interior problem for. Since
the current corresponding to the unique solution to Maxwell’s
equations for incident fields automatically satisfies (4),
the unique solution of (4) is the desired current. Choices of

between 0.5 and 1, and close to , where is the
wavelength of the incident field, give good results. In what
follows, we use and .

We briefly recall the reasons why the dual-surface integral
equation is well behaved. A detailed proof is given in [8]. The
uniqueness property is based on the fact that boundary condi-
tions are effectively enforced on both surfaces. By linearity, if
two currents and are solutions of (4) then the magnetic
field radiated by the difference current
satisfies the vector wave equation and for anyon we have

(5)

If is small enough, the phase of will not vary much
between the two surfaces. For realthis implies that is
zero on both surfaces. If is less than , one can then use
waveguide arguments to conclude thatis zero everywhere
because the cavity formed by and cannot support any
resonant modes. Hence, is zero, too, and unicity is proved.

III. I TERATIVE CURRENT MARCHING

We denote by the operator

(6)

The operator is defined on suitably smooth vector functions
on the surface . It is clear that the current density we seek

is the unique solution to

(7)

In other words, we need to invert the operator . We now
define a discretized version of as follows: first discretize the
surface into patches with centers . We put

(8)

The discretized version of is obtained by assuming that
the current is constant on each patch. It is defined on discrete
functions representing the current at
points by putting

(9)

In the method of moment terminology, this corresponds to
pulse basis functions, using delta functions as testing functions.
If the size of the patches is small enough, is a good
approximation of and the linear system

(10)

has a unique solution which is close to the desired solution
of the continuous integral equation.

Current marching technique solves the system of linear
equations (10) by an iteration process that computes successive
induced currents. These are marched forward and backward
relative to the direction of the incident wave until convergence
is obtained.

Working with Cartesian coordinates , we assume
that the incident field propagates along the positivedirection.
We now use this direction as our splitting direction for the
forward/backward iteration. From now on, we assume our grid
points are ordered in increasing ranges.

We define the local updating operator at point by

(11)

Hence, replaces the current at point by the current
induced by the magnetic field radiated by the old current
without modifying the current at other points. This corresponds
to Gauss–Seidel iteration of the process, updating one point at
a time [11]. We are now going to define forward and backward
operators and by applying these local operators repeatedly
to points with increasing and decreasing ranges, respectively.
We define inductively by

...

(12)

...

In other words, we have applied the local updating operators
successively to all points in increasing range order

(13)
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Fig. 2. Schematic representation of current marching technique. In the white
area, the current has not yet been updated. In the striped area before rangex,
the current has already been marched forward.

Physically, this corresponds to marching the current
forward in range, as illustrated in Fig. 2. We start off with

. We update the magnetic field and the current at successive
ranges, replacing the current a given range by that induced by
the new magnetic field values before that range and the old
field values after that range. Similarly, we can define
by

...

...

(14)

So we have again applied the local updating operators repeat-
edly, this time marching back

(15)

We now define a sequence of functions as follows. We start
with and for nonnegative , we put

(16)

In other words, is the marched forward current induced by
the hybrid incident field , the current marched back from

, and so on. It is easy to see that if the sequence
converges, the limit will be the desired inverse of the operator

.
It turns out that for convex objects, the sequence does con-

verge and that convergence is very rapid. Excellent accuracy

is attained with a very small number of iterations regardless
of object size or shape, as we shall see in the examples
below. However, the sequence does not converge in general
for nonconvex objects and we must seek a modified version
of the algorithm.

We notice that for any fixed numberwe can replace the
operators and by and defined by

(17)

If the corresponding sequence converges, it will also be
to the desired value. For both convex and nonconvex objects,
values of strictly between zero and one produce a converging
sequence. This behavior would be readily explained if the
spectral radius of the linear operatorwas, at most, one [12]:
since one is not an eigenvalue of, the operator would
then have spectral radius strictly less than one and
could be inverted by an iterative procedure, writing formally
the Neumann series

(18)

The forward/backward marching procedure is equivalent to
computing this series. If the first guess does not have
any components corresponding to spectral values of modulus
one, as is probably the case for convex objects, the series will
converge for . However, in general convergence is not
guaranteed for and we have to use a positive value of
. We found that in general, the best results are obtained for

, which would be expected if the eigenvalues of
were all real and located between1 and 0.

Since the required number of iterations does not depend on
object size, execution times are of the order of , which
means that relatively large objects are still tractable on a
desktop computer. We would like to point out that the march-
ing nature of the method is essential for fast convergence:
with Jacobi iteration where all the points are updated at once
[11], the method fails. It is also worth pointing out that
the forward/backward sequence fails to converge when the
dual-surface quantities are replaced with the single
surface and : the reason for this is that because of
discretization, parasitic resonance always interferes with the
results, producing an internal field which blows up instead
of decaying to zero. We believe that the second surface acts
like an absorbing layer which damps the internal field in the
manner of the B´erenger perfectly matched layer [13].

Even though the single-surface iteration fails to converge,
interesting results are obtained with a single forward iteration.
For convex objects, this single-surface forward CMT (or
SCMT) provides quite a good approximation to the forward
scattered field. This is similar to the forward marching para-
bolic equation solution [6], [7].

IV. EXAMPLES

In all that follows, the incident field is a plane wave of
amplitude one, vertically polarized. We use rectangular patches
with maximum dimensions to mesh the surfaces. Due to
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(a)

(b)

Fig. 3. Single iteration of CMT for sphere of radius�. (a) Vertical plane
pattern. (b) Horizontal plane pattern.

PC memory limitations (a Pentium 200 MHz PC with 64 Mb
memory was used) we did not store the linear system matrix
[see (10)] but recomputed it at each iteration. Because of the
small number of iterations required, the penalty on integration
time is acceptable.

We first look at convex bodies for which the standard CMT
algorithm is convergent. Perfectly conducting spheres provide
a good test of the method since theoretical solutions in the
form of Mie expansions [14] are available for comparison.
We start with a sphere of radius. Fig. 3 shows the RCS
results obtained with the forward SCMT and also with a single
forward iteration of the dual-surface CMT. For comparison,
the theoretical solution is also shown. Fig. 3(a) and (b) shows
results for the horizontal and vertical polarization planes,
respectively. The first CMT iteration does not give as good
an approximation as SCMT, which is understandable since
it corresponds to the current induced by the dual-surface
magnetic field and Green’s function, rather than the more
physical single-surface quantities. SCMT provides quite a
good approximation for forward scatter for scattering angles
up to 120 or so.

TABLE I
BEHAVIOR OF CMT SOLUTION FOR SPHERE OFRADIUS �

(a)

(b)

Fig. 4. Dual-surface CMT for sphere of radius�, two and four one-way
iterations. (a) Vertical plane pattern. (b) Horizontal plane pattern.

Table I shows the behavior of the solution when CMT is
iterated, counting each one-way iteration (forward or back-
ward) separately. The second column gives the maximum
difference in the currents computed by successive iterations
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(a)

(b)

Fig. 5. Dual-surface CMT for sphere of radius�, six one-way iterations. (a)
Vertical plane pattern. (b) Horizontal plane pattern.

starting with zero current and using the 3-D Euclidean norm to
measure magnitudes. Another useful quantity to look at is the
maximum value of the magnetic field on the internal surface
using the 3-D Euclidean norm again; this should tend to zero
as the algorithm converges. Table I also gives the maximum
deviation from the theoretical Mie solution in terms of far-field
radiation pattern.

Table I shows that after the sixth iteration, the field inside
the sphere no longer decreases significantly and the solution
becomes stationary and the algorithm has essentially con-
verged. The reason for a small error in results is discretization:
we used the simplest pulse/delta functions approximation.
Good agreement with theoretical results is in fact obtained
after six iterations with a maximum error of less than 0.2 dB
in both polarization plane patterns. These results are illustrated
in Figs. 4 and 5, which show the dual-surface CMT results,
respectively, for two and four one-way iterations and for six
iterations. Execution time on a 200 MHz Pentium machine
was less than 30 s for each iteration.

We now consider a metallic sphere of radius 5. Table II
gives information on the convergence of the solution. Again

TABLE II
BEHAVIOR OF CMT SOLUTION FOR SPHERE OFRADIUS 5�

(a)

(b)

Fig. 6. Single iteration of CMT for sphere of radius 5�. (a) Vertical plane
pattern. (b) Horizontal plane pattern.

convergence is very fast; the accuracy limit is reached after six
iterations as for the sphere or radiusand the results compare
very well to theory.

Fig. 6 shows SCMT results together with forward vector
parabolic equation results and theoretical values. A single
forward run of the vector parabolic equation algorithm [7]
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(a)

(b)

Fig. 7. Dual-surface CMT results for sphere of radius 5�, six one-way
iterations. (a) Vertical plane pattern. (b) Horizontal plane pattern.

produces accurate results in an angular cone of directions
within 20 or so of the paraxial direction, because the method
uses a narrow-angle approximation of the forward propaga-
tion operator. By contrast, very acceptable SCMT results are
obtained at all scattering angles, which shows that SCMT
provides an excellent high-frequency approximation.

Fig. 7 shows dual-surface CMT results for six iterations
together with the theoretical results. Execution time on a 200
MHz Pentium machine was 4 h for each iteration. The results
for 1 and 5 radius spheres give some indications that CMT
convergence might not depend on object size.

The CMT works well with more complicated situations: we
look at the case of two metallic spheres as shown in Fig. 8.
Figs. 9 and 10 show RCS results obtained with five CMT
iterations and with FDTD techniques [15] for two spheres of
radius , with centers separated, respectively, by 1.25and
2 . In these figures, the vertical plane pattern is plotted taking
as the zero reference the forward direction joining the centers
of the spheres, as in [15]. Agreement is excellent. In both
cases, the small differences between the two methods could be

Fig. 8. Double sphere geometry.

Fig. 9. CMT results for two spheres of radius�=2 with centers separated
by 1.25�, six one-way iterations.

Fig. 10. CMT results for two spheres of radius�=2 with centers separated
2�, six one-way iterations.

due to the graphical extraction of FDTD results from [15]. For
these examples, execution time for each iteration was less than
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Fig. 11. Rounded cube.

TABLE III
BEHAVIOR OF CMT SOLUTION FOR SHARP-EDGED CUBE OF SIDE 3�

10 s. The accuracy limit was reached after the tenth iteration
for both cases. Even though the object now has two convex
components, the standard CMT still works, probably because
no standing waves are generated between the two spheres.

Perfectly conducting cubes provide a challenging test, as
they do not have symmetry of revolution and generate edge
and corner diffraction. The fact that the surface is not smooth
produces errors in the CMT solution, because of singular
edge currents. We consider a cube of side 3under broadside
plane wave incidence. To avoid numerical difficulties we tried
replacing the sharp edges with rounded edges, using a radius
of for the edge cylinders and corner spherical caps, as
shown in Fig. 11. Tables III and IV give the behavior of the
solution for the sharp and rounded cubes, respectively, this
time using the tenth iteration solution as a reference. The
accuracy limit is reached after seven iterations for the rounded
cube and the tenth iteration for the sharp-edged cube. It is
interesting to note that convergence is faster for the rounded
cube and also that the internal field decreases to much smaller
values. For the sharp-edged cube, the edge singularities clearly
affect the internal field, which remains substantial even after
ten iterations. Fig. 12(a) and (b) shows bistatic RCS results
in the horizontal and vertical planes, respectively. Results
after six CMT iterations are shown for both the sharp and
rounded cubes and DMFIE results graphically extracted from
[9] are also shown for comparison. The sharp and rounded

TABLE IV
BEHAVIOR OF CMT SOLUTION FOR ROUNDED CUBE OF SIDE 3�

(a)

(b)

Fig. 12. CMT results for perfectly conducting cube of side 3�, six one-way
iterations. (a) Vertical plane pattern. (b) Horizontal plane pattern.
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Fig. 13. Semi-open cavity. The inner and outer cylinder radii are 0.48� and
0.96�, cavity length 2.64�.

(a)

(b)

Fig. 14. Amplitude of they component of magnetic field around the cavity
after 20 one-way iterations. (a)x = 0 plane view. (b)y = 0 plane view.

cube solutions are noticeably different, showing the effect of
the edges. The sharp cube CMT results are in better agreement
with DMFIE results in the nulls, but the smooth cube results
seem more accurate for facet scattering. For this case, each
iteration took 7 min.

Finally, we treat the case of the cylindrical semi-open cavity
shown in Fig. 13, closed by half-spheres and torus-shaped
elements. For this nonconvex object, standing waves are
formed inside the cavity. The standard CMT algorithm does

TABLE V
BEHAVIOR OF CMT SOLUTION FOR SEMI-OPEN CAVITY

TABLE VI
BEHAVIOR OF MODIFIED CMT ALGORITHM

WITH t = 1=2 FOR SPHERE OFRADIUS �

not converge for this case and we used the modified CMT with
a coefficient . This produced very satisfactory results
(shown in Fig. 14), which give transverse and longitudinal
views of the magnetic field inside the cavity. Table V shows
the behavior of the algorithm; convergence is now slower
and it takes about 20 iterations to reduce the far-field pattern
differences to less than 0.1 dB. Of course, further work is
required to test CMT on more general cavities, particularly on
larger cavities supporting many modes.

An obvious question is whether one should use the modified
CMT for all cases, since it seems that it always converges.
The answer to this is that convergence is slightly slower for
convex objects. In Tables VI and VII, we give the convergence
properties of the CMT algorithm for a sphere of radius
for values and of the conditioning parameter,
to conclude that the performance of the algorithm is very
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TABLE VII
BEHAVIOR OF MODIFIED CMT ALGORITHM

WITH t = 1=3 FOR SPHERE OFRADIUS �

slightly superior for . We suspect that this behavior
could be explained in terms of potential theory: for example
it is shown in [16] that the forward/backward double-layer
potential operator is well behaved for convex objects, but not
for nonconvex shapes. Performance is very good for ,
indicating that perhaps this value should be used whatever the
shape of the object.

V. CONCLUSION

The current marching technique provides a solution to
electromagnetic scattering problems for 3-D perfectly conduct-
ing objects. This is an iterative forward/backward marching
method that converges in a small number of iterations. The
dual-surface formulation avoids difficulties due to internal res-
onances and appropriate conditioning of the marching operator
gives convergence for both convex and nonconvex objects.
The initial results compare well with theory and other models
for convex objects and first tests on cavities are encouraging.
Due to the small number of iterations needed, it is possible to
tradeoff between time and memory requirements and to treat
large objects on personal computers.

At this point, we have not tried to optimize the speed of
the CMT algorithm. It is likely that CPU times per
iteration are achievable with techniques similar to [1]. Current
research is also focusing on speeding up the method using
hybrid (combined with parabolic equation) techniques and
extension of CMT to antenna modeling.
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