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An Implementation of a Direction-Finding Antenna
for Mobile Communications Using a Neural Network

Eric CharpentierMember, IEEE,and Jean-Jacques Laur®enior Member, IEEE

Abstract—Direction-finding systems for radio signals are mostly satellite communications. The system, including the antenna
used in mobile communications and avionics applications for and a processing unit, must be easy to calibrate in order to
antenna tracking or navigation purposes. In general, such sys- 4qant 19 varying environmental conditions and configurations.

tems require accurate calibration and may be sensitive to noise . P
and external interference. In this paper, we will investigate The proposed system implements an artificial neural network

the performance of a neural network-based direction-finding (NN) at the output of an antenna array’s combining circuit.

system under such conditions. The proposed topology is a hybrid Such a system was recently described in [6] where it is shown
one, combining a simple RF signal beamformer with a neural that the hardware calibration used in a monopulse-based DF
netwo_rk. The training of the neural network is accompllsh_ed system can be avoided by implementing an NN-based DF
experimentally with a three-element antenna array by varying . L .
the beam’s direction and the carrier frequency. The error on PTOCESSOr. In this case, the effects of parasitic scattering and

the estimated direction of arrival caused by the environment and hardware imperfections are efficiently taken into account by

training limitations are investigated. training the system with a set of known DOA's. In [6], an
Index Terms—Mobile communication, navigation, neural net- eight-element linear array was used for DOA estimation in a
work applications. 120 sector and a phase/amplitude receiver was measuring the

RF signal at each antenna output. An accuracy of abdt°1
was achieved. In certain applications where such an accuracy
is not required, the number of elements can be smaller. One
standard technique used to accomplish beam trackingof our objectives in this work is to reduce complexity and,
mobile satellite communications is the monopulse systefierefore, use an array of only three elements (which is the
that uses a combining circuit to generate sum and differenggnimum possible number to avoid sign ambiguity) to achieve
outputs [1] that are processed to obtain the direction of arrivieDA prediction in a full 360 sector. Another objective being
(DOA) of an incident beam. Typical implementations use tWgw cost, our system is not using a phase/amplitude receiver.
or four antenna elements [2]. Although such systems havangtead, a simple RF circuit (beamforming) combines the
good performance over broad azimuth search sectors, they ggéeived signals and generates analog output power levels to be
give false results caused by resolution ambiguity when usgebcessed by an NN section performing DOA estimation. The
in a full 360° azimuth sector. They also need calibration angsk to accomplish during training of that network is not only
careful antenna design. to compensate for the imperfections of the antenna elements,
In applications such as vehicular terminals used for satelliggt also for the nonideal behavior of the RF combining
communications (e.g., MSAT, INMARSAT), the electricakircuit, including the nonlinear response of the power detectors
dimensions of the antenna are of the order of one to tWajodes) and fluctuations of the incident wave’s power level.
wavelengths, which leads to broad antenna beams. Thereforeyiher recent work featuring NN processing in DF applica-
there is no need for a high angular resolution tracking capgsns can be found in the literature [7]-[9]. In these papers,
bility. Furthermore, the primary requirement is on the azimutqN's are used to accelerate the processing and reduce the
tracking since thg vehiclle .constantly varies its Orie”tatioeomputational complexity of the MUSIC superresolution algo-
In fact, the elevation variations are much less severe andi@m. Also, ideal antennas and in-phase/quadrature receivers
number of mechanically steered mobile terminals antenn@$ sssumed. Since our RF combining circuit gives power
described in the literature or commercially available [3], [4bye| of combined antenna signals instead of in-phase and
do not implement elevation tracking. quadrature levels, the MUSIC algorithm was not implemented

The objective of this paper is to propose and validajg oy system. Also, this paper will focus primarily on the case
experimentally the implementation of a simple direction findynere only one wave is incident on the antenna array.
ing _(DF) .syste.m that can identify th_e azirr_1uth direction pf In [6]-[8], radial basis function (RBF) NN's are used
an incoming signal [5], therefore being suitable for mobilg hereas multilayer perceptrons (MLP) are used in [9]. In this

work, the proposed NN is using a combination of adalines
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9 elements. For instance, it is possible to increase the physical
Ly x A distance between the array elements to minimize coupling in
EV order to keep a good impedance matching and then train the
7~ NN to implement an array factor corresponding approximately
C ‘ LNDA g |y to a closer antenna spacing. However, the distance between
045‘ A M the patches, should be kept small in order to prevent grating
? o B [~ X2 lobes. Using patterns with only one major lobe makes it easier
’ | to identify the DOA without ambiguity over the full 360
‘ E X3 azimuth sector. In other words, the structure of the neural
\/VV R - x4 network will be simpler and it will be easier to train.
' D The information on the DOA is present in the relative phases
< 050 A of signals A, B, and C received by associated elements. A
; ) combining circuit shown in Fig. 2 is used to generate beam
b) functions X;—X, that are given in (1)—(4)
7 2
Fig. 1. (a) Physical layout of the DF antenna with three CP elements. (b) X, = ”B +JA|| (1)
Array antennas followed by LNA (distances are given for a frequency of 1.55 4
GHz). A4 iB|?
x, = A48 2
well as its sensitivity to frequency drift, noise, and interference Ceie A+ B\|?
caused by a second incoming wave will be investigated. e T 2
X3 = > 3)
[I. ANTENNA ARRAY AND RF COMBINING NETWORK Cloi _ <A+ B) 2
The antenna used consists of an array of three horizontal X, = 2 ()
printed circular patches as shown in Fig. 1. Each patch has a 2

dual, in-phase and quadrature, edge-coupled orthogonal faéese four functions depend on the elevati@ngnd azimuth
providing circular polarization (CP) in broadside £ 0°,i.e., (p) angles of the incident wave as well as the operating
90° elevation). In order to increase the sensitivity, a monolithitequency. In the equations abové, B, andC are the signals
low-noise amplifier (LNA) was inserted at each patch outpuht the output of the LNA’s connected to the corresponding
The centers of the patches form a triangle, as shown amtenna elements in Fig. 1(b). In Fig. 2, theboxes are 90

Fig. 1. One can notice that the triangle is not equilaterdiybrid junctions and theD boxes are balanced Wilkinson
This asymmetry results from design considerations on tpewer dividers. A delay line producing a frequency-dependent
mutual coupling between the elements and the orientationpifase shifte is introduced in the path of sign&l. For the

the elements with respect to each other. In order to minimipeirpose of the experimental validation in an anechoic chamber,
the influence of the single-element pattern on the DF systeSohottky diodes were used to monitor the output dc levels
performance, it was decided to use the same orientation for tig—X4. In practice, a heterodyne detection scheme could be
three elements [as shown in Fig. 1(a)]. In this case, given tmaplemented to reject out-of-band signals.

antenna dimensions and the topology of the feeding structureThe calculated patterns of;—X, versus the azimuth angle
an equilateral configuration would cause a strong coupliggfor an elevation angle of°0(i.e., 8 = 90°) are shown in
between the feed of antenna C and the two other patchEg). 3. These patterns do not take into account the element
When a neural network is used to implement the array factpattern. The relative differences between the four signals are
synthesis, there is a great flexibility in the position of thesed to determiney and the role of the NN will be to
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synthesize a DOA function of th&; variables, which has & — @< O OH—angle
a smooth single-valued relationship with For instance, the A O}< ‘o
difference betweeX, and X3 can indicate whether the source i S O Linear
is on the left or the right side of the figure, but it is not possible 10 10
to tell if it is located on the top or the bottom. Considering Competitive Adaline
the difference betwee’; and X, it is possible to resolve neurons
this ambiguity. The training of the network will consist in the (b)

synthesis of the DOA function, which will be able to map th&ig. 5. (a) Schematic of the three-layer MLP. (b) Schematic of the LVQ
four X; inputs ontoy with the greatest possible accuracy. "e™o™-

The nonlinear synaptic responses of the neurons contributes
to the great training capabilities of NN-based classifiers. Gecond layer consists of eight adalines and the output layer
the other hand, the direction predicted by the DOA circultas five perceptrons with sigmoid activation functions whose
should not depend on the intensity of the incoming wave. Thigitputs are between zero and one. Fheoutputs of the MLP
requires a way to normalize th€; inputs with respect to the are obtained from theX; inputs according to the relationship
incident wave's power level. This level could be measured . 0 .
if one of the signals at the output of the combiner had an ]
omnidirectional response over the full 368ector. In general, Ay =logsig) > Wr| D_ Wi lz tanh(W;, X; + B;)
it is very likely that none of thed, B, C, and X; outputs k=1 =t =t
will have an isotropic response. In this case, an optimally
isotropic variable to be used as a normalization basis can be + Bk) + B"}
synthesized by using a single adaptive linear neuron (adaline)
[10] performing a weighted sum of the foll; values. Upon " = AL, XX ®)
training, the adaline’s output should be proportional to thgnere logsig is defined as
incident wave’s power and as much as possible not dependent
on the DOA. In practice, the output of the adaline, defined as logsig(z) = 1/{1 + exp(—z)}

Pin. could then feed dlrectlly t(_) an automatlc gain control sta%end W5, Wy, and Wi are the weights used in the first,
to implement the normalization operation.

second, and third layer, respectively, whits, By, and B,
are the corresponding activation thresholds. Each one of the
ten A,, outputs is associated with a7azimuth sector. These
The architecture of the beamforming neural networkectors are defined in Fig. 6 and they form two sets of five
(BFNN) shown on Fig. 4 consists of two MLP linked inoverlapped sectors, each set covering°3émd being shifted
parallel. Each MLP section comprises three neuron laydrg 36> with respect to each other. As seen on the figure,
as can be seen in Fig. 5(a). The first layer consists of tany DOA will fall in two partially overlapping sectors. The
perceptrons with hyperbolic tangent activation functions. Theetwork is trained in such a way that the outputs corresponding

I1l. BEAMFORMING NETWORK
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to these sectors will be activated ( close to one) while the
others will not (4,, close to zero). The transitions from zero
to one and one to zero on thie, outputs are abrupt because
in the learning phase, we train the MLP to follow as much as
possible the desired output node responses defined as

5 dB/Div

nth desired output node response 270
1 if DOA in nth 72° sector Fig. 7. Measured radiation patterns, outptt—X4 (f = 1.55 GHz and
= . . elevation= 45°).
0 if DOA not nth in 72° sector

By taking into account the ?2sectors’ overlap, it should The network, shown in Fig. 5(b), computes the distance
be possible to predict the DOA within an interval of °36 petween the input vectorA and reference vectors using
by appropriate processing of thé, outputs. The advantage competitive neurons. Upon training, the network will generate
of splitting the beamforming circuit into two MLP sectionsmaximum likelihood decisions in a quasi-optimal fashion. The
taking decisions on 72sectors, instead of having only on€jecision unit produces one out of ten discrete levels, these
larger MLP taking decisions on S@sectors, is noticeable at|eyels being respectively associated with each one of tle 36
the training stage since both sections can be trained separajglyryals. In the foregoing examples, the intervals are centered
in parallel. With a unique larger MLP, the learning procesg; 1@ 54 o, ..., 342.

Woul_d try to modify some insignificant syn_aptic weight con- Using the proposed hybrid architecture including an RF
nections. The network would take more time to learn, hawmpining network followed by a NN, it is possible to classify
more difficulty to converge to an optimal solution and couléhe input signal into ten orthogonal sectors. An implementation
possibly get trapped in local minima. However, if we traigy 5 classifier forming ten orthogonal beams using RF circuits
two blocks separately, we constrain the network to have Ie§1§|y such as a Butler matrix would require a minimum of
degrees of freedom, and the number of unknown variablgs, antenna elements. The NN approach used here needs a
decreases considerably. Convergence may then be achigyggmum of only three antenna elements. However, a Butler
more rapidly. The training process will be described in the neé¢{atrix could determine the direction of multipath beams
section. Since we wish to have abrupt zero-to-one transitiofgiying simultaneously. This is not possible with the proposed

for the output node responses, MLP neurons were used instgggtem due to the nonlinear processing of the received signals
of radial basis function to minimize the number of neurons., the combining circuit (1)—(4) and in the MLP (5).

A priori, if the A,, outputs really behaved as logic variables
with sharp transitions between the zero and one states, it
would be a simple task to identify a 36nterval belonging
to two overlapping sectors containing the DOA with a circuit In order to validate the concept, experiments were conducted
consisting of ten two-input AND gates. In practice, aftein an anechoic chamber. The antenna described in Section Il
training, eachA,, still has a smooth continuous variatiorwas illuminated by an incident CP beam and rotated with
between 0 and 1 and a learning vector quantization (LV@yimuth steps of < for fixed elevation angle (conical pat-
was used. A ten-element vectet is formed with theA, tern). Altogether, five patterns were recorded with different
output levels. This vector is compared to each member infrequencies and elevation angles. These patterns were used
set of reference vectors that represent the ideéliBtrval later for training. Fig. 7 gives the recorded patterns of outputs
responses. IfA is closely matched to one of the referencél;—X, for an elevation angle of 45and a plane wave
vectors, then the DOA is assumed to be in the correspondiingquency of 1.55 GHz. The patterns do not show four well-
36° interval. For example, the reference vector associated widkfined maximums separated by°9@s in the ideal case
the (°-to-36 interval in Fig. 6 is [1, 0, 0, 0, O, 1, O, 0, O, O] simulated in Fig. 3. The distortions in the patterns are due to
because this interval is common to sectors | and VI. The otHesirdware imperfections such as the nonisotropic behavior of
reference vectors are similarly defined. the radiating elements, parasitic coupling between the elements

IV. LEARNING STRATEGY
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and their feed lines, finite dimensions of the antenna ground 2 : , ; , ;
plane, etc. It will be the task of the training process to ; ; | 5 ‘
compensate for these effects.

The azimuth angle of arrivab depends on th&(;’s via the
characteristics of the RF combining circuit. However, for a
given value ofyp, eachX; depends on the frequency of the
operationf and the elevation anglé of the incident beam.
Therefore, we can write

_ Pin (dB)

@ :g(Xla X?a X3a X4a f’ 9) (6)

In practice,f is not varying over a wide range for typical
mobile communications with a geostationnary satellite or .; g 5 ; ; ; :
terrestrial base station. Also, the frgquency of the p|lot signals 25 5 o0 50 20 20 300 350
are generally stable and well defined. However, in order to DOA (deg)
assess the robustness of our DOA circuit to elevation and
frequency variations, we have assumed that these variagi@s8- Normalization constarf;, on a function of the DOA for a training

' ) = 1.55 GHz and elevation= 45°.
could fluctuate. For that purpose, we have experimented wit °0 ohz and elevation= =2
training under three different conditions:

1) f =1.55 GHz, 6 = 45°, data set corresponding to 360 Upon training, we obtain a discrete estimated value of DOA

¢ directions with 2 steps; computed from the outputs of the RF combiner

2) f = 1.50,1.55, and 1.60 GHz, # = 45°, data set

corresponding to 72 directions with 5 steps at each ¥ =h(Xy, Xy, X5, Xo). )
frequency (216 points);
3) f = 1.55 GHz, # = 30,45, and 60°, data set cor- V. EXPERIMENTAL RESULTS
responding to 72, directions with 3 steps at each |n order to validate the direction finding algorithm, the
elevationf (216 points). power vectors were measured under the various illumination
The measured data sets consist of arraysXgfvectors conditions given in the previous section. These measurements
with ¢ = 1,2, ---, 4. Training the NN with the two last were done in an anechoic chamber to minimize the occurrence

sets should lead to DOA circuits that are less sensitive 6 multipath. A spiral antenna was used to produce the
the fluctuations of the environment while the first conditiomcident CP wave. The power levels were in fact obtained
should give a minimum number of erroneous decisions undeom measured rectified dc voltage levels on diode detectors,
good environmental conditions. The weights of the adaline lay using a simple two-layer network to model the diode
the NN input used to accomplish automatic level control weharacteristics. Subsequently, a software implementation of the
obtained after training with data sets 2 and 3 to provide moneural network, including the automatic gain control unit, was
robustness. The training was performed with the Widrow—Haoféalized using the MATLABI] neural network toolbox. With
algorithm [7], [8]. Training of the MLP’s was accomplishedadequate training, the network should be able to generalize
with the Levenberg—Marquart algorithm [11] according to thand predicty with the best possible accuracy. However, since
following equation: the LVQ decision unit is designed to associate the DOA with
a 36 interval, there is only a finite discrete set of predicted

de values. The training of the NN was accomplished by using the
*ow ¢ (7)  measured data directly.

The performance of the normalization adaline after training
wherey. is an adjustable parameter controlling the convergeniSe SNOWn in Fig. 8 where the normalization variatig, is
rate. ¢ is the residual vectorial error defined as= T — 4, Plotted versusp. As we can see, there is siill a residual
where T is the desired output vector adi is the vector of fluctuation of +1 dB of F,. This is expected given the

ode T e -

neurons’ responses. variability of the X; patterns shown in Fig. 7. Except for the
The Kohonen rule was subsequently used to train the L\;@sts in the presence of noise and interference, all validation
decision unit described in the previous section that is scenarios to be presented in the following were repeated by
artificially applying a 0,410 and —10 dB gain to theX;

+1, € p; inputs in order to verify the capability of the NN function with
-1, ¢ (8 nonideal normalization. There were no significant differences
between the results obtained with the three gain values. Only
[ is the learning rate (less than 1) afd is a constant that the 0-dB gain results will be presented for brevity.
affects the winner neuron only [12]. The value &f (1 or Three series of tests were first done without interference
—1) depends on the desired (or winning) neuron giving a tr@ad noise in order to assess the capabilities of the system
or false decisionA; is the incoming input provided by theunder such conditions. In each series, a new data set was
beamformer. used and a new training was performed. Only a subset of
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Fig. 9. Network recall for different frequencie. (a) Validation of learning at ©
1.50 GHz. (b) Validation at 1.55 GHz. (c) Validation at 1.60 GHz. Fig. 10. Estimated direction of arrival (DOA) for different elevation angles:
(a) 6C, (b) 45, and (c) 30.

the measured data was used for training and the entire set was

used for testing. In the first series, only one elevation anglenew training sequence is initiated. This is in contrast with

and one signal frequency were used for training and recath adaptive approach in which the weights can be readjusted

(data set #1). For this case, the predicted DOA sector wadgnamically to account for the presence of interference [10],

determined accurately for all DOA cases, indicating that tH&3]. Furthermore, elaborate processing techniques can be

NN can compensate for the distortions in the radiation patterngplemented to separate the signal space from the noise

measured at the output of the combiners. (interference) space. Of course, in our circuit, signal and
In the second series of tests using data set #2, less trainiwgse are integrated together by the diode detectors and such

points were given and the signal frequency was allowesgparation could be possible but with an amplitude modulated

to vary. This variation introduces more distortions in theignal.

X, patterns since all the RF components have a frequencyThe effect of a second incident wave (interference signal),

dependent behavior. This is especially true for the patetiriving with a directiony, was simulated by assuming that

antennas which are resonant structures. The predicted DOWs interference was not coherent with the first incident beam

obtained by recall of the trained network is shown as a functi@iriving with a directiony. Therefore, we can calculate the

of the actual DOA in Fig. 9. It can be seen that the number af; values in presence of the two beams by simply adding

false predictions is quite small at the three training frequencidBe power levels obtained with each case taken separately.

which confirms the capability of the proposed circuit to worlddjusting the weight of the two contributions simply changes

with broadband signals. However, in practical cases wherdh& signal-to-interference (S/1) ratio. For each S/ leyeind

pilot signal is used for tracking, the frequency is accuratety were both varied by Ssteps between“0and 360 (72 x 72

known and there is no need for such a broad-band robustngssnts) and the DOA interval was estimated by the trained NN.
In the third series of tests (data set #3), the number Afroot mean square (rms) error on the DOA was calculated

training points is again reduced compared to the first casith the following formula:

and the frequency is fixed. In practice, the elevation of the

incident beam used for tracking, with respect to the plane 0DOA error s

the antenna, may vary with time. This should not affect the I I

performance of the direction finding system. We have trained = =2 Z 75 Z (MOD; 50+ (|T; — D;] - 36°))2 (10)

the neural network with three different elevation angles. Again, ® P

the predicted DOA’s were in the appropriate sectors for most

of the cases tested (see Fig. 10). It can be seen in Figsv®ere D; is the estimated 36interval number and’; is the

and 10 that the majority of the estimation errors occurs at thetual interval number containing the desired signal arriving

edges of the 36intervals. This is a consequence of the limitegvith an angle (consecutive intervals are numbered in a

sharpness of the node responses at the output of the MLPsequence from 1 to 10). The results for the three types of
The direction finding method and the circuit we are propogaining are given in Fig. 11 showing the rms error as a

ing are static in the sense that the NN has its weights fixed uritihction of S/I. It can be seen that the error stabilizes for
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100 ; \ : ‘ diodes have reached the signal noise floor (S/N), the error
S R e is the same for all training strategies. As in the interference
——— g case, the error stabilizes near the no-noise value for an S/N

level of about 14 dB. This is, therefore, the minimum dynamic

range required to achieve optimum accuracy with our system.
This should not be taken as an ultimate limitation and smaller
dynamic ranges could probably be achieved with different RF
circuit and neural network architectures.

RMS error on DOA (deg)

VI. CONCLUSIONS

In this paper, we have presented an implementation of a
DF system using a neural network to classify the direction of
arrival into one of ten 38 intervals covering the full 360
azimuth range. The system presented uses a minimum of
0 5 & erarence (;é) 20 s three antenna elements required to avc_Jin_ac’lﬂ@lbiguity_.

The results have demonstrated the flexibility made available
Fig. 11-d Cllassitfief Diffgmggm;ei_n fr§5e1n§§ of igtffézfeéﬁef((alﬂ) 1-{?5 by the inherent training capabilities of the neural network.
oHz ?;‘45?)?%3)";?;&?052 300, 45°. Aand60° ("’]“.":'1.55 G,_Zizfeva " 1t was shown that by using sets of weights obtained by
training under different conditions, it is possible to extend the
direction finding capabilities to varying signal frequencies and
elevation angles of the incident beam. Even more interesting
is the fact that the training process can compensate for
the unexpected performance of the RF hardware. This was
important in our work where the small antenna platform used
led to parasitic effects that caused significant degradation to the
antenna patterns. Functions such as automatic gain control and
linearization of diode characteristics were also conveniently
implemented with basic neuron-based structures.

The proposed system uses a very simple RF circuit architec-
ture including patch antennas, low-noise amplifiers, standard
hybrid junctions, and diode detectors. In order to focus on the
resolution capability of the neural network beamformer, no
reference oscillator and frequency down-conversion were used
to recover the in-band signal. Therefore, the noise and interfer-
ence rejection capabilities are limited. The best performances
were obtained for S/N and S/I of 14.5 dB or higher.

Fig. 12. Classifier performance in presence of noisef(a) 1.55 GHz and | The use of a finite number of mterva_lls in the bean_] classifier

elevation= 45°. (b) f = 1.50,1.55, and1.60 GHz (elevation fixed to 45, limits the accuracy on the DOA estimates 4618° in the

and (c) elevation= 30°,45°, and60° (f = 1.55 GHz). case of the system presented. This is suitable for tracking
applications using steerable medium-directivity antennas, as

dand-mobile satellite communication terminals.

120 T T T T T T T T T

RMS error on DOA (degree)
=23 2]
(=3 o

5

20

0 2 4 8 8 12 14 16 18 20

10
Signal/Noise {dB)

S/l values greater than about 14.5 dB. As expected, the sin[ﬂ
angle-single frequency case (data set #1) is the most accurate.
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i _tO-Noi i satellite vehicle application,|JEEE Trans. Antennas Propagat.ol. 39,

signal-to-noise ratio (S/N) was taken as the larg€stvalue _ op. 10241030, July 1991,

measured at the four detectors, and for all the observatiqn) R. c. Johnson and H. Jasiintenna Engineering HandbooRrd ed.

angles over the 360range. Therefore, all the readings have _ New York: McGraw-Hill, 1993. ) o )

tual S/N rati ler th | to th ti t ] R. Milne, “Performance and operational considerations in the design of
an actua X ratio Sma er' an or equal to the ratios quoted” \epicie antennas for mobile satellite communications,Pinc. 4th Int.
on the horizontal axis in Fig. 12. As expected, when all the Mobile Satellite Conf.Ottawa, Canada, June 1995, pp. 329-333.
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