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An Implementation of a Direction-Finding Antenna
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Abstract—Direction-finding systems for radio signals are mostly
used in mobile communications and avionics applications for
antenna tracking or navigation purposes. In general, such sys-
tems require accurate calibration and may be sensitive to noise
and external interference. In this paper, we will investigate
the performance of a neural network-based direction-finding
system under such conditions. The proposed topology is a hybrid
one, combining a simple RF signal beamformer with a neural
network. The training of the neural network is accomplished
experimentally with a three-element antenna array by varying
the beam’s direction and the carrier frequency. The error on
the estimated direction of arrival caused by the environment and
training limitations are investigated.

Index Terms—Mobile communication, navigation, neural net-
work applications.

I. INTRODUCTION

A standard technique used to accomplish beam tracking in
mobile satellite communications is the monopulse system

that uses a combining circuit to generate sum and difference
outputs [1] that are processed to obtain the direction of arrival
(DOA) of an incident beam. Typical implementations use two
or four antenna elements [2]. Although such systems have a
good performance over broad azimuth search sectors, they can
give false results caused by resolution ambiguity when used
in a full 360 azimuth sector. They also need calibration and
careful antenna design.

In applications such as vehicular terminals used for satellite
communications (e.g., MSAT, INMARSAT), the electrical
dimensions of the antenna are of the order of one to two
wavelengths, which leads to broad antenna beams. Therefore,
there is no need for a high angular resolution tracking capa-
bility. Furthermore, the primary requirement is on the azimuth
tracking since the vehicle constantly varies its orientation.
In fact, the elevation variations are much less severe and a
number of mechanically steered mobile terminals antennas
described in the literature or commercially available [3], [4]
do not implement elevation tracking.

The objective of this paper is to propose and validate
experimentally the implementation of a simple direction find-
ing (DF) system that can identify the azimuth direction of
an incoming signal [5], therefore being suitable for mobile
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satellite communications. The system, including the antenna
and a processing unit, must be easy to calibrate in order to
adapt to varying environmental conditions and configurations.
The proposed system implements an artificial neural network
(NN) at the output of an antenna array’s combining circuit.
Such a system was recently described in [6] where it is shown
that the hardware calibration used in a monopulse-based DF
system can be avoided by implementing an NN-based DF
processor. In this case, the effects of parasitic scattering and
hardware imperfections are efficiently taken into account by
training the system with a set of known DOA’s. In [6], an
eight-element linear array was used for DOA estimation in a
120 sector and a phase/amplitude receiver was measuring the
RF signal at each antenna output. An accuracy of about 1–2
was achieved. In certain applications where such an accuracy
is not required, the number of elements can be smaller. One
of our objectives in this work is to reduce complexity and,
therefore, use an array of only three elements (which is the
minimum possible number to avoid sign ambiguity) to achieve
DOA prediction in a full 360 sector. Another objective being
low cost, our system is not using a phase/amplitude receiver.
Instead, a simple RF circuit (beamforming) combines the
received signals and generates analog output power levels to be
processed by an NN section performing DOA estimation. The
task to accomplish during training of that network is not only
to compensate for the imperfections of the antenna elements,
but also for the nonideal behavior of the RF combining
circuit, including the nonlinear response of the power detectors
(diodes) and fluctuations of the incident wave’s power level.

Other recent work featuring NN processing in DF applica-
tions can be found in the literature [7]–[9]. In these papers,
NN’s are used to accelerate the processing and reduce the
computational complexity of the MUSIC superresolution algo-
rithm. Also, ideal antennas and in-phase/quadrature receivers
are assumed. Since our RF combining circuit gives power
level of combined antenna signals instead of in-phase and
quadrature levels, the MUSIC algorithm was not implemented
in our system. Also, this paper will focus primarily on the case
where only one wave is incident on the antenna array.

In [6]–[8], radial basis function (RBF) NN’s are used
whereas multilayer perceptrons (MLP) are used in [9]. In this
work, the proposed NN is using a combination of adalines
and MLP neurons. The reason for choosing MLP’s instead of
RBF’s will be given in Section III.

In the foregoing sections, we will give the principles of
the proposed antenna and neural networks and describe the
training procedure. The performance of the proposed system as
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(a)

(b)

Fig. 1. (a) Physical layout of the DF antenna with three CP elements. (b)
Array antennas followed by LNA (distances are given for a frequency of 1.55
GHz).

well as its sensitivity to frequency drift, noise, and interference
caused by a second incoming wave will be investigated.

II. A NTENNA ARRAY AND RF COMBINING NETWORK

The antenna used consists of an array of three horizontal
printed circular patches as shown in Fig. 1. Each patch has a
dual, in-phase and quadrature, edge-coupled orthogonal feed
providing circular polarization (CP) in broadside ( , i.e.,
90 elevation). In order to increase the sensitivity, a monolithic
low-noise amplifier (LNA) was inserted at each patch output.
The centers of the patches form a triangle, as shown in
Fig. 1. One can notice that the triangle is not equilateral.
This asymmetry results from design considerations on the
mutual coupling between the elements and the orientation of
the elements with respect to each other. In order to minimize
the influence of the single-element pattern on the DF system
performance, it was decided to use the same orientation for the
three elements [as shown in Fig. 1(a)]. In this case, given the
antenna dimensions and the topology of the feeding structure,
an equilateral configuration would cause a strong coupling
between the feed of antenna C and the two other patches.
When a neural network is used to implement the array factor
synthesis, there is a great flexibility in the position of the

Fig. 2. RF combiner with delay line. Legend:D—Wilkinson divider;
Q—Branch line coupler.

elements. For instance, it is possible to increase the physical
distance between the array elements to minimize coupling in
order to keep a good impedance matching and then train the
NN to implement an array factor corresponding approximately
to a closer antenna spacing. However, the distance between
the patches, should be kept small in order to prevent grating
lobes. Using patterns with only one major lobe makes it easier
to identify the DOA without ambiguity over the full 360
azimuth sector. In other words, the structure of the neural
network will be simpler and it will be easier to train.

The information on the DOA is present in the relative phases
of signals , , and received by associated elements. A
combining circuit shown in Fig. 2 is used to generate beam
functions – that are given in (1)–(4)

(1)

(2)

(3)

(4)

These four functions depend on the elevation () and azimuth
( ) angles of the incident wave as well as the operating
frequency. In the equations above,, , and are the signals
at the output of the LNA’s connected to the corresponding
antenna elements in Fig. 1(b). In Fig. 2, theboxes are 90
hybrid junctions and the boxes are balanced Wilkinson
power dividers. A delay line producing a frequency-dependent
phase shift is introduced in the path of signal . For the
purpose of the experimental validation in an anechoic chamber,
Schottky diodes were used to monitor the output dc levels

– . In practice, a heterodyne detection scheme could be
implemented to reject out-of-band signals.

The calculated patterns of – versus the azimuth angle
for an elevation angle of 0(i.e., ) are shown in

Fig. 3. These patterns do not take into account the element
pattern. The relative differences between the four signals are
used to determine and the role of the NN will be to
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Fig. 3. Theoretical radiation pattern (� = 90
�). Legend : X1 and

X2; .-.-.-.: X3; - - -: X4.

synthesize a DOA function of the variables, which has
a smooth single-valued relationship with. For instance, the
difference between and can indicate whether the source
is on the left or the right side of the figure, but it is not possible
to tell if it is located on the top or the bottom. Considering
the difference between and , it is possible to resolve
this ambiguity. The training of the network will consist in the
synthesis of the DOA function, which will be able to map the
four inputs onto with the greatest possible accuracy.

The nonlinear synaptic responses of the neurons contributes
to the great training capabilities of NN-based classifiers. On
the other hand, the direction predicted by the DOA circuit
should not depend on the intensity of the incoming wave. This
requires a way to normalize the inputs with respect to the
incident wave’s power level. This level could be measured
if one of the signals at the output of the combiner had an
omnidirectional response over the full 360sector. In general,
it is very likely that none of the , , , and outputs
will have an isotropic response. In this case, an optimally
isotropic variable to be used as a normalization basis can be
synthesized by using a single adaptive linear neuron (adaline)
[10] performing a weighted sum of the four values. Upon
training, the adaline’s output should be proportional to the
incident wave’s power and as much as possible not dependent
on the DOA. In practice, the output of the adaline, defined as

could then feed directly to an automatic gain control stage
to implement the normalization operation.

III. B EAMFORMING NETWORK

The architecture of the beamforming neural network
(BFNN) shown on Fig. 4 consists of two MLP linked in
parallel. Each MLP section comprises three neuron layers
as can be seen in Fig. 5(a). The first layer consists of ten
perceptrons with hyperbolic tangent activation functions. The

Fig. 4. Architecture of neural network DOA system.

(a)

(b)

Fig. 5. (a) Schematic of the three-layer MLP. (b) Schematic of the LVQ
network.

second layer consists of eight adalines and the output layer
has five perceptrons with sigmoid activation functions whose
outputs are between zero and one. Theoutputs of the MLP
are obtained from the inputs according to the relationship

I, II, III, , IX, X (5)

where is defined as

and , , and are the weights used in the first,
second, and third layer, respectively, while, , and
are the corresponding activation thresholds. Each one of the
ten outputs is associated with a 72azimuth sector. These
sectors are defined in Fig. 6 and they form two sets of five
overlapped sectors, each set covering 360, and being shifted
by 36 with respect to each other. As seen on the figure,
any DOA will fall in two partially overlapping sectors. The
network is trained in such a way that the outputs corresponding
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Fig. 6. Definition of the ten sectoral regions used by the azimuth classifier.

to these sectors will be activated ( close to one) while the
others will not ( close to zero). The transitions from zero
to one and one to zero on the outputs are abrupt because
in the learning phase, we train the MLP to follow as much as
possible the desired output node responses defined as

th desired output node response

if DOA in th sector

if DOA not th in sector

By taking into account the 72sectors’ overlap, it should
be possible to predict the DOA within an interval of 36
by appropriate processing of the outputs. The advantage
of splitting the beamforming circuit into two MLP sections
taking decisions on 72sectors, instead of having only one
larger MLP taking decisions on 36sectors, is noticeable at
the training stage since both sections can be trained separately
in parallel. With a unique larger MLP, the learning process
would try to modify some insignificant synaptic weight con-
nections. The network would take more time to learn, have
more difficulty to converge to an optimal solution and could
possibly get trapped in local minima. However, if we train
two blocks separately, we constrain the network to have less
degrees of freedom, and the number of unknown variables
decreases considerably. Convergence may then be achieved
more rapidly. The training process will be described in the next
section. Since we wish to have abrupt zero-to-one transitions
for the output node responses, MLP neurons were used instead
of radial basis function to minimize the number of neurons.

A priori, if the outputs really behaved as logic variables
with sharp transitions between the zero and one states, it
would be a simple task to identify a 36interval belonging
to two overlapping sectors containing the DOA with a circuit
consisting of ten two-input AND gates. In practice, after
training, each still has a smooth continuous variation
between 0 and 1 and a learning vector quantization (LVQ)
was used. A ten-element vector is formed with the
output levels. This vector is compared to each member in a
set of reference vectors that represent the ideal 36interval
responses. If is closely matched to one of the reference
vectors, then the DOA is assumed to be in the corresponding
36 interval. For example, the reference vector associated with
the 0 -to-36 interval in Fig. 6 is [1, 0, 0, 0, 0, 1, 0, 0, 0, 0]
because this interval is common to sectors I and VI. The other
reference vectors are similarly defined.

Fig. 7. Measured radiation patterns, outputX1–X4 (f = 1:55 GHz and
elevation= 45

�).

The network, shown in Fig. 5(b), computes the distance
between the input vector and reference vectors using
competitive neurons. Upon training, the network will generate
maximum likelihood decisions in a quasi-optimal fashion. The
decision unit produces one out of ten discrete levels, these
levels being respectively associated with each one of the 36
intervals. In the foregoing examples, the intervals are centered
at 18 , 54 , 90 , , 342 .

Using the proposed hybrid architecture including an RF
combining network followed by a NN, it is possible to classify
the input signal into ten orthogonal sectors. An implementation
of a classifier forming ten orthogonal beams using RF circuits
only such as a Butler matrix would require a minimum of
ten antenna elements. The NN approach used here needs a
minimum of only three antenna elements. However, a Butler
matrix could determine the direction of multipath beams
arriving simultaneously. This is not possible with the proposed
system due to the nonlinear processing of the received signals
in the combining circuit (1)–(4) and in the MLP (5).

IV. L EARNING STRATEGY

In order to validate the concept, experiments were conducted
in an anechoic chamber. The antenna described in Section II
was illuminated by an incident CP beam and rotated with
azimuth steps of 1 for fixed elevation angle (conical pat-
tern). Altogether, five patterns were recorded with different
frequencies and elevation angles. These patterns were used
later for training. Fig. 7 gives the recorded patterns of outputs

– for an elevation angle of 45and a plane wave
frequency of 1.55 GHz. The patterns do not show four well-
defined maximums separated by 90, as in the ideal case
simulated in Fig. 3. The distortions in the patterns are due to
hardware imperfections such as the nonisotropic behavior of
the radiating elements, parasitic coupling between the elements
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and their feed lines, finite dimensions of the antenna ground
plane, etc. It will be the task of the training process to
compensate for these effects.

The azimuth angle of arrival depends on the ’s via the
characteristics of the RF combining circuit. However, for a
given value of , each depends on the frequency of the
operation and the elevation angle of the incident beam.
Therefore, we can write

(6)

In practice, is not varying over a wide range for typical
mobile communications with a geostationnary satellite or
terrestrial base station. Also, the frequency of the pilot signals
are generally stable and well defined. However, in order to
assess the robustness of our DOA circuit to elevation and
frequency variations, we have assumed that these variables
could fluctuate. For that purpose, we have experimented with
training under three different conditions:

1) GHz, , data set corresponding to 360
directions with 1 steps;

2) and GHz, , data set
corresponding to 72 directions with 5 steps at each
frequency (216 points);

3) GHz, , and , data set cor-
responding to 72 directions with 5 steps at each
elevation (216 points).

The measured data sets consist of arrays of vectors
with , . Training the NN with the two last
sets should lead to DOA circuits that are less sensitive to
the fluctuations of the environment while the first condition
should give a minimum number of erroneous decisions under
good environmental conditions. The weights of the adaline at
the NN input used to accomplish automatic level control were
obtained after training with data sets 2 and 3 to provide more
robustness. The training was performed with the Widrow–Hoff
algorithm [7], [8]. Training of the MLP’s was accomplished
with the Levenberg–Marquart algorithm [11] according to the
following equation:

(7)

where is an adjustable parameter controlling the convergence
rate. is the residual vectorial error defined as ,
where is the desired output vector and is the vector of
neurons’ responses.

The Kohonen rule was subsequently used to train the LVQ
decision unit described in the previous section that is

with (8)

is the learning rate (less than 1) and is a constant that
affects the winner neuron only [12]. The value of (1 or

1) depends on the desired (or winning) neuron giving a true
or false decision. is the incoming input provided by the
beamformer.

Fig. 8. Normalization constantPin on a function of the DOA for a training
at f = 1:55 GHz and elevation= 45

�.

Upon training, we obtain a discrete estimated value of DOA
computed from the outputs of the RF combiner

(9)

V. EXPERIMENTAL RESULTS

In order to validate the direction finding algorithm, the
power vectors were measured under the various illumination
conditions given in the previous section. These measurements
were done in an anechoic chamber to minimize the occurrence
of multipath. A spiral antenna was used to produce the
incident CP wave. The power levels were in fact obtained
from measured rectified dc voltage levels on diode detectors,
by using a simple two-layer network to model the diode
characteristics. Subsequently, a software implementation of the
neural network, including the automatic gain control unit, was
realized using the MATLAB neural network toolbox. With
adequate training, the network should be able to generalize
and predict with the best possible accuracy. However, since
the LVQ decision unit is designed to associate the DOA with
a 36 interval, there is only a finite discrete set of predicted
values. The training of the NN was accomplished by using the
measured data directly.

The performance of the normalization adaline after training
is shown in Fig. 8 where the normalization variable is
plotted versus . As we can see, there is still a residual
fluctuation of 1 dB of . This is expected given the
variability of the patterns shown in Fig. 7. Except for the
tests in the presence of noise and interference, all validation
scenarios to be presented in the following were repeated by
artificially applying a 0, 10 and 10 dB gain to the
inputs in order to verify the capability of the NN function with
nonideal normalization. There were no significant differences
between the results obtained with the three gain values. Only
the 0-dB gain results will be presented for brevity.

Three series of tests were first done without interference
and noise in order to assess the capabilities of the system
under such conditions. In each series, a new data set was
used and a new training was performed. Only a subset of
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(a)

(b)

(c)

Fig. 9. Network recall for different frequencie. (a) Validation of learning at
1.50 GHz. (b) Validation at 1.55 GHz. (c) Validation at 1.60 GHz.

the measured data was used for training and the entire set was
used for testing. In the first series, only one elevation angle
and one signal frequency were used for training and recall
(data set #1). For this case, the predicted DOA sector was
determined accurately for all DOA cases, indicating that the
NN can compensate for the distortions in the radiation patterns
measured at the output of the combiners.

In the second series of tests using data set #2, less training
points were given and the signal frequency was allowed
to vary. This variation introduces more distortions in the

patterns since all the RF components have a frequency
dependent behavior. This is especially true for the patch
antennas which are resonant structures. The predicted DOA
obtained by recall of the trained network is shown as a function
of the actual DOA in Fig. 9. It can be seen that the number of
false predictions is quite small at the three training frequencies,
which confirms the capability of the proposed circuit to work
with broadband signals. However, in practical cases where a
pilot signal is used for tracking, the frequency is accurately
known and there is no need for such a broad-band robustness.

In the third series of tests (data set #3), the number of
training points is again reduced compared to the first case
and the frequency is fixed. In practice, the elevation of the
incident beam used for tracking, with respect to the plane of
the antenna, may vary with time. This should not affect the
performance of the direction finding system. We have trained
the neural network with three different elevation angles. Again,
the predicted DOA’s were in the appropriate sectors for most
of the cases tested (see Fig. 10). It can be seen in Figs. 9
and 10 that the majority of the estimation errors occurs at the
edges of the 36intervals. This is a consequence of the limited
sharpness of the node responses at the output of the MLP.

The direction finding method and the circuit we are propos-
ing are static in the sense that the NN has its weights fixed until

(a)

(b)

(c)

Fig. 10. Estimated direction of arrival (DOA) for different elevation angles:
(a) 60�, (b) 45�, and (c) 30�.

a new training sequence is initiated. This is in contrast with
an adaptive approach in which the weights can be readjusted
dynamically to account for the presence of interference [10],
[13]. Furthermore, elaborate processing techniques can be
implemented to separate the signal space from the noise
(interference) space. Of course, in our circuit, signal and
noise are integrated together by the diode detectors and such
separation could be possible but with an amplitude modulated
signal.

The effect of a second incident wave (interference signal),
arriving with a direction , was simulated by assuming that
this interference was not coherent with the first incident beam
arriving with a direction . Therefore, we can calculate the

values in presence of the two beams by simply adding
the power levels obtained with each case taken separately.
Adjusting the weight of the two contributions simply changes
the signal-to-interference (S/I) ratio. For each S/I level,and

were both varied by 5steps between 0and 360 (72 72
points) and the DOA interval was estimated by the trained NN.
A root mean square (rms) error on the DOA was calculated
with the following formula:

DOA error

MOD (10)

where is the estimated 36interval number and is the
actual interval number containing the desired signal arriving
with an angle (consecutive intervals are numbered in a
sequence from 1 to 10). The results for the three types of
training are given in Fig. 11 showing the rms error as a
function of S/I. It can be seen that the error stabilizes for
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Fig. 11. Classifier performance in presence of interference. (a)f = 1:55

GHz and elevation= 45
�. (b) f = 1:50; 1:55; and 1:60 GHz (elevation

fixed to 45�). (c) Elevation= 30
�;45�; and60� (f = 1:55 GHz).

Fig. 12. Classifier performance in presence of noise. (a)f = 1:55 GHz and
elevation= 45

�. (b) f = 1:50;1:55; and1:60 GHz (elevation fixed to 45�),
and (c) elevation= 30

�; 45�; and60� (f = 1:55 GHz).

S/I values greater than about 14.5 dB. As expected, the single
angle-single frequency case (data set #1) is the most accurate.

The performance of the system was also verified in the case
where a minimum detection floor is present. This can be the
case when the signal strength is weak and the internal noise
(e.g., thermal noise in the diodes) limits the dynamic range
of the measurements. The same formula as above (10), but
without the inner summation, was used to calculate the DOA
error in presence of the noise floor. For each valueof noise
floor, the power readings that were smaller than were
assigned a value of . The signal level used to compute the
signal-to-noise ratio (S/N) was taken as the largestvalue
measured at the four detectors, and for all the observation
angles over the 360range. Therefore, all the readings have
an actual S/N ratio smaller than or equal to the ratios quoted
on the horizontal axis in Fig. 12. As expected, when all the

diodes have reached the signal noise floor (S/N), the error
is the same for all training strategies. As in the interference
case, the error stabilizes near the no-noise value for an S/N
level of about 14 dB. This is, therefore, the minimum dynamic
range required to achieve optimum accuracy with our system.
This should not be taken as an ultimate limitation and smaller
dynamic ranges could probably be achieved with different RF
circuit and neural network architectures.

VI. CONCLUSIONS

In this paper, we have presented an implementation of a
DF system using a neural network to classify the direction of
arrival into one of ten 36 intervals covering the full 360
azimuth range. The system presented uses a minimum of
three antenna elements required to avoid a 180ambiguity.
The results have demonstrated the flexibility made available
by the inherent training capabilities of the neural network.
It was shown that by using sets of weights obtained by
training under different conditions, it is possible to extend the
direction finding capabilities to varying signal frequencies and
elevation angles of the incident beam. Even more interesting
is the fact that the training process can compensate for
the unexpected performance of the RF hardware. This was
important in our work where the small antenna platform used
led to parasitic effects that caused significant degradation to the
antenna patterns. Functions such as automatic gain control and
linearization of diode characteristics were also conveniently
implemented with basic neuron-based structures.

The proposed system uses a very simple RF circuit architec-
ture including patch antennas, low-noise amplifiers, standard
hybrid junctions, and diode detectors. In order to focus on the
resolution capability of the neural network beamformer, no
reference oscillator and frequency down-conversion were used
to recover the in-band signal. Therefore, the noise and interfer-
ence rejection capabilities are limited. The best performances
were obtained for S/N and S/I of 14.5 dB or higher.

The use of a finite number of intervals in the beam classifier
limits the accuracy on the DOA estimates to18 in the
case of the system presented. This is suitable for tracking
applications using steerable medium-directivity antennas, as
in land-mobile satellite communication terminals.
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