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Abstract—\We present a parametric model for radar scattering elements, and point scattering models fail to accurately model
as a function of frequency and aspect angle. The model is the scattering. The aspect dependence in our 2-D model
used for analysis of synthetic aperture radar measurements. 4)10ys description of both localized and distributed scattering

The estimated parameters provide a concise, physically relevant - . A o
description of measured scattering for use in target recognition, centers, providing a higher fidelity description of scattered

data compression and scattering studies. The scattering model fields. The model provides the potential both for improved
and an image domain estimation algorithm are applied to two data compression and for the discrimination of localized versus

measured data examples. distributed scattering mechanisms.
Index Terms—kmage resolution, inverse scattering, radar imag- The paperis org.anlzed as f0"0V\{S- In SeCt'Qn I, we deve!OD
ing. a simple parametric model of far-field scattering as a function

of frequency and aspect angle. In Section lll, we transform the
frequency-aspect angle-domain model into the image domain
for the purpose of parameter estimation; image segmentation
T high frequencies, the scattering response of an Ofrovides the advantages of clutter suppression, model-order re-
ject is well approximated as a sum of responses frogiction, and computational savings. In Section IV, we present
individual scattering centers [1]. These scatterers providead algorithm for estimation of the unknown parameters of the
physically relevant, yet concise, description of the objeg§odel from an image-domain representation of the measured
and are thus good candidates for use in target recognitie@ta. In Section V, we present experimental results obtained
radar data compression, and scattering phenomenology.pinapplying our estimation algorithm to data measured in a
this paper we consider the analysis of radar data measugefhpact-range anechoic chamber. In Section VI, we use the

as a function of frequency and aspect angle. We developcganer—Rao lower bound (CRB) to predict uncertainty in the
parametric scattering model for this two-dimensional (2-Djstimated model parameters.

problem. The model is motivated by both the physical optics
and the geometric theory of diffraction (GTD) monostatic II. MODEL DEVELOPMENT

scattering solutions and extends the one-dimensional GTD- .
. . . We develop a parametric model for the backscatter from
based parametric model presented in [2] to include aspeg@)t

angle. Our model provides a physical description of targ jects measured as afuqct|qn of frquenpy and aspect ar_lgle.
scattering centers, each of which is described by a set Fseek a model that maintains high fidelity to the scattering

parameters characterizing position, shape, orientation (poSg) - <> for many objects, yet is sufficiently simple in its

and relative amplitude. This is a richer description of targeltI ctional form to permit robust inference from estimated
Jarameters.

scattering than is available either from conventional Fourief- For this develooment. we assume a data collection scenario
based imaging techniques [3] or from less physically aCCuraégnsistent with sp nthet’ic aperture radar (SAR) imaging. A
point scattering parametric models. Y P ging.

rBference point is defined, and we require that the radar

Recent developments in mechanism extraction from 2-D . . .
P tﬁi\d:ctory and reference point are coplanar. We label this

radar data [4]-[9] are based on the assumption that scatterlj 1a plane using am-v Cartesian coordinate svstem with

centers are localized to isolated points. While this description. ging p g an-y L SySten

) . . origin at the reference point. The radar position is then

is valid for many scattering centers at many aspect anglas
x

some common scattering mechanisms behave as distribu 8§.C“b¢d by an anglé defined counterclockwise from the
irection. We assume far-zone backscatter and, therefore,

obtain plane wave incidence on objects.
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TABLE | we seek a model that accounts for both scattering behaviors
ALPHA VALUES FOR CANONICAL SCATTERERS in a physically accurate, yet simple, functional form.
o | Example scattering geometries Examples of localized scattering mechanisms are trihedral
1 flat plate at broadside; dihedral reflection, corner diffraction, and edge diffraction. All of these
1 singly curved surface reflection mechanisms have slowly varying amplitude as a function
0 | point; sphere; straight edge specular of aspect angle. We exploit the commonality of localized
3 edge diffraction mechanisms by modeling this slowly varying function with
-1 corner diffraction a damped exponential
Sn(f, @) = An exp(—27 v, sin ¢). )

We make three assumptions about the far zone backscattered
field and each assumption leads to the functional form forfme exponential function provides a mathematically con-
portion of our scattering model. First, phase dependenceyisnient approximation containing only a single parameter.
linear and defined by the position of the scattering centgtjthough physical insight is used to arrive at the exponential
Second, amplitude dependence on frequency is defined fagdel, the parametey,, has no direct physical interpretation.
the high-frequency approximation derived from the GTD. On the other hand, examples of distributed scattering mech-
Third, amplitude dependence on aspect angle is defined dnisms are flat-plate reflection, dihedral reflection, and cylinder
characterizing the scattering center as either spatially localizegiection. Each of these scattering mechanisms has an ampli-
or distributed. We consider these three dependencies, eackutfe dependence on aspect angle that contaisiacdz) =
turn, to arrive at a parametric scattering model. @) fynction. In all cases, thisinc(z) function is the

First, we consider only far-field scattering with a lineagominant term in the physical optics far-zone scattering so-
phase dependence on frequency. The phase of a scattefifign and we adopt theinc(z) function to characterize angle

center, at a given aspect angle, is determined by the dowgpendence in the scattering model for scattering centers that
range position of the scatterer. Accordingly, the backscatterggs distributed

field of the nth scattering center is expressed
. 27 f . _
E3(k, §) = Sp(k, ¢) exp{j2ks - 7, } (1) Sn(f,9) = An smc(TLn sin(¢ — </>n)> ®3)

wherek = 2xf/c is the wave numberf is frequency in
hertz, ¢ is the propagation velocityp is the aspect angle;

is the unit vector in the direction of the scattered field, a ; . .
We combine the different model terms from the localized

7 = [xn, yn]is the position vector of theth scattering center d the distributed teri hani i it 2-D
projected to the plane. Note that the restriction to linear pha@@ € distributed scatlering mechanisms 1o write our: =
GRltering model in a single expression

scatterers excludes phase dispersive scattering mechanis
such as resonant cavities and creeping waves c11é* time £\ o f _
convention is assumed and suppressed. Here we consider onlyE: (f, ¢) = A, <j—) Sinc<—Ln sin(¢p — ¢n)>
the copolarized field; as such, all field quantities are written fe ¢

whereL,, is the length andb,, is the orientation angle of the
ncéjstributed scatterer.

as scalars. The development is easily extendible to multiple X exp(—2m fyn sin §)

izati 4
polarl_zatlons. In summary, the phase (_jependenc_e of our model exp <1 Wf(l'n 008 ¢ - 1y, Sin </))> @)
describes the location of each scattering center in the plane of c

the radar measurement.
Second, we consider the amplitude dependence on fdereL, = 0 if the scattering center is localized, and = 0
guency. In presenting the GTD, Keller [1] uses a conservati#inthe scatterer is distributed. The parametgy is a relative
of energy argument to propose that the field diffracted fromplitude for each scattering center. The total scattered field
a point on an edge is proportional tgk) %, and the field iS & sum ofp individual scattering terms
diffracted from a vertex is proportional tgik)~*. The sim- »
plicity of the GTD is that many practical object geometries E*(f,¢) = ZES (f, ). (5)
give rise to a sum of these two scattering mechanisms. In [11] oyt e
and [12], it is shown that in addition to the edge and vertex
diffraction, a larger class of scattering geometries also fits thée scattering model in (4) is a function of frequency
(jk)* power dependence on frequency, where the parameaed aspect angle and is described by the parameter set
« has a half integer value (see Table I). (Apy Ty Yns Cny Vs L, b)) fOr n = 1,-- - p. The parameters
Third, we consider aspect dependence of scattering amyliovide a rich physical description of the scatterers that are
tude. As aspect angle is varied, we assume that a scattefingsent in the data set. Each parameter, with the exception
center behaves in one of two ways: either a scatterer db+,,, has a direct physical interpretation. Example scattering
localized and appears to exist at a single point in space, ggometries distinguishable by thefr, L) parameters are
it is distributed in the imaging plane and appears as a finifgresented in Table Il. The model is based on scattering physics
nonzero-length current distribution. The amplitude dependeraead is developed to describe a large class of scatterers while
on aspect angle is different for each of these scenarios, atitl maintaining a relatively simple form.
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TABLE I increases this error increases. Using this approximation, we
PARAMETERS v AND L SERVE TO DISCRIMINATE MANY SCATTERING GEOMETRIES  fijrst estimatern and then map-, to .

Example scattering geometrics | « | L Second, we translate the model from polar coordinates to
dihedral L|L#A0 Cartesian coordinates via the substitution
corner reflector 1 0 Jz = fcos¢ ®)
cylinder % L#0 fy = fsin ¢.
sphere 0 0 By making this coordinate transformation to the Cartesian
edge broadside 0 | L#0 frequency plane, we assume that the measured data is suffi-
corner diffraction -1 0 ciently narrow in bandwidth so as to allow simple, approximate
double corner diffraction 2 0 interpolation [14], [15] to a rectangular grid. We further

approximate
Ill. T RANSFORMATION OF MODEL INTO IMAGE DOMAIN
_ . L 27 fr, & 27 forn 9

The model in (4) describes scattering in the frequency-
aspect domain. For most SAR data collection geometridg,the frequency-dependent exponential of (6); this approxi-
imaging is approximately a unitary operator; therefore, thgation is valid for small angle spans.
nonlinear least-squares estimation cost surface for estimatThird, frequency and angle domain window functions are
ing model parameters is essentially the same in either tbéen used in SAR imaging for sidelobe suppression. We
frequency-aspect domain or the image domain. Howev@&ssume that the window functions are separable in their
image-domain segmentation provides several practical &Rrtesian components and can be written as

vantages for computing estimates of the unknown model W (fe, fy) = Wal fo)W,(fy)

parameters [4]. The advantages of segmentation are reduction

in local model order, clutter suppression, and reduction in Wo(f.) = ZB; exp(j27 35 fz)

computation cost. After segmentation, estimation of param- p=1 (20)
eters directly using image data is computationally convenient;

we avoid the additional transformation to the frequency-aspect W, (f,) = Z BY exp(j2r3Yf,).

domain and bypass the frequency-aspect convolution caused 7=1

by the image segmentation window. Many commonly used window functions such as rectangular,

In order to accomplish image domain parameter estimgamming, and Taylor windows can be exactly written as in
tion, we analytically transform the scattering model from thglL0).
frequency-aspect domain into the image domain. We process$-ourth, we transforn®? ( /., f,) to the image domain with
the parametric model using the same series of operatian®-D IFT. Note that, in practice, measured data exists at
through which the motion-compensated frequency-aspect anfinite number of discrete frequencies and aspect angles.
gle measurements would pass during image formation. Théxe a result, the IFT performed to generate radar imagery
are many methods for image formation [3], but we limit thés typically an Inverse Discrete Fourier Transform (IDFT).
discussion in this work to the 2-D inverse Fourier transforidere we analytically perform a continuous IFT for simplicity.
(IFT) of the measured frequency-aspect data. This imagihyg fact, the alternative image domain model using the IDFT
algorithm is widely used in spotlight SAR systems for whiclis not available in closed form. The IDFT is approximately
the center frequency of the radar is large compared to tbgual to the continuous IFT when the image-domain signal is
bandwidth of the radar. Accordingly, we analytically perfornessentially support limited. Since most radar imagery contains
a 2-D IFT on the proposed frequency-aspect domain scatterangsmall number of high-energy regions that are limited in
model. extent, the sampling-induced aliasing is negligible. Thus, we

We begin with the model in (4) and arrive to an imagassume that the sampled IDFT is well-approximated by a
domain model in four steps. First, we replace the poweontinuous IFT for radar imagery.
dependence of amplitude on frequency with an exponentialThe image-domain modef, (¢,,t,) for a single scattering

(as in [13]) center is then written as
2 f\ el (ta, ty)
—_— ~ exp(—27r, 6
< c ) Xp( " f) ( ) fy2 fa.2
wherer,, is a damping factor. We let thg* term be absorbed / / Z Z A, B, B}
into the complex amplitudet,,. We adopt the following affine v p=lg=l
map fromr, to a,, ;s proposed in [13]: - sinc [27”3 Cos </)n(fy £ tan %)}

an = 37 lexp(=2mAfra) = 1} () , (e
where f. is the center frequency, anilf is the frequency in- 'eXp[ mfy <_% tJ <7 T y))}

crement. The expression in (7), while analytically convenient, o

is nonetheless extremely accurate for small relative bandwidths - exp [wam <—7‘n +7 <—" + B, + tm> )} dfs dfy}
[13]. For example, at 10% relative bandwidth the approxima- ¢

tion has less than 0.0001% relative error. As the bandwidth (11)
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where f,1, f.2 are the first and lasf, frequencies, and,;, error in (13) is unacceptably high or a different image forma-
fy2 are the first and lasf, frequencies. tion algorithm is used, the frequency-aspect model is available
As discussed in Section Il, eithdr, = 0 or v, = 0 and for parameter estimation. Direct processing of raw radar data to
we consider each case separatelyL If= 0, evaluation of the produce features, rather than postprocessing images, has been
integrals in (11) yields [16] suggested for fast detection of bright lines [17] and estimation
of frequency-dependent scattering [8].

r Q
& (tasty) = An > _ > BIBYF,F,

p=lg=1

2
- €Xp <27rfazc —Trn+J <_ + /3; + 1

(
e
(

- gsinhc <7rF e

IV. CURVE FITTING

In this section, we present an approximate maximum like-
))) lihood (ML) technique for estimating the parameters of the
image-domain scattering model. For each mfscattering
Yn + j< ))) centers, there are eight real-valued parameters to be estimated:
9 the amplitude and phasel,,, frequency damping,, aspect
<_" + 8%+ tw))) dampingy,, lengthL,,, tilt angle ¢,,, down-range position,,,
and cross-range position,. For the case wheré # 0, we
< ))) require, = 0, whereasL = 0 implies ¢,, is not estimated.
Use of the image-domain model requires knowledge of both
(12) the radar sensor and the image formation process. For example,
for Fourier transform imaging [3], required parameters are cen-

—Tn + J

- sinhc <7rFy < Yo +J

where ter frequency, bandwidth, total angle span (aperture), numbers
of frequency and angle samples, the data window functions
o= far = fnr used in down range and cross range and the image-domain
Fy=fp—fn sample spacing.

Jo2 + fo1 The initial step in our algorithm is to segment the image into

Joe = 9 small image chips, each of which contains a small number of

_Jetfa scattering centers. Using the image domain model, a curve fit

Jye = 9 is then computed for each image chip. There exist automatic

. sinh(z) segmentation algorithms [18]; alternatively, the image can

sinhe(z) = s be segmented visually with human interaction. Whichever

_ ) . segmentation procedure is chosen, the result is a partitioning
The model in (12) is forL = 0, which corresponds 10 @ ¢ the image into a set of smaller image chips, each of
localized scattering mechanism. In the image domain, §gich contains very few scattering centers. The segmentation
localized mechanism is represented by two separable functigfignjights an advantage of estimating parameters in the image
in ¢, andt,, each of which appears assahc(x) function.  yomain: we partition the large problem of estimating a single
~ Onthe other hand, if,, = 0, then evaluation of the integrals 53 metric model of large order into smaller, more tractable
in (11) yields [16] problems that can be solved in parallel.
P Q For each segmented image chip we estimate model param-
€ (b ty) = Ap Z ZB;:By ¢ exp(—2n f,.1/)  ©ters by minimizing the squared error between the model and

o ? j8n2L cos ¢y, the measured image domain data

Aexp(r o) (K1) — I:(K3)]

+ exp(—mF, 1) [ (K3) — I,(K4)|} (13) J(©) = Z limage chip— mode(&)] (14)

pixels

wherel>(K) andK,, K», K3, K4 are defined in the Appendix. where® is a vector containing the parameters to be estimated.
As noted above, several approximations are made in arriviAg iterative optimization procedure is used to minimize (14).
at (12) and (13). We compare this image-domain model to dhere are many nonconvex optimization procedures in the
image formed by applying the IDFT to a 128 128 array literature, and we choose to use the simplex downhill method
of polar-format samples given in (4). We assume 500-MHZ9]. The simplex method is desirable because it is numerically
bandwidth centered at 10 GHz add1.4° aspect angle. The stable and does not require a gradient or Hessian of the cost
parameters chosen for this example dre= 10 m, « = 1, function.
z=11m,y=12m, ¢ =0.1°, andA = 1. The relative error = The least-squares cost function in (14) is nonconvex with
between the image-domain model and the image formed franany local minima. Therefore, parameter initialization and
the frequency-aspect domain data for this example is less thmadel-order selection [20] are very important. Presently,
1%. model order selection and the detection/of 0 is performed
Note that the transformation of the frequency-aspect modeteractively by a human user or with automated| hoc
to the image domain is done for computational convenienteage-processing criteria [21]. Likewisd,,, and ¢, are
and is not a requirement for estimation of the parameters of tinitialized by the user. Initialization of range and cross-
2-D scattering model in (4). In cases where the approximatiosinge positions is computed from local maxima in the image
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chip, whiler»,, and~,, are initialized at zero (isotropic point o5
scattering). For a fixed parameter égtthe least-squares cost
function J is quadratic in the complex amplitude paramete
A; therefore, the least-squares estimate /Afis computed os
noniteratively using a matrix pseudo-inverse.

At convergence, the simplex downhill optimization yields _
estimates of scattering parameters that describe the posith'.j'j 024
size, shape, and orientation of the scattering centers tr2
comprise the measured target. Automation of model ord¢g
selection and parameter initialization is a topic of continuingé or
development, both for our proposed scattering model and f«(_%S

simpler point scattering models [21], [22]. 8
-0.28

V. EXAMPLES
-0.5-

We present two examples to illustrate the fidelity of the
scattering model and the accuracy of the estimation procedu
The estimation algorithm extracts parameters that describe t
position, shape, and orientation of the scattering centers ont ~°%7s 05 02
target. The estimation results show that the physically baseu
scattering model provides an excellent means for compressiigy 1. Image and estimates for plate example.
a large, measured data record into a small set of physically
relevant parameters. Measurements were collected at The Ohio

5 0 0.25 05 0.75
CROSS RANGE (METERS)

: . . TABLE Il
State University ElectroScience Laboratory (ESL) Compact ESTIMATED SCATTERING PARAMETERS FOR PLATE
Range [23]. ExAMPLE; FOURIER RESOLUTION Is 30 cm

First, we consider the scattering from a square flat plate. Soatierer | Atinibute | Estmated T Actual
We analyze stepped frequency measurements of the plate for Front Edge length 0.5920m | .6096m
frequencies 9.5-10.5 GHz in 20-MHz steps and for angigs tilt —0.6567° 0
(in 0.5° steps) from broadside to one of the edges. The plate down range | -0.3085m | -0.3048m
. . . . cross range | -0.0014m | 0.0000m
is a two foot square and lies in the plane of rotation. The alpha 0 0
measurement polarization is horizontal. Back Left | down range | 0.3048m | 0.3048m

Fig. 1 shows an image of the plate. The image contains three Corner | cross range | -0.3157m | -0.3048m
scattering centers. The broadside response of the edge of the 1 alpha . 2;1 . 3(’)118

B . . ac. 1g. own range . m . 11

plate appears as a line in the image. The twc_) corners on the Corner cross range | 0.3216m | 0.3048m
back of the plate appear as localized scattering mechanisms. alpha 1 1

These three mechanisms are segmented in the image and the
algorithm of Section IV is used to estimate the parameters.
Table Il shows the estimated parameters and their actual
values. The actual values are based on the assumption

the plate is exactly two foot square and is perfectly aligné

during radar measurements so that O corresponds to broadgr?&@sured frequenc_y-aspect data. i
to an edge. The estimated tilt angle is approximate@;6°, Second, we consider a scale model of an F117 aircraft. The

which is an indication that the plate was not exactly aligndgde! is constructed from flat aluminum plates. We analyze
with 0° broadside to the radar. Fig. 2 shows the amplitudi®t@ from 9.5 to 10.5 GHz in 10-MHz steps aad® from
of the scattering from the plate as a function of angle at tf@rmally incident on the leading edge of one of the wings
center frequency 10 GHz. Note that the peak is noawe N 0.1° steps. Fig. 3 shows the image of the aircraft with an
would expect for a perfectly aligned target. The misalignmefYerlay showing the true location of the target in the image
of the target also contributes to a small amount of error in tfi#ane. The alpha estimate for the wing edge is zero, which is
expected locations of the three scattering centers. consistent with the target geometry. Also, we fit two localized
The image generated with the estimated parameters has [8gghanisms to the tail region of the aircraft. The estimated
than 3% mean-square error (MSE) with the measured imadfcations of these scatterers are indicated by the small circles
The error in the estimated location of the individual scatteririg the image. Table IV shows the parameter estimates for this
centers is small and in each case is less than one tenth @4@mple. The thick solid line that is nearly coincident with
Fourier resolution. The geometric type) estimates correctly the leading edge of the wing shows the estimated location,
identify the edge specular and corner diffraction scatterinidf, and length of the scattering center. When considering
behaviors. The algorithm compresses the measured, complak-three scattering centers, the overall MSE in the image
valued 51x 13 point data array into a small table of severs less than 7%. The model provides a compression ratio of
numbers describing the edge mechanism and six numbéds: 1.

cribing each of the two corner mechanisms. The model,
erefore, provides a 69:1 lossy compression of the original
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Fig. 2. Magnitude of plate scattering versus aspect angle indicating target misalignment (frequency 10 GHz).
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Fig. 3. Image of scale model F117 Aircraft with estimates of scattering centers using the distributed scattering model.

To illustrate the advantages of incorporating aspect deenter(L # 0) model. Although a lower MSE is achieved for
pendence in our scattering model, we compare with a pointreasing model order (see Table V), using six or fewer points
scattering model. We use the localized scattering center mothet localized scattering center model does not achieve the MSE
in (12), (with frequency and angle dispersion parametexrsd of the proposed distributed scattering model. For example,
~ and with L = 0) to fit the scattering from the leading edge o& model order of six corresponds to a table of 36 numbers
the aircraft wing. Model order is varied from one to six. Fig. 4lescribing the scattering and, in this example, yields a MSE
shows the results for a model order of four. The localizegreater than 11%. A further disadvantage of the localized scat-
scattering center model requires a much larger set of pararteing center model for describing distributed scattering is that
ters to achieve comparable MSE than the distributed scatterthg estimated locations are not related to any physical quantity.
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Fig. 4. Image of scale model F117 Aircraft with estimates of wing edge using the localized scattering model (model order 4).

TABLE IV
ESTIMATED SCATTERING PARAMETERS FORF117
ExAMPLE (DISTRIBUTED SCATTERING MODEL)

Scatterer Attribute Estimate
Wing Edge Length 1.4891m
Tilt —0.3651°
Down Range | 7.3127m
Cross Range | 4.2644m

Alpha 0
Tail Region #1 | Down Range | 7.8733m
Cross Range | 4.7670m

Alpha, -1
Tail Region #2 | Down Range | 7.8756m
Cross Range | 4.9986m

Alpha -2

TABLE V

MEAN SQUARE ERROR VERSUSMODEL ORDER FOR

F117 ExamPLE (LOCALIZED SCATTERING MODEL)

Model Order

Mean Square Error

S U R W N

89.97%
68.64%
50.57%
34.74%
21.82%
11.53%

VI. STATISTICAL ANALYSIS

In this section, we investigate the noise sensitivity of estistimated locations [25]. Our definition is illustrated in Fig. 5.
mated parameters for the scattering model proposed in (4). Wee figure is computed for 500-MHz bandwidth withl.4°
present theoretical predictions of estimation performance aaperture andf, = 10 GHz, consistent with the existing SAR
compare theory to measurements of a flat plate. Specificabgnsor used for the MSTAR [26] data set. This bandwidth
we use the CRB to address two practical issues: the resolutigelds a Fourier resolution of 30 cm; windowing for sidelobe
limit for closely spaced scattering centers and the role efippression results in coarser resolution. Further, we assume
relative bandwidth in estimating the frequency dependen6é equally spaced samples in both frequency and aspect. The

parameter .

The CRB for the model is derived in [16] and provides
an algorithm-independent lower bound on the error variance
for unbiased estimates of the model parameters. The deriva-
tion assumes the scattering model of (4) with an additive
perturbation

E(f,¢)=>_Eif,4)+n(f, ). (15)
n=1

Here,n(k, ¢) represents the modeling error (background clut-
ter, sensor noise, model mismatch, incomplete motion com-
pensation, antenna calibration errors, etc.) and is assumed to
be a white Gaussian noise process. For any choice of model
parameters, the bound is computed by inversion of the infor-
mation matrix [24]. We report signal-to-noise (SNR) values
using the ratio of signal energy to noise energy computed for
the frequency-aspect domain samples; interpretation of SNR
in the image domain as a difference between peak signal level
and clutter floor (i.e., after pulse compression) requires a shift
of 10log,, VM dB for a point scatterer (less for other types
of scattering), wheréV and M are the number of frequency
and aspect samples.

First, we consider resolution. For a given SNR of a single-
point scatterer (SNR/mode), we defiresolutionas the mini-
mum distance between two equal amplitude scattering centers
resulting in nonoverlapping 95% confidence regions for the

SNR is —10 dB for the figure. The ellipses show the 95%



1186 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 7, JULY 1999

3
S
T
[=]
o
T
1

25¢ 0.8 - R : N
f¢ =10 GHz
20, 0.7+ B e -
5% Bandwidth
15+ 0.6F IR m

o
o

©
'y

Down Range (cm)

10
5_
BW =500 MHz

Probability of Correct Alpha Estimate

9 Aspect = +/- 1.4 09 "115%§Bandwidih ]
-5 SNR < 1048 o2 o i
=100 , ; ; . i 0.1 1
-10 0 10 20 30 40
Cross Range (cm) 95 - 5 L = i o

10
SNR (dB)
(@

Fig. 5. Definition of resolution using 95% confidence ellipses.
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Fig. 6. Resolution versus SNR for three different orientations of two-point
scatterers. (b)

Fig. 7. Predicted probability of correctly identifyingalpha. (a) Fiveralues

. . . . . {=+1,-0.5,0,0.5,1}. (b) o L versus 1.
confidence regions for the location estimates of four localizdg "> ~0-2:0:0-5: 13- ) o 3

scatterers. The pair in the lower portion of the figure are
not resolved since the ellipses overlap. The pair in the uppegrformance limits by assuming a parameter estimator that is
portion are, by definition, resolved since the confidence regionsbiased, statistically efficient [24] and normally distributed
are disjoint. (as is asymptotically true for the least-squares estimator).
Adopting this definition, resolution versus SNR/mode isig. 7(a) shows the probability of correct detection of the
shown in Fig. 6. The resolution depends on the orientatiaiscrete-valuedx parameter versus SNR for 1 ft resolution
of the two point scatterers. The dashed line shows resolutidihtband andK-band SAR systems. Th&-band data are as
for point scatterers separated an equal distance in both dospecified above; th&'-band data are for 500-MHz bandwidth,
range and cross range (i.e., aligned® 4% the aperture). £0.4242 aperture, andf. = 33 GHz, consistent with a
The solid line and the dash-dot line show resolution fdrincoln Laboratory sensor [27]. The analytically derived de-
two-point scatterers aligned parallel and orthogonal to tlection results are averaged over five scattering types
aperture, respectively. For an SNR/mode-af dB, the limit {—1,—%,0, %,1}). Notably, uncertainty in estimating de-
of resolution achievable by model-based scattering analysisisases drastically with an increase in relative bandwidth. This
below one-half the Fourier resolution; model-based resolutifinding reaffirms the one-dimensional results in [2] and [13]
is limited by sensor bandwidth and SNR, which includethat accurate estimation of the trend in scattering amplitude
mismatch from the model in (15). versus frequency requires either high bandwidth or low noise
Second, we consider the effect of relative bandwidth ammbwer. In Fig. 7(b) the detection of is restricted to the binary
SNR in accurately detecting the frequency dependence papotheses ofy = % or «« = 1; this represents, fok # 0, the
rameterq for a single scattering mechanism. We characterizeenario of distinguishing a cylinder from a dihedral.
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SAR data compression, and scattering studies. The model
is developed in the frequency-aspect domain and is moti-
vated by GTD-based and physical optics scattering principles.
We present an image-domain algorithm for estimating model
parameters and thereby gain both clutter suppression and
computational savings. We use the CRB as a tool for predicting
uncertainty in estimated parameters. The scattering model and
the image-domain estimation algorithm are demonstrated in
three measured data examples.

Standard Deviation
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Fig. 8. Parameter uncertainty versus SNR for scattering mbdgl0. The — By = tl,> + tan ¢, <—y - pY - ty>>>>
points indicate observed error variance using our estimation algorithm. c

X (j27r sgn(K) sgn(—Kr, cot ¢,,)
To compare theoretical predictions with measurements, we - 2z "
consider the edge-scattering example from Fig. 1. The CRB’s X TeCh Lcos gy <C0t ¢n <t - 17 ))
are compared to the parameter estimation variance observed B _ /9
using measured data. In Fig. 8 we show the lower bound for + By <—K7’n cot ¢, — jK <C0t Pn <? -p* = tm)
standard deviation of parameter estimates versus SNR for the

plate edge seen in Fig. 1. The bounds on standard deviation — M)) _ El(—KTn cot ¢, — jK
are computed using the frequency and angle spans described ¢ B
for Fig. 1 and the actual parameters in Table Ill, with the < - <29? . ) LCOS%)))
. . . - X lcotgp,| ——0B%—t, ) + ———

exception of tilt, for which the true parameter is assumed to ¢
be ¢ = —0.6567°. For four values of SNR, synthetic noise
is added to the measured data, and parameters are estimated  +J7 sgn(K) rectco.a, < - +/3y>
for 100 noise trials. The observed standard deviation in the Lcosé
estimated parameters is shown in Fig. 8 by overlaid crosses. < K <ty + £Y — —"))
Note that the observed estimation error variance is near the ¢
bound for the values of SNR considered. This implies that our < JK<t Ay + B 4 L cos %))
suboptimal estimation algorithm is nearly statistically efficient Y c
and that the CRB can be useful as a predictor of parameter
uncertainty. where

A CRB prediction of error variance is a tractable tool that
assumes an additive white Gaussian behavior for clutter and K1 =2n(fy2 — fe1tan g,
modeling error and assumes the estimator achieves the bound. Ky = 27(fy1 — far tan ¢y,

)
: \ ( )
Yet, from Fig. 8 we observe that the analysis nonetheless Ko _ tan &
provides a reasonable prediction of experimentally observed 3= 21(fy1 — for tandy)
error variance. As such, the bound is a useful guide for Ky =21(fy2 — fa2 tanén)
both evaluating performance-versus-computation tradeoffs in 2z -
algorithm design and investigating the uncertainty in the Y= +J{— B
estimated parameters as a function of system parameters such _

as bandwidth and center frequency. — tan ¢y, <t - +/3y>}

1, —T/2<xz<T/2
VIl. CONCLUSION recty(z) = {07 Othérwise /
We present a parametric scattering model for the extraction * exp(—t)
of scattering centers from radar data measured as a function Ei(z) = / — dt.
of frequency and aspect angle. The scattering model balances *
physical fidelity with simplicity in functional form to yield
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