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The Matrix Riccati Equation for Scattering
from Stratified Chiral Spheres

Dwight L. Jaggard,Fellow, IEEE, and John C. Liu

Abstract—Angular scattering from radially stratified spherical
chiral objects is investigated. Based on the principles of invariant
imbedding, we formulate a matrix Riccati equation that can be
used to examine basic scattering properties of spherical chiral
structures with radial inhomogeneities in permittivity, permeabil-
ity, and chirality. High- and low-frequency limits as well as weak
reflection and constant impedance cases for this equation are
examined. We show that in the limit of large radii of curvature,
this formulation yields the planar result.

Index Terms—Chiral media, electromagnetic scattering, non-
homogeneous media, spherical scatterers.

I. INTRODUCTION

FEW practical methods exist for determining the electro-
magnetic scattering from arbitrarily inhomogeneous chiral

objects. We examine the particular case of scattering from
chiral spheres with radial inhomogeneities using the method
of invariant embedding. This gives rise to a matrix Riccati
equation for chiral spheres. Our research is motivated by the
work of Ambartsumian [1] who introduced the concept of
invariant embedding in scattering circa 1940, by the work of
Bellman and Kalaba [2] who derived the Riccati equation for
planar achiral media over 40 years ago, and by the work of
Latham [3] who derived the Riccati equation for cylindrical
and spherical achiral media in the late 1960’s.

Recent work in examining the scattering properties of
homogeneous planar chiral layers [4]–[7], cylinders [8]–[10]
and spheres [10]–[12] have given us a good understanding
of these processes. It has been shown that the chiral Riccati
equation for planar layers and its associated jump condition
is a useful and practical technique for determining the exact
reflection from stratified planar chiral media [7]. We develop a
matrix Riccati equation for continuous variations and the jump
condition for discontinuous variations. This matrix Riccati
equation transforms the boundary-value scattering problem to
an initial value problem and provides a simple, elegant means
to calculate the angular scattering from radially stratified
spherical objects.

Section II provides a brief electromagnetic description of
chirality. Section III describes the chiral wave functions ap-
plicable to spherical geometry and these functions are utilized
in Section IV to solve for the scattering coefficients. Section V
develops the matrix Riccati equation for chiral spheres from
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these scattering coefficients. In Section VI, we examine basic
properties and limiting cases of this equation.

II. BACKGROUND

An isotropic, reciprocal chiral medium can be described by
the following time-harmonic constitutive relations

(1)

where , , , and are the electromagnetic field vectors
and , , and are, in general, complex and represent
the permittivity, permeability, and chirality admittance of the
chiral medium, respectively.

Based on the above constitutive relations and the source-free
Maxwell equations, the chiral Helmholtz equation is found to
be

(2)

where is any one of the electromagnetic field vectors,
, , and , with where is the radian

frequency of the time-harmonic fields. The two eigenmodes of
propagation, right-handed and left-handed circularly polarized
(RCP and LCP), travel with a pair of wavenumbers given by

(3)

The chiral impedance, defined by the ratio of electric to
magnetic field eigenmodes, is given by

(4)

and is found from relation (1) and the Maxwell equations.

III. SPHERICAL CHIRAL EIGENMODES

Two classical Mie modes [13] that satisfy the conventional
Helmholtz equation in spherical coordinates are given by

(5)

0018–926X/99$10.00 1999 IEEE



1202 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 7, JULY 1999

In the above equations, represents any of the spherical
Bessel functions , , , or of
order chosen to satisfy boundary conditions and
is an associated Legendre function of the first kind of order

and degree . The subscripts and refer to the even
and odd nature of the modes. Taking a linear combination of
these modes, a new set of orthogonal vector wave functions
is defined that satisfy the chiral Helmholtz equation

(6)

These functions satisfy the relations

(7)

Since the expansion for plane waves in spherical wave func-
tions involve only the term, we restrict ourselves to
only those terms. In order to simply notation, we define the
quantities

(8)

For our derivation, we define a set of equivalent positive and
negative chiral eigenmodes

(9)

where

(10)

If we further define the quantities

(11)

then the equivalent positive and negative chiral eigenmodes
are written compactly as

(12)

(13)

Fig. 1. Spherical interface between two chiral media. The prime denotes the
inner medium and the underbar denotes outwardly traveling waves.

IV. SCATTERING COEFFICIENTS

Consider a spherical interface between two possibly chiral
media, as in Fig. 1. On each side of the boundary, a wave can
be decomposed into a set of inwardly and outwardly traveling
waves of each eigenmode. Each medium is characterized
by its own impedance and wavenumbers and .
We determine the chiral magnitude transfer matrix at this
boundary by expressing each of these waves with the wave
functions defined above and applying tangential field boundary
conditions.

Presently, we consider waves only of the positive mode.
We can proceed analogously for waves of the negative mode
to yield exactly the same results. On the outer boundary, we
express inwardly traveling waves as

(14)

and outwardly traveling waves as

(15)

Here we have ignored the radial components of the waves
since we are interested only in the tangential fields. On the
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inner boundary, inwardly traveling waves are written

(16)

and outwardly traveling waves are written

(17)

Matching tangential electric and magnetic fields along the
and directions yields the boundary condition matrix relation

(18)

which is more explicitly written

(19)

where is the ratio of the impedances of the outer
and inner media. Solving for the chiral magnitude matrix

and noting that

(20)

where

(21)

we find (22) at the bottom of the page.

A. Reflection and Transmission Matrices

Given the chiral magnitude matrix in the form

(23)

we solve for the reflection and transmission matrices for
an inwardly or outwardly traveling wave incident on the
boundary. For inward incidence , which
reduces to

(24)

Solving these two equations, we find for the transmission and
reflection matrices for an inwardly traveling wave to be

(25)

For outwardly traveling waves incident on the boundary, we
use the complementary chiral transfer matrix . In
this case, and we have

(26)

which reduces to

(27)

Solving these two equations, we find for the transmission and
reflection matrices for an outwardly traveling wave to be

(28)

We find the transmission and reflection matrices to be

(22)
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Fig. 2. Propagation matrices.

(see (29) at the bottom of the page) with

(30)

Note that the reflection coefficients given above represent the
scattered field for a homogeneous chiral sphere immersed in
another possibly chiral medium.

B. Propagation Matrices

In order to express the propagation of inwardly and out-
wardly traveling spherical waves from on point to another, we
must use propagation matrices (see Fig. 2). The propagation
matrix and complementary propagation matrix are de-
termined from the chiral transfer and complementary transfer
matrices and , respectively. Defined as

(31)

we find

(32)

with the definitions

(33)

V. SPHERICAL CHIRAL RICCATI EQUATION

Similar to the spirit of Latham’s work for achiral spheres
in [3], we apply Ambartsumian’s invariance principles [1],
[2] to the radially stratified chiral sphere in order to derive a
matrix Riccati equation. We wish to obtain an equation for the
rate of change of reflected waves as we traverse through the
sphere and experience changing material characteristics (radial
inhomogeneity). We begin by investigating the reflection from
a spherical shell of thickness . The first-, second-, and third-
order reflections or bounces, as indicated in Fig. 3, are given
by

(34)

where is the reflection at the inner surface of the
shell. Note that the reflection of the th bounce is given
by,

for

(35)

The total reflection at the outer boundary is expressed as the
sum

(36)

We keep only the terms of the series of order. Expanding
the coefficients to first order in , and taking the limit as

(29)
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Fig. 3. Multiple bounces used to formulate matrix Riccati equation for chiral
spheres.

, we arrive at

(37)

with the notation

(38)

Thus, we arrive at

(39)

This is the matrix Riccati equation for spherical waves in a
chiral medium that forms the major result of this paper. The
first two terms on the right-hand side are associated with the
magnitude of the reflection coefficient while the second two
terms relate to the phase of the reflection coefficient.

Associated with this is a jump condition, used when discon-
tinuities exist in the wave impedance. Taking the limiting
sum of the infinite series in (36), the jump condition is found
to be

(40)

where is the identity matrix is the reflection matrix
beyond the discontinuity, is the reflection matrix right on
the interior of the discontinuity, and is the reflection matrix
for a simple boundary between two homogeneous media given
in (29). We can further reduce the form of the matrix Riccati
equation by defining

(41)

This allows us to write the matrix Riccati equation as

(42)

where the star product is defined by

(43)

To apply this equation to angular scattering, an incident
wave is expanded in terms of the spherical chiral eigenmodes
of (12) and (13). The matrix Riccati equation is integrated
through the scatterer for each eigenmode to determine the
appropriate reflection coefficients. Where discontinuous jumps
occur in the material characteristics, the jump condition is used
to relate the reflection coefficients across the discontinuity.
The scattered wave is then expressed as the series sum of the
incident eigenmodes multiplied by these reflection coefficients.
Care must be taken if the origin is included in the integration
as in a penetrable core, where the initial condition
should be used for all eigenmodes. Intuitively, this corresponds
to the absence of an outwardly traveling wave at the core.

VI. DISCUSSION

We examine the matrix Riccati equation for chiral spheres
and compare it with its planar counterpart. We also investigate
the behavior of the equation in the high-frequency limit, the
low-frequency limit and the small reflection limit.

A. Comparison with Planar Counterpart

It can be shown for large radii of curvature that the matrix
Riccati equation reduces to its planar counterpart. Expanding
the Bessel and Hankel functions with their large argument
approximations, we find that the components of the matrix
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Riccati equation reduce to

(44)

and the matrix Riccati equation reduces to two decoupled
equations. This decoupling is expected since curvature is the
mechanism for copolar scattering. Thus, in the limit of large
radii of curvature, copolar scattering reduces to zero and no
coupling exists. If we normalize the reflection coefficients to
the incident and scattered wave amplitudes we find

e

e
(45)

where the average wavenumberis given by and
where the superscript or refers to the use of Bessel or Han-
kel functions in the spherical wave expansion, respectively.
We obtain

(46)

This is exactly the planar chiral Riccati result [7].

B. High-Frequency Limit

In the high-frequency case, the phase term in the matrix
Riccati equation will dominate the scattering behavior and the
equation is approximated by

(47)

This linear differential equation decouples the modes com-
pletely and the solution is readily found by integrating each
scattering coefficient independently. We find solutions of the
form

(48)

where the coefficients , , , and are deter-
mined from initial conditions. The integrands above provide
the change in phase per unit length for each spherical eigen-
mode and the solutions are very similar to those found from
the WKB method of solution.

C. Low-Frequency Limit

In the low-frequency limit, contribution by the phase terms
in the matrix Riccati equation for chiral spheres is insignificant
in comparison to the others. Thus, the equation becomes

(49)

Based on this relation, it is seen that the scattering of the
cross-polar modes and are dictated solely by the
variation in impedance, while the scattering of the copolar
modes and are determined solely by variations
in the wavenumbers and , respectively. Thus, each
reflection coefficient is separately controllable by the variation
in material properties.

It is interesting to note that, in the planar case, the solution
to the matrix Riccati equation in the low-frequency limit yields
the Fresnel reflection coefficients. One would assume that the
solution in the spherical case should yield a similar result.
However, this is not true. In the low-frequency case here, the
radius of curvature of the sphere cannot be ignored and plays
a significant role in determining the reflection.

D. Weak Scattering Limit

For weak scattering, the nonlinear term in the matrix Riccati
equation is insignificant in comparison to the contributions of
the other terms. Thus, we write the matrix Riccati equation as

(50)

As in the high-frequency case, the differential equation is
linearized and the scattering coefficients are decoupled. The
solutions for the scattering coefficients, again reminiscent of
those from the WKB method are readily found to be

(51)

where the coefficients , , , , , , ,
and are determined from initial conditions. As before, the
change in phase per unit length for each spherical eigenmode
is provided in the integrand.

E. Constant Impedance

For a radially stratified sphere of constant impedance, we
have and the matrix Riccati equation reduces to

(52)
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As in the high-frequency case, the equations decouple and we
have

(53)

From these equations, it is clearly seen that variations in
wavenumber are the mechanism for scattering for copolar
modes. We similarly conclude that variations in impedance
are the mechanism for cross-polar scattering.

VII. CONCLUSION

Motivated by the pioneering work of Ambartsumian, Bell-
man, and Latham, we derived, for the first time, the matrix
Riccati equation for chiral spheres in this paper, useful for
calculating the exact scattered fields from continuously or
discontinuously stratified chiral spheres. We derived an as-
sociated set of jump conditions used to link fields across
discontinuities in permittivity, permeability, or chirality. This
matrix Riccati equation converts the boundary value scattering
problem into an initial value problem amenable to efficient
numerical solution.

The matrix Riccati equation, formulated as a coupled ma-
trix nonlinear differential equation, is not easily solvable by
analytic solution. However, in the high-frequency limit, the
relation decouples into two differential equations that are
directly solvable. This is also true in the weak scattering and
constant impedance limits. At large radii, the equation was
shown to reduce to the planar result as expected, based on
physical insight.

Further research with this equation is continuing and the
application of this equation to investigate chiral spherical
Luneberg lenses as well as lossy inhomogeneous screens for
anti-reflection is forthcoming in a following paper.

REFERENCES

[1] V. A. Ambartsumian, “Diffuse reflection of light by a foggy medium,”
Comp. Rend. Acad. Sci. U.R.S.S., vol. 38, pp. 229–232, 1943.

[2] R. Bellman and R. Kalaba, “Functional equations, wave propagation and
invariant imbedding,”J. Math Mech., vol. 8, pp. 683–702, 1959.

[3] R. W. Latham, “Electromagnetic scattering from cylindrically and
spherically stratified bodies,”Can. J. Phys., vol. 46, pp. 1463–1468,
1968.

[4] S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave prop-
agation through a dielectric-chiral interface and through a chiral slab,”
J. Opt. Soc. Amer. A, vol. 5, pp. 1450–1459, 1988.

[5] M. I. Oksanen, S. A. Tretyakov, and I. V. Lindell, “Vector circuit theory
for isotropic and chiral slabs,”J. Electromagn. Waves Applicat., vol. 4,
pp. 613–643, 1990.

[6] J. C. Liu and D. L. Jaggard, “Chiral layers on planar surfaces,”J.
Electromagn. Wave Applicat., vols. 5/6, pp. 651–668, 1992.

[7] D. L. Jaggard and X. Sun, “Theory of chiral multilayers,”J. Opt. Soc.
Amer. A, vol. 5, pp. 804–813, 1992.

[8] C. F. Bohren, “Scattering of electromagnetic waves by an optically
active cylinder,”J. Colloid Interface Sci., vol. 66, pp. 105–109, 1978.

[9] M. S. Kluskens and E. H. Newman, “Scattering by a mutlilayer chiral
cylinder,” IEEE Trans. Antennas Propagat., vol. 39, pp. 96–99, Jan.
1991.

[10] D. L. Jaggard and J. C. Liu, “Chiral layers on curved surfaces,”J.
Electromagn. Waves Applicat., vols. 5/6, pp. 669–694, 1992.

[11] C. F. Bohren, “Light scattering by an optically active sphere,”Chem.
Phys. Lett., vol. 29, pp. 458–462, 1974.

[12] P. L. E. Uslenghi, “Scattering by an impedance sphere coated with a
chiral layer,” Electromagn., vol. 10, pp. 201–211, 1990.

[13] J. A. Stratton, Electromagnetic Theory. New York, McGraw-Hill,
1941.

Dwight L. Jaggard (S’68–M’77–SM’86–F’91) was
born in Oceanside, NY, in 1948. He received the
B.S.E.E. and M.S.E.E. degrees from the University
of Wisconsin, Madison, in 1971 and 1972, respec-
tively, and the Ph.D. degree in electrical engineering
and applied physics from the California Institute of
Technology, Pasadena, in 1976.

From 1976 to 1978, he was a Postdoctoral Re-
search Fellow at Caltech and a Consultant to the
Jet Propulsion Laboratory, Pasadena, CA. In 1978
he joined the faculty at the University of Utah, Salt

Lake City, as an Assistant Professor of electrical engineering. Since 1980
he has performed research in wave interactions with complex media, inverse
scattering, and high-resolution imaging and has taught at the Moore School of
Electrical Engineering, University of Pennsylvania, Philadelphia, where he is a
Professor of electrical engineering and Associate Dean for Graduate Education
and Research. He has served as an editor of theJournal of Electromagnetic
Wave Applicationsand is the coeditor ofRecent Advances in Electromagnetic
Theory (New York: Springer-Verlag, 1990). He has also made contributions
to several books, includingSymmetry in Electromagnetics(New York: Taylor
Francis, 1995).Fractals in Engineering(New York: Springer-Verlag, 1997),
and the forthcomingFrontiers in Electromagnetics(Piscataway, NJ: IEEE
Press, 1999). Through the Complex Media Laboratory, his research currently
involves novel applications of electromagnetic chirality and fractal electrody-
namics, the use of topology and symmetry in electromagnetic scattering, and
inverse scattering and imaging.

Dr. Jaggard received the S. Reid Warren Award for Distinguished Teaching
in 1985 and the Christian R. and Mary R. Lindback Award for Distinguished
Teaching in 1987. He was elected Fellow of the Optical Society of America in
1995 for his work in wave interactions in complex media. He has served as an
associate editor of the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

and was on the editorial board of theProceedings of the IEEE.

John C. Liu was born in Hong Kong. He received
the B.S.E.E., M.S.E.E, and Ph.D. degrees in elec-
tromagnetics from the University of Pennsylvania,
Philadelphia, in 1988, 1992, and 1996, respectively.

He has worked in foreign exchange options for
Bank of America, New York, and in stock index
options for Lehman Brothers, New York. He is
currently in charge of stock index options trading
for Banque Paribas, New York.


