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The Matrix Riccati Equation for Scattering
from Stratified Chiral Spheres

Dwight L. JaggardFellow, IEEE and John C. Liu

Abstract—Angular scattering from radially stratified spherical ~ these scattering coefficients. In Section VI, we examine basic

chiral objects is investigated. Based on the principles of invariant properties and limiting cases of this equation.
imbedding, we formulate a matrix Riccati equation that can be

used to examine basic scattering properties of spherical chiral Il B
structures with radial inhomogeneities in permittivity, permeabil- - BACKGROUND

ity, and chirality. High- and low-frequency limits as well as weak  An jsotropic, reciprocal chiral medium can be described by
reflection and constant impedance cases for this equation are the following time-harmonio{e‘i“t) constitutive relations
examined. We show that in the limit of large radii of curvature,

this formulation yields the planar result. D=cE+i.B H=(1/u)B+i{.E (1)

Index Terms—Chiral media, electromagnetic scattering, non-

. . whereE, B, D, andH are the electromagnetic field vectors
homogeneous media, spherical scatterers.

and =, p, and &, are, in general, complex and represent
the permittivity, permeability, and chirality admittance of the
. INTRODUCTION chiral medium, respectively.

EW practical methods exist for determining the electro- Based on the above constitutive relations and the source-free

magnetic scattering from arbitrarily inhomogeneous chirdaxwell equations, the chiral Helmholtz equation is found to
objects. We examine the particular case of scattering frdme
chiral spheres with r.adial in_honjogengities using the methqd V XV X C— 20,V xC—k%LC=0 )
of invariant embedding. This gives rise to a matrix Riccati
equation for chiral spheres. Our research is motivated by twhere C is any one of the electromagnetic field vectds
work of Ambartsumian [1] who introduced the concept oH, B, and D, with k,, = w,/ne wherew is the radian
invariant embedding in scattering circa 1940, by the work dfequency of the time-harmonic fields. The two eigenmodes of
Bellman and Kalaba [2] who derived the Riccati equation fgropagation, right-handed and left-handed circularly polarized
planar achiral media over 40 years ago, and by the work GRCP and LCP), travel with a pair of wavenumbers given by
Latham [3] who derived the Riccati equation for cylindrical _ 3 3
and spherical achiral media in the late 1960’s. Fae = e+ VR + (Wnte)®. @)

Recent work in examining the scattering properties dthe chiral impedance, defined by the ratio of electric to

homogeneous planar chiral layers [4]-[7], cylinders [8]-[10hagnetic field eigenmodes, is given by
and spheres [10]-[12] have given us a good understanding m
of these processes. It has been shown that the chiral Riccati T=4/z T e
equation for planar layers and its associated jump condition
is a useful and practical technique for determining the exa@#®d is found from relation (1) and the Maxwell equations.
reflection from stratified planar chiral media [7]. We develop a
matrix Riccati equation for continuous variations and the jump I1l. SPHERICAL CHIRAL EIGENMODES
condition for discontinuous variations. This matrix Riccati Two classical Mie modes [13] that satisfy the conventional
equation transforms the boundary-value scattering problemHelmholtz equation in spherical coordinates are given by
an initial value problem and provides a simple, elegant means

(4)

to calculate the angular scattering from radially stratifietn«,,, (k) = _ﬂzn(kr)P{L"(cose) = sin{m¢) éy
. . o sin @ + cos(me)
spherical objects. .
Section Il provides a brief electromagnetic description of = () OB (cos b) {@S(mf/)) }%
chirality. Section Il describes the chiral wave functions ap- o6 sin(me)

plicable to spherical geometry and these functions are utilized _ z2n(kr) . Cos(md))
in Section IV to solve for the scattering coefficients. Section \Pi"’"(k) =n(n+ 1) kr £y (cost) sin(me)

develops the matrix Riccati equation for chiral spheres from 18 apm COS@ cos(m
4+ — —[rz (kr
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In the above equations,, (k) represents any of the spherical
Bessel functionsj,(kr), nn(kr), RS (kr), or kP (kr) of
ordern chosen to satisfy boundary conditions aRf(cos )

is an associated Legendre function of the first kind of order
n and degreen. The subscripts: and o refer to the even
and odd nature of the modes. Taking a linear combination of
these modes, a new set of orthogonal vector wave functions
is defined that satisfy the chiral Helmholtz equation

{ Vimn(k) } mimn(k):l:nimn(k)

)| = 3 7 . 6)

These functions satisfy the relations

Ve k Ve k
V x Om"( ) =+k Om"( ) . @)
Wirnn(k) WZrnn(k) Fig. 1. Spherical interface between two chiral media. The prime denotes the
inner medium and the underbar denotes outwardly traveling waves.
Since the expansion for plane waves in spherical wave func-
tions involve only them = 1 term, we restrict ourselves to

only those terms. In order to simply notation, we define the IV. SCATTERING COEFFICIENTS
quantities Consider a spherical interface between two possibly chiral
1 8 media, as in Fig. 1. On each side of the boundary, a wave can
wn = Zn(kr)  Ozn = o [ran(kr)] be decomposed into a set of inwardly and outwardly traveling
P(cos6) o . waves of each eigenmode. Each medium is characterized
P, = "SIT op, = %Pn(cos 0). (8) by its own impedance; and wavenumberd:; and k_.

We determine the chiral magnitude transfer matrix at this
For our derivation, we define a set of equivalent positive ambundary by expressing each of these waves with the wave

negative chiral eigenmodes functions defined above and applying tangential field boundary
4 conditions.
ke:l:qu . -
Vi (k) = {(iiznPn + 02,0P,)& Presently, we consider waves only of the positive mode.
V2 We can proceed analogously for waves of the negative mode

+ (—2nOP, %107, Py )é g + n(n + 1)z_ﬁpné7,} to yield e_xactly the same results. On the outer boundary, we
K express inwardly traveling waves as

ke:l:iqb
wain(k) = = {(iiznPn — 92,0P,)é6
E,
. ~ Zn N { } = EVUV+1n(/€+)
— (2,0P,%xi0z,P,)és — n(n + 1)k—Pne,,} inH,,
o
(9) = E[If_kaj—eg =+ k+/3]+e¢]e @
where { E, } B wa (k)
- — w W 41n\fv—
v () = Vern(k) £ ivoin (k) i Hy, .
= V2 =+—2[k_ajes+k_fB;egle”  (14)
wann () = Wern (k) £ iwon (k) 10) V2
+1n = \/5 .

and outwardly traveling waves as
If we further define the quantities

E’U
of =iz, P, £ 02,0P, pT =—2,0P, +i92,P, (11) {m_ﬂ} =E, viin(ky)

then the equivalent positive and negative chiral eigenmodes = é[/@aﬁée + ki firegle’

are written compactly as V2
E'w

LeEid - {;_ } =L, wiin(k-)
Vain(h) = = {kaZe, + gFe, +nn+ 1) P, ) inH,
\/i kr Ew —A —A 2]
(12) = R bi & k-l (19)

keEi?®

wain(h) = =z {iafég + ATy —n(n + 1)%Pnér}.

Here we have ignored the radial components of the waves
(13) since we are interested only in the tangential fields. On the
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inner boundary, inwardly traveling waves are written A. Reflection and Transmission Matrices
E, / Given the chiral magnitude matrix in the form
- = E’U’V—I—ln(k+)
i’ Hy E, A1 Az B B [Ew
E, . E Aor Ao Bar Boo | | By
= Teéo + I, fhey)e v = w
\/i[ oo R esle L, Cun Ci2 D Do |E,
E,. , £, Cor Caz Da DxnllE,,
in/Hw, = :l:Ew’ W+1n(k}_) E,U,
Ew/ N N i — MA MB Ew/
_ i%[k’_ ajés+ K_fregle  (16) {Mc MD:| E, (23)
E.

and outwardly traveling waves are written

W

we solve for the reflection and transmission matrices for

{ E, }:E Varn(K) an inwardly or outwardly traveling wave incident on the
wm'H,, St boundary. For inward incidencMz = Mp = 0, which
_ L [kﬁrah/ee +k+/3h,e¢]ei¢ reduces to
E =M g | || =Me|g | @9
ot L =B Wi (K _ * * = * .
{in’Hw, } Lrwin(k-) Solving these two equations, we find for the transmission and
E. . 1 i i ' i
_ i% (K86 + KB 84)e °.(17) reflection m?:::ces for an mwardly::avellng wave to be

Matching tangential electric and magnetic fields alongéhe
andé, directions yields the boundary condition matrix relation

QOF = 9F
which is more explicitly written

k+aj' k_o kroib  k_aj
keBF koBT kWBE ko
k+ocj' —k_aj kral —k_aj
kB —k_p; kit —k_pBy

k’+/3* k.8, K. B
fyk_i_o[", —vkLa fyk_i_ogh
Kof By R

wherey = n/#' is the ratio of the impedances of the outer
and inner media. Solving for the chiral magnitude matrix

M = Q!9 and noting that
ﬁh Oé i ah ﬁi - (Pr%

— OP2) (hy 05y F 7 Ohy)

} =M;' R= [w ww} =McM;

B $Uv
- |:twb
(25)

(18) For outwardly traveling waves incident on the boundary, we
use the complementary chiral transfer matsk = M~*. In
this caseM/, = M. = 0 and we have

t'l,U'LU

5'1; E,U, i E,U T
Ew Ew’ _ Mf—l M/B Ew
E'v E'u’ _M/ M/D E'U
— Ew’ Ew -
k%a]Z/ E,”/ _0 0 Bil B12 T E’U
kS, B E. _ 0 0 BjY Bhy||Fu (26)
—’Yk//—ahf g'v’ 0 0 Dél D:12 £,
—YEL By, 1 M 0 0 Dy DypllE,
(19) which reduces to
E'z" E,,,- E’U’ E'n
e |-mle] B -wlE ) e

Solving these two equations, we find for the transmission and
reflection matrices for an outwardly traveling wave to be

P T=M;' R=MzM;'. 28
By o — oy B = H(P2 — 0P2) (h-0j, % j40h_) (20) =M, R=MM, (28)
We find the transmlssmn and reflection matrices to be
where | H_A,k GO =1 8 1K Oy +1y 0
ze = zp(kar) Oz 10 [rzn (k+7)] T=g| 25 5 e 4ndy A
2+ = Zn\R+ v:l:—k - or Sn\fvt N _1_7_+j+ v +h_0j3 14+ Ky 5y Ohy —hi 05
ﬂlc 5 2 k- j-Oh_—h_0j_ 2 ki j+Ohy —hi iy
1+~ L_ 4 8h_—h_8j" 1—v k_ j+[)h +h_ (r)jJr
/ / / sy R ST Y = - YT
7y = an(bhr) Ozp = ool (kyr)] @) 0 1| 2y W o —ior 2y Wy 70K~ 0],
- + = g 1y kg j Ohi+hi 85 14+ k+ J+6h+—h+81+
we find (22) at the bottom of the page. 2w KT OW —R i 2y K gl OW, -k B3]
14~ ; [)h+—h+a}+ 1— k’_ j_Ohy+hy 85 14~ ; 1% ah+—h+ah 1—v k' h_Ohy+h 0K
2 H]+6h+—h+6]+ 2 _j+a}L+—}L+aj+ 2 H j+6h+—h+6]+ 2 k+ j+6h+—h+6j+
1—v kJr j+a}L +h_ [)JJr 14+ A j_Oh_—h_38j" — k’ h+ah +h_ [)h+ 14~ k" k' _Bh_—h_Oh_
M = 2 k_j_Oh_—h_0j_ 2 _, ah —h_0j_ 2 k_ 5 _Oh_—h_ [)J, 2 k_ j_0h_—h_0j_ (22)
T 1y Ky 94054~y 05 kL J 0jy+ir 05" 14y ¥\ B\ 8h_—j 0K, 1—y K R Oj 45 0R.

2 k+ [ [)h+ —hi [)J+

2 k_ j_Oh_—NL_0j_

- 2 H]+8}L+—}L+81+ T2 H]+8}L+—}L+81+ T2 H]+8}L+—}L+aj+
14~ k7 o —j 85 1—~ kJr th{)j,—l—j,{)hJr 1+~ KRk _8j_+j_ 0k

2 k_ j_Oh_—NL_0j_ 2 k_ j_Oh_—NL_0j_ 2 k_ j_Oh_—NL_0j_
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we find
J+Ohy —hy0j 0
p— 7 0hy —h j,
- 0 j_Oh_—h_0j_
7 Oh_—h_05"
jacion
P = ]+ e ]+ v 7 7 v (32)
- JLOR_—h__ 05
with the definitions
1 0
24 = 2plkya) Ory = — —[rz,(kor
+ = zn(kra) Ozp kiaar[ (ks )T:a
1 0
2= 2o (k) 02 = — —[rz (ko 33

r=b

Fig. 2. Propagation matrices.

r=a V. SPHERICAL CHIRAL RICCATI EQUATION

Similar to the spirit of Latham’s work for achiral spheres
in [3], we apply Ambartsumian’s invariance principles [1],
[2] to the radially stratified chiral sphere in order to derive a
matrix Riccati equation. We wish to obtain an equation for the
rate of change of reflected waves as we traverse through the
sphere and experience changing material characteristics (radial
inhomogeneity). We begin by investigating the reflection from
a spherical shell of thicknegsr. The first-, second-, and third-
order reflections or bounces, as indicated in Fig. 3, are given

(see (29) at the bottom of the page) with
w o (L FEL jL0hy — hyOjy jLOh_ — h_0jL
4  kik j4iOhye —hidjr j Oh_ —h_3j_
(1 — )2 kLK j7Ohy +hydj ji0h_ +h_0j)
4 kyk_ j4O0hy —hidjy j_Oh_ — h_Jj_
1+ )2 kyk_ j Ohy —hydg) j' Oh_ — h_835"
dy?  KLKL §L 0K, — RO jL O — B 95"

(L= ) k_ky § Ohy + hydf jL0h_ +h_djy, DY
4y ELEL LN, — W 95 jLOh_ —h_d5 " r(r)=R
(30) r2(7’) = TPI‘(T — A7)BI
Note that the reflection coefficients given above represent the r3(r) = TPr(r — Ar)PRPr(r — Ar)PT  (34)

scattered field for a homogeneous chiral sphere immersed in
another possibly chiral medium. wherer(r — Ar) is the reflection at the inner surface of the
shell. Note that the reflection of the + 2)th bounce is given

B. Propagation Matrices by,

In order to express the propagation of inwardly and OU%_,»(r) = TPr(r — Ar)P T[RPr(r — Ar)P]? for ¢ > 0.
wardly traveling spherical waves from on point to another, we (35)
must use propagation matrices (see Fig. 2). The propagation
matrix P and complementary propagation mati are de- The total reflection at the outer boundary is expressed as the
termined from the chiral transfer and complementary transfgm
matricesM and M’, respectively. Defined as

E,0)] _ [P Pz][Efa)] _ p[Eua) R=)r, (36)

Ew(b) P21 P22 E'w(a) Ew(a) q=1
[Ev(a)} _ [Bn 212} |:E'v(b):| — P[Ev(b)} (31) We keep only the terms of the series of order. Expanding
E,(a) Py Py | |E (D) T LEL D) the coefficients to first order il\r, and taking the limit as

(1) KKy 51054+ 050§ Oh_ +h_0j)

4 Ky k_ j1 Ok —h 05y j_Oh_—h_05_ 1—~2 Ky kL 5105 +5L 854
1 _(1+"/)2 k;k’_ j;a‘]+7‘1+a‘]; j,_ah_fh_a‘],_ 4 ki j+6h+7h+6j+
e P ¢ G L 7 T/ R
12 KR G105 457 95 4 kik_ j1OhL—hi8jy j_Oh_—h_3j_
1 k2 j Oh_—h_0j_ (4P KK, §L 05— 05l L0k —hi 0y
_(1_"/)2 bk h’+ah,+h,ah’+ jL[)th-I—thajL 4 kik_ jLOhy—h 0jy j_Oh_—h_0Oj_
4y? KK L OR, —R 85 4T ORT —h’ 85 12 kik_ h_Ohy+h Oh_
| SV R AR EaTe
R = T K L e e (1—~)2 kyk_ h_Ohy+h W j\ Oh_+h_3j', (29)
= 1=~k ks b Ol 1l O Av? kyko L ORL —h1 O gL OB —hT 951
42 K2 5T On —h 85" (149)% k_ky h Oh_—h_Oh_ j;DiL+7h+6j;

4~2 k;kL j;ah;fh;aj; 37 OR —h 85
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r=a

Fig. 3. Multiple bounces used to formulate matrix Riccati equation for chir

spheres.

Ar — 0, we arrive at

r=b

lim R
Ar—o0
dj4 0jy—j+dOj4 1 dnpk_ j40j_+j_0jy
_ _ jyOhy —hi 0jp 2ndr ky j1O0hy—hy 954
=XT | 1L dgks gi085_+5_0jy dj_0j_—j_doj_
L2n dr k_ j_Oh_—NL_0j_ J_Oh_—Nh_08j_
lim R
Ar—0
dh Ohy—hydOh Lﬁk_, hiOh_+h_Ohy
_ _ j+6h+—h+(’)j+ 2'!7 dr k+ j+6h+—h+(’)j+
- | 1 dy kst Ty Ol +1_Bly dl_Oh_ —h_dOh_
L2n dr k— j_Oh_—h_08j_ J_Oh_—h_0j_
lim P
Ar—0
Dj+6h+7h+D6j+
_p_ |Vt TR -0 ,
0 1_ Dj_O0h_—h_D3dj_
Jj_Oh_—h_0j_
J
_[+ay o0
0 1+ AL
lim P
Ar—0
Dh+6j+7j+D6h+
— P — 1 + j+6h+7h+6j+ 0 .
= 0 1_ Dh_0j_—3j_Doh_
Jj_Oh_—h_0j_
_[1+Al 0
Lo 14+ A"
(37)
with the notation
) djy(x) dx dk .
At = de  dr = 7’;3&
& 4 r=const 4
. djy(x) dx .
Djy = d ar = kdjx
€z T k=const
) dojy(z) dx dk o .
dojy = @) de) B
d‘T d7 r=const d7
. dojy(x) dx .
Dojy = ) L =ko%s.  (38)
d.’L’ d7 const,
Thus, we arrive at
d R(r) = I R(r) —R(r — Ar)
e 7) = lam
dr Ar—0 Ar

=x+R(R+RP+PR.

(39)

1205

This is the matrix Riccati equation for spherical waves in a
chiral medium that forms the major result of this paper. The
first two terms on the right-hand side are associated with the
magnitude of the reflection coefficient while the second two
terms relate to the phase of the reflection coefficient.

Associated with this is a jump condition, used when discon-
tinuities exist in the wave impedanege Taking the limiting
sum of the infinite series in (36), the jump condition is found
to be

R*=[R -R|I-RR | (40)

where I is the identity matrixR™ is the reflection matrix
beyond the discontinuityR ™ is the reflection matrix right on
tpe interior of the discontinuity, anR is the reflection matrix
?or a simple boundary between two homogeneous media given
in (29). We can further reduce the form of the matrix Riccati
equation by defining

Al 4AL Al pal
2 2
F=lalia’  atial (41)
2 2

This allows us to write the matrix Riccati equation as

d
—R(r)=x+R(R+2xxR

e (42)

where the star product is defined by

[an a12:| % [bn b12:| _ [anbn
az1

a2 bar b2 az1b21

To apply this equation to angular scattering, an incident
wave is expanded in terms of the spherical chiral eigenmodes
of (12) and (13). The matrix Riccati equation is integrated
through the scatterer for each eigenmode to determine the
appropriate reflection coefficients. Where discontinuous jumps
occur in the material characteristics, the jump condition is used
to relate the reflection coefficients across the discontinuity.
The scattered wave is then expressed as the series sum of the
incident eigenmodes multiplied by these reflection coefficients.
Care must be taken if the origin is included in the integration
as in a penetrable core, where the initial conditR(0) = 0
should be used for all eigenmodes. Intuitively, this corresponds
to the absence of an outwardly traveling wave at the core.

ai2b12
. 43
az2b22 } (43)

VI. DISCUSSION

We examine the matrix Riccati equation for chiral spheres
and compare it with its planar counterpart. We also investigate
the behavior of the equation in the high-frequency limit, the
low-frequency limit and the small reflection limit.

A. Comparison with Planar Counterpart

It can be shown for large radii of curvature that the matrix
Riccati equation reduces to its planar counterpart. Expanding
the Bessel and Hankel functions with their large argument
approximations, we find that the components of the matrix
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Riccati equation reduce to C. Low-Frequency Limit
r 0 L dng—i(k_+ky)r In the low-frequency limit, contribution by the phase terms
2n dr . . . . . . L
X7 1 dn ik thy ) 0 } in the matrix Riccati equation for chiral spheres is insignificant
“2n dr Cih in comparison to the others. Thus, the equation becomes
0 _QL Z_ﬁe i(h_ kg )r
C - d —i(k ) mar :| (44) d
[ g, gre () 0 —R=x+RC(R. (49)
—2iky —i(ky +k_) !
k= —i(ky +k_) —9%k_ Based on this relation, it is seen that the scattering of the

o . . cross-polar mode#:** and R*" are dictated solely by the
and the matrix Riccati equation reduces to two decouplégriation in impedance;, while the scattering of the copolar
equations. This decoupling is expected since curvature is th@des R** and R*“ are determined solely by variations
mechanism for copolar scattering. Thus, in the limit of largg the wavenumbers:, and k_, respectively. Thus, each

radii of curvature, copolar scattering reduces to zero and R&lection coefficient is separately controllable by the variation
coupling exists. If we normalize the reflection coefficients tg material properties.

the incident and scattered wave amplitudes we find It is interesting to note that, in the planar case, the solution
Wi (k) . to the matrix Ricca_ti equatiqn_ in the low-frequency limit yields
Do = o (p) == U () g2tk the Fresnel reflection coefficients. One would assume that the
Vil"(ka); (45) solution in the spherical case should yield a similar result.
[wv — v, Viin(ky) L — o (p)e2iker However, this is not true. In the low-frequency case here, the
" " W (ko) " radius of curvature of the sphere cannot be ignored and plays

where the average wavenumtigiis given by(k. +k_)/2 and a significant role in determining the reflection.

where the superscriptor j refers to the use of Bessel or Han- K ) .
kel functions in the spherical wave expansion, respectively: \Weak Scattering Limit

We obtain For weak scattering, the nonlinear term in the matrix Riccati
d 1 2 dn equation is insignificant in comparison to the contributions of
i) = %(1 — [Ty ()] )E — 2ik 0% (r) the other terms. Thus, we write the matrix Riccati equation as

(46)
d 1 ow 2, dn v d
Wy — _ wu ., 0, wv -y, —R: 2 R 50
dTFn (r) o (1= [Te(m]7) o 2ik T2 (r) e X + 25 (50)

As in the high-frequency case, the differential equation is
linearized and the scattering coefficients are decoupled. The
solutions for the scattering coefficients, again reminiscent of

) . those from the WKB method are readily found to be
In the high-frequency case, the phase term in the matrix

Riccati equation will dominate the scattering behavior and the R 2 Ay (r) + Koy exp </ Al A dr)
equation is approximated by 7 " o

VW ., . h h .
diR:%{*R' 47) R ~A,Uw(7)—|—KUweXp</A++A_d7>
»
This linear differential equation decouples the modes com- RV 22 Ay (1) + Ky exp </ Ai +A7 dT)

pletely and the solution is readily found by integrating each

scattering coefficient independently. We find solutions of the R 2 Ay (1) + Koy €xp < / AP AT dr) (51)
form

This is exactly the planar chiral Riccati result [7].

B. High-Frequency Limit

B K A Ay where the coefficientdl,.,, Avw, A, Awws Kovs Kows Kwv,
~ Boy €XP + oL andK,,, are determined from initial conditions. As before, the
change in phase per unit length for each spherical eigenmode
R =~ Ky eXp< / Al A dr) is provided in the integrand.
RYY ~ K, exp< / Aﬁr + AL dr> E. Constant Impedance
' For a radially stratified sphere of constant impedance, we
R & Ky exp< / N dr) (48) havedn/dr = 0 and the matrix Riccati equation reduces to
= 4+0j+ —j1+ddjy 0
where the coefficientd(,., K., K., and K,,,, are deter- — | §+Oh =D Oy G 0i —i o
mined from initial conditions. The integrands above provide 0 Toh —h 3,

the change in phase per unit length for each spherical eigen- diy Oly =Ty dOhy 0
mode and the solutions are very similar to those found from ¢ — | OO aon. |- (B2)

the WKB method of solution. 0 j_oh_ —h_0j_
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From these equations, it is clearly seen that variations in
wavenumber are the mechanism for scattering for copolar
modes. We similarly conclude that variations in impedane~
are the mechanism for cross-polar scattering.
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