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Differences Between the Narrow-Angle and
Wide-Angle Propagators in the Split-Step
Fourier Solution of the Parabolic Wave Equation

James R. Kuttler

Abstract—For tropospheric electromagnetic propagation, method use a wide-angle propagator. A wide-angle capability
Maxwell's equations can be reduced to a parabolic wave js needed for propagation over terrain with prescribed features
equation, which is solved by marching over range steps. In each such as mountains and valleys, which are large compared to

step, the solution is split into a product of three operators. The . . . .
first and third account for atmospheric and surface variation, the wavelength and cause reflection and diffraction of the field

while the center operator propagates the field as though in into large angles.
vacuum. This center operator is the object of interest here. It has been presumed that the wide-angle propagator was,

Older versions of the method used the narrow-angle propagator, in all respects, superior to the narrow-angle propagator in that
while some recent versions use the wide-angle propagator. It was it is expected to give the same answer in problems where the

thought that the wide-angle propagator was entirely superior le is k ¢ K Il and t ti to ai
to the narrow-angle propagator, but some artifacts observed in narrow-angie Is known to work weil and to continue 1o give

recent experiments have led to the present investigation. The accurate answers for problems with angles of propagation as
two propagators are examined numerically and analytically large as 2% or more. However, in some recent experiments

and found to exhibit subtle differences at large angles from with problems over terrain with specified obstacles such as
the horizontal. This has required modifications to the way in steps, ramps, and pyramids [3], [4], some subtleties appeared

which sources are created for starting the split-step solution. The . . ; - .
narrow- and wide-angle propagators are also compared on two N the implementation and interpretation of the narrow-angle

problems with analytic solutions to quantify the improvement and wide-angle propagators that affect the way sources are
of the wide-angle over the narrow-angle defined for use with the wide-angle propagator. This is the

Index Terms—Parabolic wave equation, propagators, tropo- SUbJe(?t 9“ this note. .
spheric propagation. As indicated above, the propagator is separated from the
atmospheric and surface effects by the splitting of the operator,
so it suffices to consider the pure free-space problem with
no boundaries present. Then the wide-angle and narrow-angle
HE parabolic approximation/Fourier split-step algorithnpropagators and the true solution to the propagation problem
[1], [2] is a powerful method for modeling electromag-can be examined analytically. It turns out that the wide-angle
netic propagation through inhomogeneous atmosphere gmdpagator is indeed superior to the narrow-angle propagator
above the surface of the earth, which may have large- aadd that the differing behavior in the two propagators only
small-scale roughness plus various dielectric properties. Agdrows up at large angles from horizontal. However, these dif-
suming azimuthal symmetry, Maxwell's equations can be réerences will be of importance for problems with propagation
duced to a two-dimensional scalar Helmholtz equation, whieh large angles.
is then factored into forward and backward propagating piecesin this paper, derivations of the narrow- and wide-angle
Only the forward propagating part is used. This is a parabolitopagators are briefly reviewed in the context of solutions to
wave equation that is solved by marching over range stepise Helmholtz equation and both propagators are then evalu-
In each step the solution operator is split into a product ated numerically for the free-space problem. Then, referring
three operators: the first and third account for atmospheti basic antenna theory, the two solutions are compared with
and surface variation, while the center operator propagates ttrath” as derived for a finite line source. This comparison
field as though in vacuum and is the object of interest herebetween the antenna solution and the narrow- and wide-
Older versions of the method used the narrow-angle pragagle parabolic wave equation solutions will lead to a proper
agator. It performs admirably for problems where the fielahterpretation of observed numerical results and will also
propagates along paths nearly horizontal to the surface.intlicate how wide-angle sources should be generated for
is good for propagation at angles up to about fidom the electromagnetic propagation problems.
local horizontal. Some of the more recent versions of the Finally, two examples which have analytic solutions, the
knife-edge and the sinusoidal surface, will be solved using

. INTRODUCTION
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II. DERIVATION OF THE NARROW-ANGLE The narrow-angle parabolic equation can be obtained from
AND WIDE-ANGLE PROPAGATORS (2) by taking only the first two terms of the series expansion

In free-space with no boundaries, if Maxwell's equation@f the square-root operator

are expressed in spherical coordinates and all sources are on 52 1 92
the z axis, then all components of the fields are independent of k? + 92 ~k+ 5% 922
the azimuth angle. This symmetry assumption simplifies the = i i

Maxwell equations, which can then be decomposed into t48SUting in

cases—vertical and horizontal polarization. These independent oU L<k 1 02 )U

cases can each be reduced to a two-dimensional scalar equation Or + 2k 922
Again using Fourier transforms, the solution to the narrow-

in Hy or E,, which, in turn, can be manipulated into a
angle parabolic equation (6) is given by the convolution of

(6)

Helmholtz equation (see [1])

o2U 9 the fundamental solution
dr? = 022 +En =0 1 ike oo
z 4 . ) )
N(a:,z) — 62 / eupe—wsz/Qk dp 7)
where U = /zH, or /zEy, respectively, for vertical or T J=eo

horizontal polarization. In the general case, the temh with the source terni/(0, s).
is a variable depending on the index of refraction of the

atmosphere and the surface roughness, but for free-space IIl. EVALUATION OF THE WIDE-ANGLE
without boundaries:? = 1. Equation (1) is factored into AND NARROW-ANGLE PROPAGATORS
9 92 9 92 The fundamental solutiondV(x,>) and N(z,2) can be
92 + iy k% + 9.2 [a— — iy kZ + 9.2 U=0 evaluated numerically using FFT’s. Fér corresponding to
* o v o ] a frequency of 1 GHz, a range of 150 ft and a transform

size of 210 |N(z, 2)|? is plotted in Fig. 1(a) in decibels after
normalizing by multiplying by2rz/k. This normalization
ouU 92 makes the field magnitude unity (O dB) at beam center,
a7 =i\ k2 + 942 U (2) as can be seen in the figure. The normalization factor will
: be analytically justified in the following. Since the far-field
giving the propagation in the forward or positivedirection. pattern of an antenna is the Fourier transform of the antenna
Equation (2) is the wide-angle parabolic wave equation [Sdperture distribution and the fundamental solution essentially
[6] and its solution is propagates a point source, this result looks correct. However,
similarly plotting |W (z, »)|? with the same frequency, range,
: 0? transform size, and the same normalization factor produces the
Ulw,2) = exp lm\/ ke + 022 (0, 2) 3) result shown in Fig. 1(b). This figure looks a little strange and
is essentially what prompted the investigation reported here.
wherel/(0, =) is the given source function on theaxis and Both the narrow-angle and wide-angle propagators can also
where the exponential of a square root of an operator che expressed analytically. In (7) complete the square in the
be interpreted as a power series in the operator. Next, (3)eisponent and change variables making it a well-known Fresnel
Fourier transformed. Since there are no boundaries, the fintegral [7, sec. VII-C]. So the narrow-angle propagator is
exponential Fourier transform is used. Recall that the Fourier
k eik(ac—l—zz/Qac).
V 2riz

and only one piece is solved

transform of a derivative igp times the transform, whereis (8)
the transform variable. Since the exponential in (3) is a power
series ind? /922, applying the Fourier transform results in thelhis could also have been found by solving the constant

same power series irp?, so (3) becomes coefficient parabolic equation (6) using the methods of [8,
ch. 1l]. The normalization factor and the plot in Fig. 1(a) are
FU(x,p) = explizy/k? — p?|FU(0, p). (4) verified.
The wide-angle propagator in (5) can be evaluated from
The solution is obtained by inverse transforming differentiating a formula found in [9, p. 823] or in [10, p.

oo 1 oo 199]. Or it can be gotten from inverting and differentiating
Uz, 2) :/ U(O,s)2— / fFmopieV = g gs formulas (35) and (41) in [11, pp. 55-56]. In any event
—00 T J—oo
. (1)
tkaH,; ' (kr
Thus, the solution to the wide-angle parabolic equation (2) is W(x,2) = ————— ( ), r=Va?+22 ©)

2 -
given by the convolution of the fundamental solution ' .
Using the asymptotic value for the Hankel functiHrﬁ ) from

W(az Z) = i /jx) P IV k2 —p? dp (5) [7, 9.2.3]

~ Wiz, 2) ~ 1/ * —x@i’“‘ (10)
with the source ternU/(0, s). T 2mi r3/2
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450 ; , (So the far field is defined by > L/2.) In the denominator,
: : retain only the first termr, but in the exponential use the first
: two terms. Thus
5 A~ thf—) / c_ikzlz/”a(z’) dz'.
BOE e e J-L/2
- The integral is the Fourier transfori(k sin 6) of the current
%m_ VVVVVVVV S | distribution on thez axis, evaluated atz/r = ksiné. In the
2 ; far field, H. = Hy = 0 and
£ :
.’L’Gikr
250k - T RO RN qu = const 2 F(k51n9) (11)
: “—"3 This is a derivation of the abovementioned result that the
200 S cobeeer - far-field antenna pattern looks like the Fourier transform: of
’ the aperture distribution. But the Fourier transform is not the
15 : : whole story.
10 s 0 8 In [12, p. 119], F(ksin6) is called thespace factorand

One-Way Propagation Factor [dB] . . .
the remaining terms on the right side of (11) are called the

@ element factarThe magnitude of the element factor is
450 T
29
L7 (12)
T X

0 Presumably, (11) is truth. This is the far field which nature,

in the form of Maxwell's equations, produces in free-space.
Doing a similar analysis after convolving the source with the
far-field asymptotic expression fa# (z, z) from (10) gives

ikr 3/2 i
Hy = const —— " F(ksin6) (13)
X

350

Altitude [feet]
w
Q
o

so the magnitude of the element factor for the wide-angle
propagator iscos®/2/z.

When the exact expression (8) for the narrow-angle propa-
1 gator is convolved with the source

250

200

k (422 )2) > . zs &2
. . ——— T/ ik| — — JU(0,s) d
%0 s 0 5 V 2z © e xp s T (0,5) ds

One-Way Propagation Factor [dB] ( l 4)
(b)
Fig. 1. 1-GHz propagation of a point source to 150 ft by (a) narrow-angié Obtained. Now, if the aperture distribution is bounded in,
and (b) wide-angle. say,—L/2 < 2z < L/2, then asz — oo, the term in the
exponentials?/2x — 0 and (14) becomes
Thus, |W(x, z)|?, after multiplying by the same normalizing 3
factor2rxz/k, is cos® 8, wheref = tan—!(z/z) and this agrees \/ —— e * @22 B tan 6).
with Fig. 1(b). 2miw
Also
IV. WHAT Is TRUTH? 52 32
The following discussion is an abbreviated version of mate- T+ 9 T 1+ 2"

rial, which can be found in, e.g., [12, chs. 3, 4] and elsewher§0 in the far field of the narrow-angle propagator

If the sourceJ = a(z)u. is a current distribution on theaxis,
ikr

oriented in thez direction and concentrated in the interval . e R tan O 15
—-L/2 < » < L/2, then a vector potential for Maxwell's ¢ = const = (k tan 6). (15)
equations is Hence, the magnitude of the element factor for the narrow-
po (L e angle propagator isl/x and note that its space-factor is
_ ! /
Az, z) = Uy / ma ') d. F(ktan6).
—h2 oy TAE T A Near horizontalr = =z,cosf ~ 1,tanf = sinf and
In the far field, make the estimate (11), (13), and (15) are approximately the same. Away from

horizontal they are all different. There, neither the wide-

24 (=22 — G higher terms
r angle propagator nor the narrow-angle propagator exactly
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corresponds to truth, but the wide-angle is closer. Moreover sso T ,
the space factor of the wide-angle propagator agrees with the : :
true space factor, while that of the narrow-angle does not. So it
. .. . 4001
appears that the wide-angle propagator is indeed superior to the
narrow-angle propagator. The element factor in the wide-angle ,
propagator has simply not been accounted for correctly. 30f T e,

V. How SHouLD THE WIDE-ANGLE
PROPAGATOR BE ADJUSTED?

o

=]

=]
T

Altitude [feet)

In [13, p. 35] the propagation factor is defined as

|H|
|Ho|

»N

&

=]
T

(16)

where H is a field component andl, would be its value in
free-space. The free-space value$idf| have been calculated

above under various assumptions. Near the horizontal, all these 5 ) 0 5

One-Way Propagation Factor [dB]

values reduce td/z, so the multiplier that has traditionally
been used to obtain the propagation factor is correct for near- @
horizontal propagation. 450 . .

Off axis, under the assumption that the fields are generated
by a bounded source along thaxis, the magnitude of the true
far field will be /72, wherer is calculated from an appropriate m\
center in such a source. However, the proper interpretation
of (16) should probably be that the propagation factor is thesss, o §
ratio of the magnitude of the field component computed by a
particular method (whether nature, narrow-angle, wide-ang(g,
or something else), to the magnitude of its free-space vaIlE’°°‘
computed by the same method

Thus, when computing with the narrow-angle propagator,zso_ RN I .
the multiplier on H, to get the propagation factor should

indeed ber, as has generally been used. However, when using /’/’5
the wide-angle propagator, the appropriate multiplier would be®ot T

3/2

T x
rl/2 - cos3/20° (17) 0o s 0 5
One-Way Propagation Factor [dB]
Fig. 2(a) shows the wide-angle propagator for a 1-GHz point (b)

Squrcg atrange = 150 ft, when mUItlp“ed by (17)' (Compare Fig. 2. 1-Ghz wide-angle propagation to 150 ft of (a) a point source after
with F'g- 1.-) . _ _ _ dividing by cos3/26¢ and (b) a point source with a gain. They are virtually
While this is a fine result for a point source in free-spacelentical.
this is not what should be done in general. Then (17) is
actually path length, which, in an inhomogeneous atmOSphT,'ﬁ?s problem would seem to be trying to put a gain on a point
or after reflections from surfaces, is not a readily availab
source. The desired pattern is

quantity. What needs to be done is to adjust the source so
that the angle-dependent termss®/2 §F (ksin§) produce a
desired free-space pattern, sByf). So set P(6) = 1, |8]<n/2,

0, otherwise

N & ()
F(ksing) = e
or SO
(p) = k2 P(sin™ (p/k)) (18) Flp) = K322 — p?)=3/4, |p| <k,
(k2 — p2)3/4 P)=1 o, otherwise

and invert the Fourier transform to determine the source

distribution, which, when propagated by the wide-angle, wilhich is smoothed with a bandpass filter and produces the

produce the desired free-space pattern. source function shown in Fig. 3, the “point source with a
This procedure can be illustrated by trying to produce thgain.” When propagated with the wide-angle at 1 GHz to range

boxcar or sector pattern of Fig. 2(a) in this way. At first glance, = 150 ft, the pattern shown in Fig. 2(b) is obtained.
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Source for 45 Degree Sector Pattern so the narrow—angle propagator propagates a plane wave at
50 ’ ' ' ' ' ‘ T ! ‘ range zero and anghe into something which approximates a
plane wave at range and angley, up to terms iny*z.

40 1

30 b
VIl. FIRST EXAMPLE:
20 b SCATTERING FROM A KNIFE EDGE

In order to demonstrate the superiority of the wide-angle
propagator to the narrow-angle propagator, some classical
or 7 problems with analytical solutions will be considered. The
program which will be used is called tropospheric electomag-
netic parabolic equation routine (TEMPER), a model which
-20 1 has been developed and improved over the last ten years and
was also used in [1] and [2].

The first problem considered is the knife edge. A good

10 1

Feet

-10

-30 1

-40 i reference for this problem is Morse and Feshbach [9, pp.
50 , . . ) , . ) , , 1383-1387] (see also [14]). The knife edge is the negative
0 02 04 086 08 1 12 14 168 18 2 » axis,z = 0,2<0, which will be considered a perfect
Fig. 3. The “point source with a gain.” electric conductor. The incident field will be a plane wave

¢'** propagating in the positive: direction. The total field

VI. PLANE WAVE PROPAGATION BY THE scattered from the knife edge is then

WIDE-ANGLE AND NARROW-ANGLE PROPAGATORS L[eikrm%( Dher sin(6/2))
Write the wide-angle propagator (5) in a different form. Vir ‘
Since it is essentially — e Hhreos(/2kr cos(6/2))] (21)
k
W(x,2) ~ 1 / 2P pi /B —p? dp where —7r/2__<9<37r/2. This is the solution from_ [9, p.
2 J g 1386], modified so the wave travels from left to right, and
after making the change of variabje= ksin 6, it becomes for Dirichlet boundary conditions. The function
/2 x is?
i C7k(T cos 64z sin 6) cos @ db. (19) (I)(.’L') = / e ds (22)
21 —x/2 0

This looks like a plane wave at anglewith the horizontal, 1S related to Fresnel integrals [7, sec. VII-C]. _
integrated againstos  (which is maximum in thé = 0 or = The exact result is shown in Fig. 4 for a plane wave in the
direction) over all forward anglesr/2 < 6 < /2. x direction. In the third quadrant, one sees mostly the direct

This suggests investigating ho (z, z) propagates a plane plus reflected wave giving a standing wave pattern. In t_he fir;t
wave. Suppose then that at= 0 the plane wave source is and secoqd quadrants, one sees the direct wave pIus'dlffract|on

. from the tip. In the fourth quadrant, one sees diffraction only.

et Eny (20)  Fig. 5 shows the results from TEMPER using the wide-

where v is the angle the direction of propagation makegngle_propagator for the same problem. S_ince the parapolic
with the = axis. Now convolve with expression (19) fov . equation only calculates forward propagation, only the field

After some manipulations involving interchanging the order gehind the knife-edge is shown. The source was introduced

integration and recognizing a formula for the delta distributiOt’:'r‘,t the knife-edge as essentially a heayiside function—zer_o for
one obtains z < 0 and one forz > 0. Because the knife edge has zero width

N . and is semi-infinite in extent, this problem depends only on the
(@ cosytzsing) variableskz andkz. Thus, the solution shown in Figs. 4 and

for —m /2 < v < /2 and the wide-angle propagator propagate‘cé when expressed in wavelengths= 2 /k, is the solution

: for any frequency.
a plane wave at range zero and anglento a plane wave at ) .
rangez and angley. To see the differences between the true solution and the

Next, convalve the plane wave source in (20) with 8T8 FOMECEEE FE8 Lt i the iftacton.

narrow-angle propagator in (8) to get ; ! . .
g'e propag ®tg region behind the knife edge at 300 wavelengths range in-
expik[z(1 — 1 sin® ) + zsinA]. crements, as given by the three methods in Fig. 6(a)—(c),
respectively. The fields are offset by 3 dB for each range

Now . . . .
increment for clarity. The wide-angle propagator gives a better

cosy=1-3y"+ L4t — . approximation to the exact solution than the narrow-angle

while propagator in the diffraction region. The narrow-angle curves

differ from the exact results by 1 dB at about 12.#he wide-
1—isin®y=1-342+14*— angle curves differ from the exact results by 1 dB at about
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knife edge diffraction
B

wavelengths
(=]

|
250 J i 10018017 e |
-1000 -500 0 500 1000 1500 2000 2500 3000 3500 4000
wavelengths

Fig. 4. Reflection and diffraction of plane wave from left by a perfectly conducting knife edge.

wide-angle parabolic equation for knife edge

250

200

150

100

wavelengths
(=]

-150

-200

-260
0 500 1000 1500 2000 2500 3000 3500 4000

wavelengths

Fig. 5. Propagation behind the knife edge computed by the wide-angle parabolic equation.
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Fig. 6. Field magnitudes at 300 wavelengths increments behind knife edge.

wavelengths

wavelengths

wavelengths
i

g

-1200+

L :
-40 <30 -20
exact result by Fresnet integrats

(@)

g

-1400

-1600

-1800

-200_060

50 20 30 20

wide-angia parabotlic wave equation

(b)

g

©

(a) Exact. (b) Wide-angle. (c) Narrow-angle (3-dB offsets for clarity).
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field 5400 wavelengths beyond knife edge
250 r T T T

200

150

100

o
=]

=)

altitude (wavelengths)

&
3

10 -5 ] 5

L
-20 -
power (dB)

Fig. 7. The field 5400 wavelengths behind the knife edge computed from
Fresnel integrals (exact) and by the wide-angle propagator (offset 0.3 dB).
They are identical.

13.6°. Fig. 7 shows the exact result from Fresnel integrals and
the wide-angle TEMPER calculated field at 5400 wavelengths
(offset 0.3 dB) behind the knife edge. Although they are
computed by entirely different methods, the fields are identical.
There is no boundary in this problem other than the knife
edge. To eliminate artificial boundaries due to the numerical
requirement of computing with finite data, the “sincos trick”
is used. The source is split in two—one half propagated using
sine and inverse sine transforms and the other half propagated
using cosine and inverse cosine transforms. The sine part
propagates as if the source were oddly reflected about the
bottom “boundary,” while the cosine part propagates as if the
source were evenly reflected. Their sum gives the effect of
the source propagating without a boundary present, which is
what is wanted.

VIIl. SECOND EXAMPLE:
SCATTERING FROM A SINUSOIDAL SURFACE

In [15], the classical problem of an incident plane wave
scattering from a sinusoidal surface was considered. The
scattered field is then a sum of plane waves propagating at
angles which are related to the angle of incidence by the
Bragg law. In [15], the incident field was simulated by using
a point source placed far away from the surface. By using a
plane wave as the initial field in the parabolic equation, this
problem can be redone with better results and used to compare
the wide-angle and narrow-angle propagators.

Here is a brief review of how this problem is solved by the
parabolic equation. The conformal map [1b]= f(¢) takes
the upper half-plane i§ = = 4 iy space onto the regioR
above the sinusoidal surface in= v + iv space. If®(u,v)
satisfies the Helmholtz equation

(23)

then the function defined by

(/)(x’z) = (I)(U"U)
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Fig. 8. Scattering of a plane wave of wavelength 34.5 ft and®iBgident angle by a sinusoidal surface of amplitude 13 ft and period 1128 ft.

for x 4+ iy andu + v related by the conformal map satisfiesThis arrangement minimizes the error and is known as the
2é 924 split step. Notice that the middle of the three exponential
— + —— + K )Pp =0 (24) operators is just the free-space propagator, which is performed

oxr? 022 . ) ! X
in th half-ol 0. Th ¢ i as usual by Fourier transforms leading to either the wide-angle
in the upper half-planez > 0. Thus, free-space propagatio [ narrow-angle propagators.

over a smuso'ldal su_rface is equwa_lent t.o propallganon OV &\ the sinusoidal surface
flat surface with an index of refraction given by’|.

Just as in Section Il, (24) is factored and only one factor | = 1+ @COS <27r_x> exp <_ 27rz)
is solved A A A
5 . . . . . .
¢ — /k2|w’|2 n 9% é. (25) where/ is the amplitude and\ is the period of the sinusoid
oz 072 [15]. In this case, the: integration can be done exactly.
The formal solution is The example of [15] is repeated for which the incident

- 5 anglefy = 9.81°, A = 1128 ft, and k£ = 27 /34.5. Note that
¢(x,z) =exp |i / 1//€2|w/|2 + oy da #(0,2). (26) 0-1.0—2,--- are all pure imaginary for this example, giving
0 9z evanescent waves. In Fig. 8, the field magnitude computed

Note the integration is needed becays¢| depends on:. using wide-angle TEMPER is shown. For this problem, a

H _ 9l0 £ _ : _
Since|w/| also depends o, (26) is not an exact solution of ransform size of” = 2'° was used?y = [1'sin fo]+1, Ap =

(25), because the exponential operator and:iterivative do (F5in60)/To, Az = m/TAp andzyax = TAz. These choices
not commute exactly. make the incident plane wave exactly

The approximation [5], [6] 2711Thj )
eXp( )a j:()aaT
9? 9?
\/k2|w’|2+ 5 %\/k2+—2+k(|w’|—1). (27 ]
a9z 9z A step size ofAr = 66 ft was used and the problem ran for
is made. The nearéw’| is to one, the better the approximation1548 steps. The finite transform size essentially windows the
This is used in (26) and written as plane wave and this number of steps is approximately the range
—Zk * / ZIHH.X
Pz, z) = exp 2 ), (Jw'| = 1) dx tan 0
_‘ ,, where the incident wave is no longer part of the field, and
exp |ixy/k* + 92| the reflected waves exactly fill the interval < » < 2.
L - A filter was applied inz-space every 100 range steps, but it
exp ik / (Jw'| — 1) dx} $(0,z). (28) Wwas not applied before step 400 or after step 1300, so the
L2 Jo full incident field could propagate and the full reflected field
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Bragg: 9.81 deg incidence, 20 transform, dr = 66, 1548 steps and has magnitude

: : : : : : 2sin(kzsin fy)
S0 T [ R R e AR
: ' ' ' : ' independent ofc and periodic inz. This may be contrasted

| S --------- sl SRR --------- with [3, fig. 4], showing “the onset of Bragg scattering,” where
" o ; ; the bands fan out in a radial pattern due to the use of a distant
----- point source as the incident field.

APPENDIX
BRAGG SCATTERING

The exact solution for scattering from a perfectly conducting

6o |‘]‘ g """"" """" N I [ sinusoidal surface is reviewed. Let the surface be given by
: 3 ; : : z = hsin(2rz/A) and let the incident field be a plane wave

ET A L S T A at anglefy

80, 5 = P = P B¢ = explik(z cos By — zsinbp)]. (A.1)

degrees . . . .
Fo 0. Magnitude of th f ‘ the field by the < ,derte the scattered field*c as a series in powers éf., the
1g. 9. agnitude of the transform of the field scattere y the sinusoi : H H :
surface at the final range. Blectrical amplitude of the sinusoid,

o>
sCc __ m
TABLE | E*° =" (hk)"Ep,. (A.2)
ExacT BRAGG ANGLES (DEGREEY AND AMPLITUDES (DECIBELS) FOR 9.81° m=0
INCIDENT PLANE WAVE WITH k = 27/34.5,h = 13 ft, A = 1128 ft, .
CoMPARED WITH THE WIDE-ANGLE AND NARROW-ANGLE Each of the termg,,, is a sum of2m + 1 plane waves
PROPAGATOR SoLUTIONS, T = 219, Ar = 66 ft, AND 1548 SEPS m
exact Bragg wide-angle narrow-angle Em = Z B (m’ J ) €Xp [Lk(x cos ej +z sin 9])] (A3)
j=—m
angles amplitudes angles amplitudes angles amplitudes
where the angle8; turn out to be related t6, by the Bragg
9.81 -1.23 9.81 -1.30 9.81 121 law
27
17.29 9.20 17.27 -9.57 17.51 -10.01 kcosf; = kcosty — j n (A.4)
22.45 -18.22 2.4 -18.55 22.92 -18.99 Since the surface is a perfect electric conductor, the total
field vanishes on the surface. Thus, write the total field as
26.67 2875 26.67 -29.18 27.48 | -30. ; ;
6 0.7 Einc — Fs¢ so thatEnc = E* on the surface and
30.34 -40.56 30.35 -41.63 31.52 -43.87 ) . . 2T
exp |tk| x cosfy — hsinfgsin A
33.65 -53.45 33.64 -55.51 3533 -58.64
o> m
=3 YD Bm e
m=0 j=—m
could reach the final range. The action of the filter can be , . . [ 27mx
u N : - |4k | x cos@; + hsinb;sin [ — . (A5)
seen as the blue “notches” at top of Fig. 8. The angles and A

amplitudes of the reflected plane waves were found by taking . .
the discrete sine transform of the field there and normaliziljnrgvIde by the left side of (A.5) to get

it by 2/7. The magnitude of the result from the wide-angle o0 m e
TEMPER calculation is shown in Fig. 9. The numerical values 1 = Z (kh)™ Z B(m, j)& MMt kS (AL6)
of the computed angles and amplitudes are shown in Table |  ™=0 j=—m

along with the exact amplitudes and amplitudes from (A.4)here
and (A.9) and the corresponding results for the narrow-angle
propagator. As expected, there is excellent agreement using §=e /A K; = $(sinf; +sin o).
the wide-angle propagator, and somewhat lesser performa
with the narrow-angle propagator.

The complete total field&™ — E*¢ in Fig. 8 is the triangular e o
portion showing a sequence of horizontal bands. This is 1=

%(%anding the exponentials into their Taylor series, (A.6)
becomes

because the total field is just a perturbation fc — E,
the direct and specular, which is

Jj=—m
: —1)7
| o - gy rragi-rri g, it D (ag)
exp(tkax cos Op|(exp[—ikz sin 6] — exp[ikz sin o)) yall
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Now setM =m+p+q, N = j—p+gq. Since—m < j < m,
this implies2p < M —N,2¢q < M+ N and sinces > 0,q > 0,
it follows that —M < N < M.

Thus, equating the coefficients of each powerkaf and

each power of in (A.7), for eachM = 0,1,2,--- and each

N satisfying—M < N < M

[(M—N)/2] [(M+N)/2]

§(M) = E BM—-p—q,N+p—q)
p=0 q=0
+¢ (=D
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(1]

(2]

(3]

In particular, B(0,0) = 1, i.e., the zero-order term is just [4]

specular reflection and fab/ = 1,2,..-, and NV satisfying
-M < N<M

[(M—-N)/2] 1
>, BM-p,N+p)EX, ~
=1 D
Ig
[(M+N)/2] (—1)
- ) BM-gN-gK}

g=1

B(M,N)=—

[(M—N)/2][(M+N)/2]

- > > B(M-p—q,N+p—q)
p=1 q=1
ptq (=1
’ KN-I—p—q plg! (A.9)

which gives a recursive formula for thB(M, N). The coef-

ficient of the plane wave scattered at an@je is then

oo

> (kh)™B(m, N).

m=N

(A.10)

(5]
(6]

(7]
(8]
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