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Differences Between the Narrow-Angle and
Wide-Angle Propagators in the Split-Step

Fourier Solution of the Parabolic Wave Equation
James R. Kuttler

Abstract—For tropospheric electromagnetic propagation,
Maxwell’s equations can be reduced to a parabolic wave
equation, which is solved by marching over range steps. In each
step, the solution is split into a product of three operators. The
first and third account for atmospheric and surface variation,
while the center operator propagates the field as though in
vacuum. This center operator is the object of interest here.
Older versions of the method used the narrow-angle propagator,
while some recent versions use the wide-angle propagator. It was
thought that the wide-angle propagator was entirely superior
to the narrow-angle propagator, but some artifacts observed in
recent experiments have led to the present investigation. The
two propagators are examined numerically and analytically
and found to exhibit subtle differences at large angles from
the horizontal. This has required modifications to the way in
which sources are created for starting the split-step solution. The
narrow- and wide-angle propagators are also compared on two
problems with analytic solutions to quantify the improvement
of the wide-angle over the narrow-angle

Index Terms—Parabolic wave equation, propagators, tropo-
spheric propagation.

I. INTRODUCTION

T HE parabolic approximation/Fourier split-step algorithm
[1], [2] is a powerful method for modeling electromag-

netic propagation through inhomogeneous atmosphere and
above the surface of the earth, which may have large- and
small-scale roughness plus various dielectric properties. As-
suming azimuthal symmetry, Maxwell’s equations can be re-
duced to a two-dimensional scalar Helmholtz equation, which
is then factored into forward and backward propagating pieces.
Only the forward propagating part is used. This is a parabolic
wave equation that is solved by marching over range steps.
In each step the solution operator is split into a product of
three operators: the first and third account for atmospheric
and surface variation, while the center operator propagates the
field as though in vacuum and is the object of interest here.

Older versions of the method used the narrow-angle prop-
agator. It performs admirably for problems where the field
propagates along paths nearly horizontal to the surface. It
is good for propagation at angles up to about 10from the
local horizontal. Some of the more recent versions of the
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method use a wide-angle propagator. A wide-angle capability
is needed for propagation over terrain with prescribed features
such as mountains and valleys, which are large compared to
the wavelength and cause reflection and diffraction of the field
into large angles.

It has been presumed that the wide-angle propagator was,
in all respects, superior to the narrow-angle propagator in that
it is expected to give the same answer in problems where the
narrow-angle is known to work well and to continue to give
accurate answers for problems with angles of propagation as
large as 25 or more. However, in some recent experiments
with problems over terrain with specified obstacles such as
steps, ramps, and pyramids [3], [4], some subtleties appeared
in the implementation and interpretation of the narrow-angle
and wide-angle propagators that affect the way sources are
defined for use with the wide-angle propagator. This is the
subject of this note.

As indicated above, the propagator is separated from the
atmospheric and surface effects by the splitting of the operator,
so it suffices to consider the pure free-space problem with
no boundaries present. Then the wide-angle and narrow-angle
propagators and the true solution to the propagation problem
can be examined analytically. It turns out that the wide-angle
propagator is indeed superior to the narrow-angle propagator
and that the differing behavior in the two propagators only
shows up at large angles from horizontal. However, these dif-
ferences will be of importance for problems with propagation
at large angles.

In this paper, derivations of the narrow- and wide-angle
propagators are briefly reviewed in the context of solutions to
the Helmholtz equation and both propagators are then evalu-
ated numerically for the free-space problem. Then, referring
to basic antenna theory, the two solutions are compared with
“truth” as derived for a finite line source. This comparison
between the antenna solution and the narrow- and wide-
angle parabolic wave equation solutions will lead to a proper
interpretation of observed numerical results and will also
indicate how wide-angle sources should be generated for
electromagnetic propagation problems.

Finally, two examples which have analytic solutions, the
knife-edge and the sinusoidal surface, will be solved using
the two propagators, so that improvements of the wide-angle
propagator over the narrow-angle propagator can be seen and
quantified.
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II. DERIVATION OF THE NARROW-ANGLE

AND WIDE-ANGLE PROPAGATORS

In free-space with no boundaries, if Maxwell’s equations
are expressed in spherical coordinates and all sources are on
the axis, then all components of the fields are independent of
the azimuth angle. This symmetry assumption simplifies the
Maxwell equations, which can then be decomposed into two
cases—vertical and horizontal polarization. These independent
cases can each be reduced to a two-dimensional scalar equation
in or , which, in turn, can be manipulated into a
Helmholtz equation (see [1])

(1)

where or , respectively, for vertical or
horizontal polarization. In the general case, the term
is a variable depending on the index of refraction of the
atmosphere and the surface roughness, but for free-space
without boundaries Equation (1) is factored into

and only one piece is solved

(2)

giving the propagation in the forward or positivedirection.
Equation (2) is the wide-angle parabolic wave equation [5],

[6] and its solution is

(3)

where is the given source function on theaxis and
where the exponential of a square root of an operator can
be interpreted as a power series in the operator. Next, (3) is
Fourier transformed. Since there are no boundaries, the full
exponential Fourier transform is used. Recall that the Fourier
transform of a derivative is times the transform, whereis
the transform variable. Since the exponential in (3) is a power
series in , applying the Fourier transform results in the
same power series in , so (3) becomes

(4)

The solution is obtained by inverse transforming

Thus, the solution to the wide-angle parabolic equation (2) is
given by the convolution of the fundamental solution

(5)

with the source term .

The narrow-angle parabolic equation can be obtained from
(2) by taking only the first two terms of the series expansion
of the square-root operator

resulting in

(6)

Again using Fourier transforms, the solution to the narrow-
angle parabolic equation (6) is given by the convolution of
the fundamental solution

(7)

with the source term .

III. EVALUATION OF THE WIDE-ANGLE

AND NARROW-ANGLE PROPAGATORS

The fundamental solutions and can be
evaluated numerically using FFT’s. For corresponding to
a frequency of 1 GHz, a range of 150 ft and a transform
size of is plotted in Fig. 1(a) in decibels after
normalizing by multiplying by . This normalization
makes the field magnitude unity (0 dB) at beam center,
as can be seen in the figure. The normalization factor will
be analytically justified in the following. Since the far-field
pattern of an antenna is the Fourier transform of the antenna
aperture distribution and the fundamental solution essentially
propagates a point source, this result looks correct. However,
similarly plotting with the same frequency, range,
transform size, and the same normalization factor produces the
result shown in Fig. 1(b). This figure looks a little strange and
is essentially what prompted the investigation reported here.

Both the narrow-angle and wide-angle propagators can also
be expressed analytically. In (7) complete the square in the
exponent and change variables making it a well-known Fresnel
integral [7, sec. VII-C]. So the narrow-angle propagator is

(8)

This could also have been found by solving the constant
coefficient parabolic equation (6) using the methods of [8,
ch. II]. The normalization factor and the plot in Fig. 1(a) are
verified.

The wide-angle propagator in (5) can be evaluated from
differentiating a formula found in [9, p. 823] or in [10, p.
199]. Or it can be gotten from inverting and differentiating
formulas (35) and (41) in [11, pp. 55–56]. In any event

(9)

Using the asymptotic value for the Hankel function from
[7, 9.2.3]

(10)
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(a)

(b)

Fig. 1. 1-GHz propagation of a point source to 150 ft by (a) narrow-angle
and (b) wide-angle.

Thus, , after multiplying by the same normalizing
factor , is , where and this agrees
with Fig. 1(b).

IV. WHAT IS TRUTH?

The following discussion is an abbreviated version of mate-
rial, which can be found in, e.g., [12, chs. 3, 4] and elsewhere.
If the source is a current distribution on theaxis,
oriented in the direction and concentrated in the interval

, then a vector potential for Maxwell’s
equations is

In the far field, make the estimate

higher terms

(So the far field is defined by .) In the denominator,
retain only the first term, but in the exponential use the first
two terms. Thus

The integral is the Fourier transform of the current
distribution on the axis, evaluated at . In the
far field, and

(11)

This is a derivation of the abovementioned result that the
far-field antenna pattern looks like the Fourier transform of
the aperture distribution. But the Fourier transform is not the
whole story.

In [12, p. 119], is called thespace factorand
the remaining terms on the right side of (11) are called the
element factor. The magnitude of the element factor is

(12)

Presumably, (11) is truth. This is the far field which nature,
in the form of Maxwell’s equations, produces in free-space.
Doing a similar analysis after convolving the source with the
far-field asymptotic expression for from (10) gives

(13)

so the magnitude of the element factor for the wide-angle
propagator is .

When the exact expression (8) for the narrow-angle propa-
gator is convolved with the source

(14)

is obtained. Now, if the aperture distribution is bounded in,
say, , then as , the term in the
exponential and (14) becomes

Also

So in the far field of the narrow-angle propagator

(15)

Hence, the magnitude of the element factor for the narrow-
angle propagator is and note that its space-factor is

.
Near horizontal and

(11), (13), and (15) are approximately the same. Away from
horizontal they are all different. There, neither the wide-
angle propagator nor the narrow-angle propagator exactly
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corresponds to truth, but the wide-angle is closer. Moreover,
the space factor of the wide-angle propagator agrees with the
true space factor, while that of the narrow-angle does not. So it
appears that the wide-angle propagator is indeed superior to the
narrow-angle propagator. The element factor in the wide-angle
propagator has simply not been accounted for correctly.

V. HOW SHOULD THE WIDE-ANGLE

PROPAGATOR BE ADJUSTED?

In [13, p. 35] the propagation factor is defined as

(16)

where is a field component and would be its value in
free-space. The free-space values of have been calculated
above under various assumptions. Near the horizontal, all these
values reduce to , so the multiplier that has traditionally
been used to obtain the propagation factor is correct for near-
horizontal propagation.

Off axis, under the assumption that the fields are generated
by a bounded source along theaxis, the magnitude of the true
far field will be , where is calculated from an appropriate
center in such a source. However, the proper interpretation
of (16) should probably be that the propagation factor is the
ratio of the magnitude of the field component computed by a
particular method (whether nature, narrow-angle, wide-angle,
or something else), to the magnitude of its free-space value,
computed by the same method.

Thus, when computing with the narrow-angle propagator,
the multiplier on to get the propagation factor should
indeed be , as has generally been used. However, when using
the wide-angle propagator, the appropriate multiplier would be

(17)

Fig. 2(a) shows the wide-angle propagator for a 1-GHz point
source at range ft, when multiplied by (17). (Compare
with Fig. 1.)

While this is a fine result for a point source in free-space,
this is not what should be done in general. Thein (17) is
actually path length, which, in an inhomogeneous atmosphere
or after reflections from surfaces, is not a readily available
quantity. What needs to be done is to adjust the source so
that the angle-dependent terms produce a
desired free-space pattern, say . So set

or

(18)

and invert the Fourier transform to determine the source
distribution, which, when propagated by the wide-angle, will
produce the desired free-space pattern.

This procedure can be illustrated by trying to produce the
boxcar or sector pattern of Fig. 2(a) in this way. At first glance,

(a)

(b)

Fig. 2. 1-Ghz wide-angle propagation to 150 ft of (a) a point source after
dividing by cos

3=2
� and (b) a point source with a gain. They are virtually

identical.

this problem would seem to be trying to put a gain on a point
source. The desired pattern is

otherwise

so

otherwise

which is smoothed with a bandpass filter and produces the
source function shown in Fig. 3, the “point source with a
gain.” When propagated with the wide-angle at 1 GHz to range

ft, the pattern shown in Fig. 2(b) is obtained.



KUTTLER: DIFFERENCES BETWEEN NARROW-ANGLE AND WIDE-ANGLE PROPAGATORS 1135

Fig. 3. The “point source with a gain.”

VI. PLANE WAVE PROPAGATION BY THE

WIDE-ANGLE AND NARROW-ANGLE PROPAGATORS

Write the wide-angle propagator (5) in a different form.
Since it is essentially

after making the change of variable , it becomes

(19)

This looks like a plane wave at anglewith the horizontal,
integrated against (which is maximum in the or
direction) over all forward angles .

This suggests investigating how propagates a plane
wave. Suppose then that at the plane wave source is

(20)

where is the angle the direction of propagation makes
with the axis. Now convolve with expression (19) for .
After some manipulations involving interchanging the order of
integration and recognizing a formula for the delta distribution,
one obtains

for and the wide-angle propagator propagates
a plane wave at range zero and angleinto a plane wave at
range and angle .

Next, convolve the plane wave source in (20) with the
narrow-angle propagator in (8) to get

Now

while

so the narrow-angle propagator propagates a plane wave at
range zero and angle into something which approximates a
plane wave at range and angle , up to terms in .

VII. FIRST EXAMPLE:
SCATTERING FROM A KNIFE EDGE

In order to demonstrate the superiority of the wide-angle
propagator to the narrow-angle propagator, some classical
problems with analytical solutions will be considered. The
program which will be used is called tropospheric electomag-
netic parabolic equation routine (TEMPER), a model which
has been developed and improved over the last ten years and
was also used in [1] and [2].

The first problem considered is the knife edge. A good
reference for this problem is Morse and Feshbach [9, pp.
1383–1387] (see also [14]). The knife edge is the negative

axis, , which will be considered a perfect
electric conductor. The incident field will be a plane wave

propagating in the positive direction. The total field
scattered from the knife edge is then

(21)

where . This is the solution from [9, p.
1386], modified so the wave travels from left to right, and
for Dirichlet boundary conditions. The function

(22)

is related to Fresnel integrals [7, sec. VII-C].
The exact result is shown in Fig. 4 for a plane wave in the
direction. In the third quadrant, one sees mostly the direct

plus reflected wave giving a standing wave pattern. In the first
and second quadrants, one sees the direct wave plus diffraction
from the tip. In the fourth quadrant, one sees diffraction only.

Fig. 5 shows the results from TEMPER using the wide-
angle propagator for the same problem. Since the parabolic
equation only calculates forward propagation, only the field
behind the knife-edge is shown. The source was introduced
at the knife-edge as essentially a heaviside function—zero for

and one for . Because the knife edge has zero width
and is semi-infinite in extent, this problem depends only on the
variables and . Thus, the solution shown in Figs. 4 and
5, when expressed in wavelengths , is the solution
for any frequency.

To see the differences between the true solution and the
solutions computed using the wide-angle and narrow-angle
propagators, the field magnitude is plotted in the diffraction
region behind the knife edge at 300 wavelengths range in-
crements, as given by the three methods in Fig. 6(a)–(c),
respectively. The fields are offset by 3 dB for each range
increment for clarity. The wide-angle propagator gives a better
approximation to the exact solution than the narrow-angle
propagator in the diffraction region. The narrow-angle curves
differ from the exact results by 1 dB at about 12.4. The wide-
angle curves differ from the exact results by 1 dB at about
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Fig. 4. Reflection and diffraction of plane wave from left by a perfectly conducting knife edge.

Fig. 5. Propagation behind the knife edge computed by the wide-angle parabolic equation.
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(a)

(b)

(c)

Fig. 6. Field magnitudes at 300 wavelengths increments behind knife edge.
(a) Exact. (b) Wide-angle. (c) Narrow-angle (3-dB offsets for clarity).

Fig. 7. The field 5400 wavelengths behind the knife edge computed from
Fresnel integrals (exact) and by the wide-angle propagator (offset 0.3 dB).
They are identical.

13.6 . Fig. 7 shows the exact result from Fresnel integrals and
the wide-angle TEMPER calculated field at 5400 wavelengths
(offset 0.3 dB) behind the knife edge. Although they are
computed by entirely different methods, the fields are identical.

There is no boundary in this problem other than the knife
edge. To eliminate artificial boundaries due to the numerical
requirement of computing with finite data, the “sincos trick”
is used. The source is split in two—one half propagated using
sine and inverse sine transforms and the other half propagated
using cosine and inverse cosine transforms. The sine part
propagates as if the source were oddly reflected about the
bottom “boundary,” while the cosine part propagates as if the
source were evenly reflected. Their sum gives the effect of
the source propagating without a boundary present, which is
what is wanted.

VIII. SECOND EXAMPLE:
SCATTERING FROM A SINUSOIDAL SURFACE

In [15], the classical problem of an incident plane wave
scattering from a sinusoidal surface was considered. The
scattered field is then a sum of plane waves propagating at
angles which are related to the angle of incidence by the
Bragg law. In [15], the incident field was simulated by using
a point source placed far away from the surface. By using a
plane wave as the initial field in the parabolic equation, this
problem can be redone with better results and used to compare
the wide-angle and narrow-angle propagators.

Here is a brief review of how this problem is solved by the
parabolic equation. The conformal map [15] takes
the upper half-plane in space onto the region
above the sinusoidal surface in space. If
satisfies the Helmholtz equation

(23)

then the function defined by



1138 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 7, JULY 1999

Fig. 8. Scattering of a plane wave of wavelength 34.5 ft and 9.81� incident angle by a sinusoidal surface of amplitude 13 ft and period 1128 ft.

for and related by the conformal map satisfies

(24)

in the upper half-plane . Thus, free-space propagation
over a sinusoidal surface is equivalent to propagation over a
flat surface with an index of refraction given by .

Just as in Section II, (24) is factored and only one factor
is solved

(25)

The formal solution is

(26)

Note the integration is needed because depends on .
Since also depends on, (26) is not an exact solution of
(25), because the exponential operator and itsderivative do
not commute exactly.

The approximation [5], [6]

(27)

is made. The nearer is to one, the better the approximation.
This is used in (26) and written as

(28)

This arrangement minimizes the error and is known as the
split step. Notice that the middle of the three exponential
operators is just the free-space propagator, which is performed
as usual by Fourier transforms leading to either the wide-angle
or narrow-angle propagators.

For the sinusoidal surface

where is the amplitude and is the period of the sinusoid
[15]. In this case, the integration can be done exactly.

The example of [15] is repeated for which the incident
angle , ft, and . Note that

are all pure imaginary for this example, giving
evanescent waves. In Fig. 8, the field magnitude computed
using wide-angle TEMPER is shown. For this problem, a
transform size of was used:

and . These choices
make the incident plane wave exactly

A step size of ft was used and the problem ran for
1548 steps. The finite transform size essentially windows the
plane wave and this number of steps is approximately the range

where the incident wave is no longer part of the field, and
the reflected waves exactly fill the interval .
A filter was applied in -space every 100 range steps, but it
was not applied before step 400 or after step 1300, so the
full incident field could propagate and the full reflected field
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Fig. 9. Magnitude of the transform of the field scattered by the sinusoidal
surface at the final range.

TABLE I
EXACT BRAGG ANGLES (DEGREES) AND AMPLITUDES (DECIBELS) FOR 9:81�

INCIDENT PLANE WAVE WITH k = 2�=34:5; h = 13 ft, � = 1128 ft,
COMPARED WITH THE WIDE-ANGLE AND NARROW-ANGLE

PROPAGATOR SOLUTIONS, T = 210;�r = 66 ft, AND 1548 STEPS

could reach the final range. The action of the filter can be
seen as the blue “notches” at top of Fig. 8. The angles and
amplitudes of the reflected plane waves were found by taking
the discrete sine transform of the field there and normalizing
it by . The magnitude of the result from the wide-angle
TEMPER calculation is shown in Fig. 9. The numerical values
of the computed angles and amplitudes are shown in Table I
along with the exact amplitudes and amplitudes from (A.4)
and (A.9) and the corresponding results for the narrow-angle
propagator. As expected, there is excellent agreement using
the wide-angle propagator, and somewhat lesser performance
with the narrow-angle propagator.

The complete total field in Fig. 8 is the triangular
portion showing a sequence of horizontal bands. This is
because the total field is just a perturbation of ,
the direct and specular, which is

and has magnitude

independent of and periodic in . This may be contrasted
with [3, fig. 4], showing “the onset of Bragg scattering,” where
the bands fan out in a radial pattern due to the use of a distant
point source as the incident field.

APPENDIX

BRAGG SCATTERING

The exact solution for scattering from a perfectly conducting
sinusoidal surface is reviewed. Let the surface be given by

and let the incident field be a plane wave
at angle

(A.1)

Write the scattered field as a series in powers of the
electrical amplitude of the sinusoid,

(A.2)

Each of the terms is a sum of plane waves

(A.3)

where the angles turn out to be related to by the Bragg
law

(A.4)

Since the surface is a perfect electric conductor, the total
field vanishes on the surface. Thus, write the total field as

so that on the surface and

(A.5)

Divide by the left side of (A.5) to get

(A.6)

where

Expanding the exponentials into their Taylor series, (A.6)
becomes

(A.7)
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Now set . Since
this implies and since ,
it follows that .

Thus, equating the coefficients of each power of and
each power of in (A.7), for each and each

satisfying

(A.8)

In particular, , i.e., the zero-order term is just
specular reflection and for and satisfying

(A.9)

which gives a recursive formula for the . The coef-
ficient of the plane wave scattered at angle is then

(A.10)
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