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Three-Dimensional FDTD Simulation of
Electromagnetic Wave Transformation in a
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Abstract—A three-dimensional (3-D) finite-difference time-
domain (FDTD) algorithm is developed to study the transfor-
mation of an electromagnetic wave by a dynamic (time-varying)
inhomogeneous magnetized plasma medium. The current density
vector is positioned at the center of the Yee cube to accommodate
the anisotropy of the plasma medium due to the presence of
a static magnetic field. An appropriate time-stepping algorithm
is used to obtain accurate solutions for arbitrary values of the
collision frequency and the electron cyclotron frequency. The
technique is illustrated by calculating the frequency shifts in a
cavity due to a switched magnetoplasma medium with a time-
varying and space-varying electron density profile.

Index Terms—Cavity, FDTD, time-varying magnetoplasma.

I. INTRODUCTION

FREQUENCY shifting of an electromagnetic wave in a
time-varying plasma has been extensively studied [1]–[7]

and some experiments [1]–[3] were carried out to demonstrate
frequency shifting. Analytical studies make various assump-
tions and use simplified geometries including one-dimensional
models, flash ionization, and slow or fast creation of the
plasma medium [4]–[7].

A limited number of theoretical and numerical studies of
three-dimensional (3-D) models are reported. Buchsbaumet
al. [8] examined the perturbation theory for various mode
configurations of a cylindrical cavity coaxial with a plasma
column and coaxial with the static magnetic field. Gupta used
a moment method to study cavities and waveguides containing
anisotropic media and compared the results with the perturba-
tion method [9]. A transmission-line-matrix (TLM) method
was developed to study the interaction of an electromagnetic
wave with a time-invariant and space-invariant magnetized
plasma in 3-D space [10]. Mendon¸ca [11] presented a mode-
coupling theory in a cavity for a space-varying and slowly
created isotropic plasma.

Since the introduction of the finite-difference time-domain
(FDTD) method [12], it has been widely used in solving
many electromagnetic problems including those concerned
with plasma media [13], [14]. For the anisotropic cases [15],
[16], the equations for the components of the current density
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vector become coupled and the implementation of the con-
ventional FDTD scheme is difficult. We propose a new FDTD
method to overcome this difficulty.

In this paper, we use the FDTD method to analyze the
interaction of an electromagnetic wave with a magnetoplasma
medium created in a cavity. This paper is organized as follows.
The FDTD algorithm is derived first and the implementation
of perfect electric conductor (PEC) boundary conditions is in-
vestigated. The algorithm is verified by using a mode-coupling
theory and a perturbation technique. The application of the
algorithm is illustrated by computing the new frequencies and
amplitudes of the coupled modes generated due to a switched
magnetized time-varying and space-varying plasma in a cavity
with an initial TM mode excitation.

II. THREE-DIMENSIONAL FDTD ALGORITHM

A. Maxwell’s Equation

Consider a time-varying magnetoplasma medium with colli-
sions. Maxwell’s equations and constitutive relation for a cold
magnetoplasma are given by

(1)

(2)

(3)

where is the permittivity of free-space, the permeability
of free-space, the square of the plasma frequency,

the electron gyrofrequency, the external static
magnetic field, and and are the electric charge and mass
of an electron, respectively. The field components in Cartesian
coordinate are expressed as

(4)

(5)

(6)

(7)
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The substitutions of (4)–(7) in (1)–(3) give the following
equations:

(8)

(9)

(10)

where

(11)

The other components of and can be obtained in a similar
manner.

B. FDTD Equations

Usual grid configuration for is to place , , and
[17] at the locations of , , and , respectively.

This configuration works fine as long as the equations for
the components of are not coupled. When coupled as
in (10), and are needed at the position of to
update . However, the estimations of and at this
position can be very complex; the maintenance of second-
order accuracy requires averaging the values at four diagonal
positions. Moreover, implementation of the averaging on the
boundary is troublesome because some quantities outside
the boundary are needed. We overcame these difficulties by
placing at the center of the Yee cube as shown in Fig. 1.
The components of are located at the same space point. It is
now possible to solve (10) analytically since all variables are
now available at the same space point. Treating, , , and

Fig. 1. Positioning of the electric, magnetic, and current density field vector
components about a cubic unit cell.

as constants, each having an average value observed at the
center of the time step, the Laplace transform of (10) leads to

(12)

where is the identity matrix. Inverse Laplace transform of
(12) leads to the explicit expression for as

(13)

where as shown in (14)–(20) at the bottom of the page and
. The FDTD equations for are now

expressed in terms of their values at a previous time step
without having to solve simultaneous equations at each step

(21)

In the above, the time step begins at and ends at
. This formulation is valid for arbitrary values of

and ; the idea is similar to the exponential time stepping [18]

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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for a high conductivity case. Also, if and are functions of
time and space, (21) can be used by replacing those by
and in (14)–(20).

Using the grid in Fig. 1, the following FDTD equations for
the components of and can be written

(22)

(23)

The other components can be written in a similar way.
The stability condition of this method is not easily expressed

in a simple form due to the complexity of the algorithm.
Nevertheless, it can be said that the standard stability criterion
can be applied, i.e., the stability is governed by the mode
whose phase velocity is fastest in the medium [19], [20].

C. PEC Boundary Conditions

Fig. 2 shows the locations of the fields on– plane. The
indexes and of the planes correspond to those in
the FDTD equations. , , , , , and are located
on plane, whereas , , and are located on
plane. For a perfect conductor the tangential components of

field and the normal component of field vanish on the
boundaries. Hence, it is natural to choose PEC boundaries to
correspond to a rather than a plane. For example,
the plane may be used for the bottom PEC of a cavity.
The boundary conditions are satisfied by assigning zero value
to , , , , and on plane. Since is not
zero on the plane, we need to update its value with
time. From (21), the values and are

needed to obtain the updated value . We note that
the PEC boundary condition will permit us to
modify (21) for as given in the following:

(24)

Fig. 2. Construction of planes for a simple implementation of the PEC
boundary conditions.

The algorithm given above leads to explicit computation while
maintaining second-order accuracy.

III. V ALIDATION OF THE ALGORITHM

The algorithm is validated by considering two test cases for
which results are obtained by other techniques. The first test
case involves switching of a plasma medium in a rectangular
microwave cavity with dimensions , , and . Several
cavity modes are excited due to the interaction of the incident
mode and the plasma medium. Hence, the new fields may be
written in terms of cavity modes as

(25)

where is a normalized cavity mode and

(26)

In the above, is the complex conjugate of. For the space-
varying but isotropic plasma creation, the differential equations
for are obtained by the mode coupling theory as [11]

(27)
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where

(28)

(29)

and , , are the mode numbers.
Consider the creation of a time-varying and space-varying

plasma medium in the cavity with a plasma frequency profile

(30)

where is the saturation plasma frequency,is a rise time,
and the spatial variation is Gaussian. If the spatial variation of
the plasma is only in direction, i.e., , newly
excited modes should have same mode numbers forand .
Therefore, we need to consider the changes in mode number

only to describe the fields in the cavity.
Fig. 3 shows the comparisons of the results by FDTD with

those by the mode coupling theory for the initial TM mode
excitation. Isotropic and inhomogeneous plasma distribution
is considered for comparisons. The following parameters are
used: , , , ,

, , , and is the frequency of
the initial mode. The results for the mode-coupling theory are
obtained by numerically solving the differential equations (27)
with the initial conditions obtained from the initial excitation.
The results for the FDTD are obtained first by calculating

using our algorithm and then by computing

(31)

Fig. 3 shows very good agreement.
The second validation is for the case of a magnetized

plasma. Results based on a perturbation method are avail-
able for a magnetized low-density plasma filled cavity in
[21]. In the perturbation theory, the frequency shift due to
homogeneous magnetized plasma can be obtained as

(32)

where and is the dielectric tensor of the
magnetized plasma medium. For the magnetized plasma prob-
lem, a differential equation similar to (27) is not available.
Nevertheless, the new fields can be approximated by (25) and
the empty cavity modes can be used to extract the modes
from FDTD simulation for a weak plasma density since the
coupling is not strong. During the FDTD computations,
is computed using (31) and the frequency change is obtained

Fig. 3. Mode amplitudes for the case of a switched isotropic plasma in a
cavity. Comparisons of the FDTD and the mode-coupling theory are shown.
The coefficients are normalized with respect toa1(0). am(t) indicates
am11(t).

Fig. 4. Frequency shift due to creation of a low-density homogeneous
magnetized plasma in a cavity. Comparisons of the FDTD and the perturbation
methods. The ratio of frequency shift (%) versus the cyclotron frequency
!b=!0 is plotted.!p=!0 = 0:1 and �=!0 = 0:1.

from the time series of by Prony method [22]. Fig. 4
shows the comparison of the perturbation and FDTD methods
for an initial TM mode excitation. A lossy ( )
homogeneous plasma medium ( ) is used and the
dimensions of the cavity are given by .
The background magnetic field is along axis.
Since we have computed the final frequency shift which is
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(a) (b)

(c) (d)

Fig. 5. Amplitude spectra of the electric fieldEx at x = (1=15)Lx, y = (7=15)Ly , z = (7=15)Lz . Parameters areTr = 100=!!!0; !!!p0 = !!!0; � = 0.
(a) Homogeneous-isotropic (�x = �y = �z = 0; !!!b = 0). (b) Homogeneous-Anisotropic (�x = �y = �z = 0; !!!b = !!!0ẑ). (c) Inhomogeneous-isotropic
(�x = �y = �z = 2; !!!b = 0). (d) Inhomogeneous-anisotropic (�x = �y = �z = 2; !!!b = !!!0ẑ).

independent of the rise time , we have considered the case
of sudden ( ) creation. In this figure, the frequency
shift ratio is depicted for various background magnetic field
intensities.

IV. I LLUSTRATIVE EXAMPLES OF THE NEW

FDTD METHOD FOR A DYNAMIC MEDIUM

Fig. 5 shows the frequency shifting due to the interaction
of the electromagnetic wave with a time-varying and space-
varying magnetized plasma. A rectangular cavity with an
initial excitation of TM mode is considered with following
parameters: , , ,

, , , and .
is used for homogeneous plasma distribution [Fig. 5(a)

and (b)] and is used for inhomogeneous
plasma distribution [Fig. 5(c) and (d)]. The electron cyclotron
frequency is chosen to be zero for Fig. 5(a) and (c), and

for (b) and (d). The results are obtained from
the spectrum of the time series of at ,

, taken after the plasma is almost
fully created, i.e., after . For a homogeneous and
isotropic creation of plasma [Fig. 5(a)] the frequency shift due
to the interaction of the electromagnetic wave with the plasma
is the same as that of an unbounded plasma. For the cavity
with an anisotropic uniform plasma [Fig. 5(b)] several new
modes appear. It is noted that some of the modes have higher
frequencies than that of the unbounded isotropic plasma. A
comparison of Fig. 5(a) with (c) and Fig. 5(b) with (d) shows

that nonuniformly filled plasma cavity displays lower values
of frequency shifts for the same maximum values of as
predicted in [11].

V. CONCLUSION

Three-dimensional FDTD formulations are constructed for
time-varying inhomogeneous magnetoplasma medium. An ex-
plicit formulation is accomplished by locating at the center
of the Yee cube and by using an appropriate time stepping
algorithm.
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