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Local Spectral Analysis of Short-Pulse Excited
Scattering from Weakly Inhomogeneous Media—
Part Il: Inverse Scattering

Timor Melamed, Ehud Heymargenior Member, IEEEand Leopold B. Felsenife Fellow, IEEE

Abstract—This paper is concerned with the reconstruction of data observed on the measurement planeg = 1, 2, within
a weakly inhomogeneous scattering profile from data generated which the object is located.

by a short-pulse incident plane wave, which is postprocessed so g windowed postprocessing provides the initial conditions
as to localize the interrogated region to a space—time resolved

scattering cell. The phase-space localization due to postprocessing®f_Packpropagation of localized pulsed-beam (PB) wave
is brought about by applying local (i.e., windowed) slant-stack Objects toward the object domain. Part | of this study treats the

transforms to the time-dependent scattered fields. In the domain direct (forward) scattering problem in whieh(r) is assumed
of the scatterer, this processing corresponds to applying win- to pe specified and the Born-approximated time-dependent
dowed Radon transforms to the induced field distribution, which, induced sources in the pulsed plane wave illuminatedb-

in turn, generates pulsed-beam (PB) wave packets traveling . K Th ind d h biected t
toward the observer. The forward analysis parameterizing this main aré Known. €seé Induced sources, when subjected to

new form of time-domain (TD) diffraction tomography has been Space-time windowed transforms, radiate a highly localized
performed in a companion paper and furnishes the framework phase-space PB that can be steered to any space-time point
for the investigation here. Via the forward parameterization, (x, t).. on the measurement planes The induced scatter-
the three-dimensional (3-D) global scattering phenomenology has ing cejll which generates the scattered PB, is an equivalent
been reduced to scattering from an equivalent one-dimensional di ' . IV (1-D) stratified - ; ted al th
(1-D) scattering cell oriented along the bisector between the o_ne- imensionally (1- ) sr§1| e _reg_lon oriented along _e
direction of the incident plane pulse and the direction of the bisector between the direction of incidence and observation
scattered pulsed beam (PB) to the observer. For the inverse [1] (also see [2]). When applying the PB parameterization for
problem, this process is reversed by vylndowmg the scattered field the forward problem to the profile inversion, the space—time
and backpropagating the resulting PB’s so as to form local images windowed portions of théx, ¢, data are “back propagated”
of any selected region in the scattering domain. The phase-space h PB's t ! d f[jh biect d The PB
signature of the scattering cell is related to the Radon transform as phase-space S owar e object dondn). g
of the medium in the cell so that the local profile function can be backpropagated data contains the phase-space footprints of that
recovered by Radon inversion. An illustrative numerical example localized region around a point in O(r), sampled at time,,
is included. Also discussed is the ultimate localization achieved which establishedthe (x, t) data onz;. The (r,, t,) phase-
]E)ykljnmdent PB excitation and PB postprocessing of the scattered space footprints are now processed so as to extract from them
e _ o the explicit physical profileO(r) in the vicinity of r,,. In view
Index Terms—Electromagnetic scattering, inverse problems, of the results of Part I, this reconstruction strategy yields the
nonhomogeneous media, pulsed beams. local profile along thes; bisector in [1, fig. 6].
This brief and qualitative description of the inversion
|. INTRODUCTION process is formalized in the body of this paper by detailed
N this second part of the two-part presentation, we de%rﬂalyss and synthe5|s._ Most of the necessary operations shall
. . . performed directly in the time domain (TD). Whenever
with the reconstruction of a pulsed-plane-wave excited” . . .
. . . . . esired, the frequency-domain analog of the inversion process
Born-approximated scattering obje€i(r) in [1, fig. 1] by . . .
. i : ' hgre can be inferred from the corresponding frequency-domain
inversion of locally windowed (postprocessed) scattered fleg L h
orward processing in Part |, where the time and frequency
domains are treated side by side. In the text that follows,
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time localization of PB processing and use of asymptotfoom the initial plane, but grows whevsackpropagatedoward

techniques. Numerical examples implementing the forwatde object domain. In order to avoid numerical amplification

algorithms in [1] and the inverse algorithms in the preseonf measurement errors or noise, the backpropagated fields

paper are discussed in Section V, with attention paid to th@(r, t) are defined only with respect to the propagating

sensitivity of the results with respect the pulse and processigigectrum, i.e., by [1, eq. (10)] extended to the rangez;.

window parameters. Conclusions are presented in Section Yhese rules apply to all conversions of forward propagated TD
The pulsed plane wave input employed in this study sedpectra in [1] into the backpropagated spectra required here.

the stage for an implementation of the “ultimate” localization

wherein the incident field is preprocessed via localized phagg- Local Spectrum Analysis and Pulsed-Beam

space windowing so as to generate a PB input, and tBeckpropagation

scattered field is postprocessed so as to generate a PB outpltt

This ultimate a priori localization favors modeling of the field distribution is effected by application of windowed SST.
scaftering process in terms of Fermat ray paths fron(he) We summarize first the relevant results from the forward

Iaunqh points orx; (via the object domain) to the observer on, Lnalysis in [1, sec. IIl-B2] and [1, sec. l-B3] and proceed
zj, with the scattering strength determined by e, ) profile
then to backpropagation.

sampled at time, along the bisectos; between the incident 1) Transform RelationsThe time-dependent local spec-

PB direction and the direction of scatteri§goward (x, ¢). .
This process is schematized in Fig. 9 and it is quant|f|ed ftrum of the field data,(x, f) on thez; planes of [1, fig. I]
S defined by [1, eq. (14)]

the forward and inverse scenarios as part of the conclusron
in Section VI. /dz /dtu, X, W (x, £ Y)

ll. PHASE-SPACE BACKPROPAGATION X, 8, X=(x 9 (1)

ocal spectral analysis of a given space-time-dependent

with W being a space-time window [1, eq. (15)]. The
space-time and spectral dependenceliinimply that the

The spectral characteristics that distinguish backpropagatiwmdow is localized in the(x, ¢) data plane aboufx, 7),
from forward propagation are demonstrated most directly farith spectral tilt € (see [1, fig. 4]). The operation in (1)
plane waves. We shall retain the notation used in Part |, whiblas, therefore, been referred to in [1] aslacal slant stack
makes the formulation directly applicable to tseattering transforni that extracts the local spectral information from
configuration depicted in [1, fig. I]. Since the scatterer ithe time dependent data. Thus;(Y) is localizeda priori
locatedbetweerthe “data” planes; andz», scattering toward around a timef(x) and wave-tilté(x) that describe the arrival
z1 takes place along the negative axis and towardz; time and direction of the scattered field at that point.
along the positivez axis. Thus,forward propagation away 2) Pulsed-Beam PropagationThe scattered fields,(r, t)
from data planes:; and 2, covers the regiong < z; and in the regions: < z; can be expressed by propagatingx, ¢)
z > z2, respectively, with corresponding upper and lower sigraavay from the data planes. This forward propagation into the
as shown in [1, eq. (10)] (here and elsewhere the subscripgionsz < z; is obtained by replacing the window functions
J = 1,2 denotes constituents corresponding to data tak&¥y(x, ¢; Y) in the local representation [1, eq. (16)] by the
on the z; plane). Backpropagationdefined by tracking the phase-space propagatdsy(r, ¢; Y), i.e., [4, eq. (44)]
scattered field back to the source domain is, therefore, given
by the same expressions as in [1, eq. (10)] but 4Grz;, u;(r, t) = —(27rv0)_2/d5YUj(Y)Bj(r, tY). (2
respectively. In Part I, [1, eq. (10)] is written directly in the
TD as an angular superposition of time-dependent plane waves synthesizeB;(r, ¢; Y) from its initial field distribution
[or pulsed plane waves (PPW)]. Heig(£, 7) is the TD plane Wi (x, t; Y) on thez; plane, we use the transient plane wave
wave spectrum, calculated from the data fieldx, ¢) by the representation in [1, eq. (10)], but in order to accommodate
slant stack transform (SST) in [1, eq. (8)] with= (&1, &) both the propagating and the evanescent spectra we employ the
and¢ =+/1—¢-§ Im¢ > 0 being the normalized transverseyngytic signal extension, i.eB;(r, t; Y) = ReB. (et Y)
and Iongltudlnal Wavenumbers respectively. with (see [4, eq. (46)])

In Part I, [1, eq. (10)] incorporates only the contribution of+
the propagating spectrut§| < 1 wherein( is real. Extending B;(r, t; Y) = — (27w0)_2/d2£
to account for the contribution of the evanescent spectrum .
|€] > 1, wherein¢ = i|¢|, can be implemented by utilizing AW (€, t—uT (ExFC(2—2)) Y)2 52
analytic signals that accommodate the complex time delay ' ? 3)

implied by imaginary( [3]. The total analytic fieldﬁj is thus
where WN(g, 7; Y) is the analytic SST oWy, calculated

A. Time-Dependent Plane Wave Representation

given by the right-hand side of [1 eq. (10)] wherein is
replaced by its analytic counterpaznt and the integration via the analytic signal extension of [1, eq. (8)]. Aék of [1,
domain now extends over the entgeplane (the real field is eq. (16)], it is given by

given by the real part of.; ;)- One finds that the evanescent - B
spectrum contribution decays whésrward-propagated away Wx (€, 73 Y)=Ni(n@wE —& 7 —f+v; ¢ %) (4)
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and Za(g, 7) denotes SST ofu(x, t). Since Wy (x, &, t) is F AS
localized about(x, ¢, t), B; is a space—time wavepacket, a Z’%
PB that emerges from the; plane at(x, t) = (X, ¢) in the X b

directionw; = (€, F¢) where{ = /1 —£&-€ [1, eq. (17),
fig. 1]. An asymptotically approximated explicit form fds;
is given in (8) below.

For properly chosen window parameters, the PB’s remain
collimated and well localized about tlservation constraint
defined in [1, eq. (18)]. For a given phase-space pding Fi9- 1. Backpropagated beams.

(%, &, 1), this constraint defines the space-time trajectory of

the PB, which emerges fron, ) on the data planes; 4) Special Case: GaussianWindows: Closed-form  ex-
with spectral direction. Alternatively, for a given space- pressions for the backpropagated PB’s can be found for the
time observation pointr, t), [1, eq. (18)] defines the centerclass of TD Gaussiaf windows [1, eq. (38)] discussed in [1,
coordinatesY (r, t) of the phase-space region that contributesec. IV-E]. This window is localized arounk, ¢) = (0, 0).
significantly at(r, ¢). Further localization of the phase-spacéts properties and the role of the parametérand 7" have
integral (2) is due to the fact that the local spectriif{Y) been discussed in [1, egs. (37)—(43)]. Note that the window is
of the data is localized as discussed after [1, eq. (17)]. multiplied by a complex parameter whose role will become

3) Pulsed-Beam BackpropagatioiReferring to Section II- apparent in (23) in connection with the imaging algorithm.

A, we construct the backpropagated counterpart of (2) byNear the beam axis, the spectral integral in (3) can be
evaluated asymptotically via the procedure in [4, Appendix],
which consists of transformation to the beam coordinates
followed by saddle-point integration of the Fourier inversion
} to the TD. The resultingorward paraxial propagators for
ui(r, t) = —(ZWUO)_Q/dOYUj(Y)Bf(r, tY). (5) xSz are given in [4, eq. (69)]. In view of the discussion
above, the paraxiajackpropagatorst» are given by the same
This expression is similar to (2) except that the backpropag‘%?gpress'onS extended to the region z;, i.e.,
tors B]b» are now obtained by extending the definition®f in B]le(r’ tY)
. . . o .
(3) to the range: < z;; recalling the discussion in Section II-A, o, dot Q,}(ij)

+
extending the definition ofB in (3) to the rangez < z;,
respectively, i.e.,

the spectral integration range in (3) is now restrictelf }c< 1. ~ Re
The formal representation in (5) may be further simplified 0,37 det, Q?(O)
T )
if we note from (4) that the kerneli’y in (3) is localized s [t ity vt <ij+lxbj QY bj)-xbjﬂ-
abouté = &, so that only PB’s with&| < 1 are significantly 2
excited by (3). Consequently, the phase-space integration in (8)

(5) becomes with (contrast [1, eq. (45)])

iR72Y—1
db(r. £) = —(2r0,) 2 /gl<ld°YUj<Y>B§f<r, £Y). (6 Ql(,) = [(”"j S _O,Lﬂ)_l] ©)
Referring to Figs. 1 and [1, fig. 7], the beam coordinaigs=
Equation (5) [or (6)] expresses the backpropagated fields, ., z,, , z,) are defined for a given phase-space pa¥t
ub(r, t) as a superposition of backpropagated PB’s weight@§ the transformation in [1, eq. (46)]. Thus, (8) represents
by the local spectrunt/;(Y) and emanating from the dataforward propagation forz,, > 0 and backpropagationfor
planes in all directions toward the object domain. As dlscussep < 0. Following the same analysis as in [4] (see also [1,
after [1, eq. (16)], the phase-space dat{Y) is localized egs. (48)—(52)]), we find that the PB in (8) is astigmatic with
and thus the integration domain in (2) may be limitad major axes along the,,, directions! = 1, 2; its waistin the
priori to the relevant phase-space regions. Further Iocallzatlgrg y,,) plane is Iocated at,, = Z, W|th collimation length
is effected by the PB backpropagators via thigservation where Z; and F} are defmed in [1, eq. (49)].
constraint which, for a given observation poirt, ) in the
object domain, becomes (cf. [1, eq. (18)]; noe the different lIl. OBJECT RECONSTRUCTION
sign in %)
A. Inversion Strategy

xo X t=t+ vo_l\/|x — X%+ (2 —2)2. As outlined qualitatively in Section I, localized object re-
Flz =2 construction from the scattered field data(x, ¢) on the z;
(7) planes is based on backpropagation of the “footprint” in the
data. In the local analysis approach, the footpritiY)
This constraint is used in Section 11I-B to further simplify theare extracted from the data in (1) via the time-dependent
phase-space integration in (5). window W and are transported toward the object domain by

)
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the PB backpropagatorBj% so as to synthesize via (6) theB. Implementation via Constrained Evaluation

backpropagated fieldf(r, t). As has been shown in [1] and gjpce the phase-space backpropagation integral (6) for
[2], the local spectrd/;(Y) are also related to local samples,t(r ) s localized about the vicinity of the observation
of the object functionO(r) via [1, eq. (26)]; thus, the local constraint (7), one may try to evaluate part of this integral
samples can be recovered frd(Y) by deconvolution and gpaytically, thereby reducing the computational complexity.

inversion. _ We shall briefly present such a scheme, referring for details
The relation between the backpropagated fields and g[s sec. 6.2].

reconstructed object function has been established in [S]n view of the “imaging condition” = =/v, in (13), the

O(r) is a sum of two terme)(r) = Oy(r) 4 Oz(r), where jntegral (6) can be localized about the observation constraint
Oj(r), j = 1,2 are the partial images reconstructed by th&y with + — »/v,. For a given object point, this constraint
backpropagated fields} from the z; planes definesé = £(X) and# = #(X) as functions ofx. Noting
¢ that the local spectrurty;(Y) is due to volume scattering [1,
Oj(r) = 20, " 0Af(t + v, *2) ©uj(r, 1)}imo (10) eq. (26)] and is thus typically less localized thBfi(r, ¢; Y),
it may be approximated in (5) by the constrained value
U;(x, £(%), t) = UF (X, t) where the superscriptC” iden-
uf(r, t) = _Ugaﬁul}(r, t). (11) tifies data associated with the constraint relation. Combining
(2) with (11) we obtain

with  related to the backpropagated fields via

The convolution in (10) with

fie) 1/ doe )] (12)
|w|<wWmaz

~or

ul(r, t) = (2m) 2 / d*z / dtUS (X, D)G)(r, t; X, 1) (14)

deconvolves the exciting sign(t) from the dataw,,.x being where the propagator

the upper frequency considered. fif¢) is short with respect
to the scale of the object anflw) ~ 1 for w < wpax, then
f(t) = 6(¢t) and (10) may be simplified to

Gir, t; X, t) = / d’€0*BY(r, t; Y) (15)

U accounts for the integration in (2). Expressing?(r, ¢; Y)
Oj(r) = 20, " w5 (x, B)li=z fu, - (13) by its plane wave spectrum representation (3) and inverting the

Further particulars in implementing the inversion sequen@éderbo‘c integrations, one may obtain a closed-form expression
are given below. for G; (see [6, sec. 6.2]).

1) The windoww(x, t) in (1) is the twice-differentiated
Gaussiany window in [1, eq. (38)]. This window con- [V. PROCESSING ANDINVERSION ALONG THE BEAM AXES
tains three parameterd’; «; and 3. T is chosen to
be of the same order as (or smaller than) the exciting Forward Modeling
pulse length. The choice of the factardepends on the
processing scheme [see (23)]. Fdrwe may consider
two options:

In this section, we utilize the local (phase-space) TD diffrac-
tion tomography relation in [1, eq. (26)], in which the local
_ _ spectrum of the data is related to a local sampleOgt)
a) # = B, > 0 pure real withf3. being of the same 5iong the PB axis, to derive an approximate closed-form
order as the distance from the data plane to the objgg{ersion formula along this axis. THerward problem has
(image) domain; the resuling PB backpropagai®feen analyzed in [1, sec. IV-C] and interpreted there as
will have its waist at the data plane while the objedjy|\s: the local spectrum of the scattered field around the
domain will still be in the collimation (Fresnel) Zonespace-time point(x, ) on the z; plane corresponds to a
[1, eq. (49)], _ , . . local Radon transform of)(r) at pointsr,(Y) on the beam
b) B=2. —i—z@;, ywth B deflned.as in option a) while ;g corresponding t&X = (%, €) [1, eq. (28), fig. 6]. The
Bi =~ f3; this yields a converging PB backpropagatofy,| Radon transform is taken in the directispdefined in
that has its waist in the image domain, while the, o4 (32)] and [1, eq. (33)] that bisects the angle between
data plane will still be in the collimation zone [1,ihe girection of incidence of the PPW and the direction of
eq. (49)]- observatiork; along the beam axis [1, fig. 6)].

2) When calculating the backpropagated field in (6), only |f the window width in the local Radon transform is small
those PB’s whose beam axes pass neaontribute. with respect to the transverse variationsaf), the scattering
These beams satisfy the “observation constraint” in (73rocess generating the local spectrum can be viewed as local
Consequently, only those phase-space regions near {fections from an equivalent plane stratified medium whose
observation constraint contribute to the integration. gxis of stratification is alon"gj_ Thus, for a giverX, U;(Y) is

3) Inview of the restrictions in 2), the PB backpropagatorg function off that describes PB reflections by an equivalent
?é)e approximated by their explicit asymptotic forms iplane stratified medium along the beam axis corresponding to

. X.
The inherent localizations enumerated above simplify theReferring to Fig. 2, scattering-window-based coordinates
formal inversion steps substantially. r,, = (Zs,,, Ts,, 5) are introduced with origin at the center
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window A;(r; Y) corresponding to this window is given in
[1, eq. (56)]

Aj(rY)

_ —a*  [det Q;(2)
~Re—— J
20,2 | det Q;0)
+o 0 4
§@ |:t— é T—U;l <Z—ij + %ij -Qj-ij>:| .
(20)

Fig. 2. rs, coordinate system: centered wi(Y) and oriented along the
window normals;.

Using the window-centered coordinates in (17) as well as the
r,(Y) of the sampling windowA;(r, Y) (see [1, egs. (28), beam axis coordinates in [1, eq. (46)], we identify- z,, =

(33)D vt —2s CcOs 553., Ty, = Ly, €Os Uy, Fs sin 553., andzy,; =
o _ o — 7,,,, thus obtaining from (20)
r.(Y)=(X, z) + =, K, 2, = —(Vot — 2;)/2 cos™ ¥,
io* 3*
(16) Aj(r; Y) ~Re [_ \/Qll(ij)QQQ(ij)
2u,¢

The window plan€g(z, ;, =,,,) is perpendicular to the direc-
tion of the normal°§j (see Fig. 2). Ther,, coordinates are
obtained from the beam coordinates = (s, ;, To,;, 2s;) _ _ 0
used in (8) by rotation in théz,, z;,,) plane through the X (5, cos ¥, Fssind,,)* + %xizjﬂ
bisector angle_95j in [1, eq. (33)]. Using the;,, coordinate of 21)
the window center in (16) we obtain

Ty, where Q;;(z,) are the elements of; in [1, eq. (45)].
:| [ij + ]

Qll

+ i _
x §@ [—iT—v;1<—2s cos ¥s, + —=
2 7 2

Inserting (21) into (19) and evaluating the integral in closed

[37513- } _ [ cos ¥, Esin U,

s TFsin ;. cos D, Ut —Zj form we obtain (see Appendix)
’ ’ 2 cos? 9, 5 .
Tssy = Lo, A7) s Y) = v, Re{m*ﬁ* 6<2>(s)}.
8 cos 24, cos* ¥,
The phenomenology and parameterization of the forward (22)

scattering problem will now be utilized for thieverseproblem
of identifying the profile of the equivalent 1-D plane stratifie

+
ext te from [1, eq. (39)] that for real, o(s) =
medium along the axis of the phase-space-processed back ext we note from [1, eq. (39)] that for re (5)

. P + tHs, where’H, is a Hilbert transform with respect to
aggted PB fr(_)m the scattere_d field data o_nzthplane_s to the Z?sgziiscussed in [1, eq. (5)]. Substituting into (18), we obtain an
object domainO(r). Assumlng_ thatO(r) is approxmat_ely expression that involves both the functioq(s) and its Hilbert
constant over the window width _traqsverse to theaxis, transform. An expression that involvés. alone is obtained
the Iocgl Radon transform operation in [1, eq. (26)] can leia*ﬁ* is real. Sincef,. > 0 while g; may have any value,
approximated by including zero (see guidelines for choosifign Section IlI-B),

we conclude thaty; # 0 while «,. is determined via

ar = ;3 /Br. (23)

where O.(s; Y) is the value of O(r) along thes; axis With this choice, (18) simplifies to
corresponding tdY, with s = 0 defining the window center

U,(Y) = f(B & / ds0.(s; Y)Ty(s: Y)  (18)

atr,(Y). In (18) the kernel 1 +rud a8 .o
U (Y) = () & —— _ 920.(5; Y)|s—0-
J( ) f( ) cos 2195]. COS4 195_7. 8[3,, El (3 )| 0
Li(s;Y) = /dxlj/dxngj(r; Y) (29) (24)

incorporates, through the,, integration, the effect of the Equation (24) becomes more transparent if we consider a given
“domain of influence” of the windowA; in planes transverse X = (X, &), which defines the PB axis and viel;(Y) as a

to 5;. As will be shown belowl';(s; Y) is a 1-D window function of¢. Thus, noting from (17) thas/9z, = cos ¥,
kernel that sample®..(s; Y) abouts = 0 [i.e., aboutr,(Y)]. (24) can be written as

- .t +rvd @lB1? o
i i U;t) =fH) @ —— 9z O(r,(Y)).
B. Gaussian Windows i =fHe 2, ot T, B O (ro(Y))
A simple closed-form asymptotic expression for and for (25)

the related operations in (18) may be obtained for the time-
dependent Gaussiawindow in [1, eq. (38)], which has beenwhere the sampling window center(Y) is resolved by the
used throughout this investigation. The approximate samplitime parametet along the beam axis defined B [see (16)].
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Equation (25) provides a simple and direct relation betweéh Verification of the Locally Plane-Stratified Model

the local spectrum and the medium properties along theyere we demonstrate that the axial relations in (24) and (29)

corresponding beam axis and may, therefore, be invertgd, aiteratively be obtained Bssuminga plane stratified

Noting fror;1_(16) that along the window centelr,/dé = magium whose stratification axis is along the bisectional

—,/(2 cos™ ¥,,), we obtain direction's;, with wave speed equal to the wave speed along
the beam axis correspondingXo For simplicity we consider

55 0=2 et/ bt only the case of a normally reflected PB as in (29) which

%t B U;(Y) implies that the medium is plane stratified along thexis,
(26) with v.(2) = v(r)|x=x. The field satisfies the 1-D wave
equation

_ +273, cos? 553. cos 20
Olro(Y(2))] =

vomay |32

whered=! = f? d#'. The convolution withf'(#) defined in 2 1
—o0 o7 — 0, z,t) =0 31
(12), deconvolves the incident pulg&s) from the data and 2 o2(2) Y sz, ¢) (31)

can be omitted for short-pulse excitation [see discussion \fhich can be expressed alternatively as in integral equation
connection with (13)]. , _ _ for the scattered field
1) Axial and Cross-Axial ResolutionThe axial resolution

of the local spectrum analysis is determined by the excitation w(z, t)
Fg;i?vi(tgégfsmogl;)a:ﬁsmrt pulse with pulse length can _ —v(j?af/dz’/dt’Oc(z’)u(z’, Gz, £ 2, 1)
(32)

(27) whereO.(z) = (v2/v2(2))—1 and the 1-D free-space Green’s
function iIsG(z, t; 2/, t') = (v, /2)H({t — t' — |2 — 2'|/v,),

_ H(t) being the Heaviside function. The Born approximation

Thus, the spectral resolution deteriorateg/asincreases from for the reflected field, (¢) at z is obtained by substituting

best resolution forl/; with eraII_g (W5, — 0) to worst w(z, ) ~ u'(z,t) = f(t — z/v,) into (32) giving after a

resolution for U, with small £ (J,, — =/2). A similar straightforward calculation

conclusion has been reached previously for transient plane v,

wave analysis [5] and by using asymptotic ray theory [7]. ui(t) = f(1) © —= 0:0(2) =120 42)-  (33)

The resolution is also affected by the processing window: w

order_ not to hamper the axial resolution, it is r_eqwred th%n w of [1, eq. (38)]. Substituting into (1) wit§ = 0 and

thewindowpulse lengthl” be shorter than thexcitationpulse noting thatu, is independent ok we arrive at

lengthT,,. The cross-axial resolution is then determined by the -

beam width of the backpropagators which, from [1, eq. (55)] Ui(x,€=0,%) = Qﬁ/dtul(t)/ pdpw(p, t—) (34)

with [1, eq. (51)] and [1, eq. (49)], is roughly given by 0

v 1o
s — D —————
2 cos ﬁsj

ext we calculate the local spectrum using the window func-

wherep = |x — X| and, from [1, eq. (15)] and [1, eq. (38)],

+
w(p, t) = Re{a 6P (t —iT/2 — ip?/2v,3)}. Evaluating the
] . _ . p integral in closed form we obtain
2) Special Case: Backscattered Field with= 0: Equation

(27) establishes the backscattered local spectrum §vith0 (X, £€=0,7)

as the optimal case for high-resolution reconstruction. This  _ /dt A Red Zrw. i 35(1) f_T_iT/9 35
special case corresponds to:alirected backpropagated PB, ui(t) Req 2nvoia ( ir/2) . (G38)

implying that thek; and thes; axes are parallel to thez axis Finally, usingic/3 real as in (24) and assuming tH&t— 0 we

and,, = 0. Since for a giver(x, #), the center,(Y) of the  gain by inserting (33) into (35), the final expression in (29).
PB is at(x, z) = (X, (vt +21)) [cf. (16)], (25) becomes

D ~ 2y/v,TB.. (28)

V. NUMERICAL EXAMPLE

U, 52_0’ R ) In this section, we present a numerical example which
— (g)é) il f] m220(r)|,. = o ) implements the forward and inverse phase-space scattering
803, (%, 2)=(X, 1/2(vot+21)/2) theories in this two-part study. For the forward modeling, the

(29) implementation is centered around the relation in [1, eq. (26),
fig. 6] between the local spectrum of the time dependent data,

By inverting (29) U;(Y) and the local sampling of the object functi@i(r).
We shall compare the evaluationsiéf(Y') performed via two
alternative routes: 1) direct evaluation from the time-dependent
scattered field via (1) and b) evaluation via the spatial sampling
of O(r) appearing on the right-hand side of [1, eq. (26)]. The
which is a special case of (26). For simplicity, the convolutiomverse modeling implements the reconstruction(gf) via
with £7 in (26) has been removed. (26), utilizing the calculated forward data féf;(Y).

o2,
O(r) = vomanl A1 U (Y=, 2. =(x, 0,05 (2021 (30)
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0.4

10
0.3
0.2
t
0.1 10
T,
92 -1 0 1 2 Fig. 4. Gaussian pulse response(p, t) under the Born approximation,
evaluated at the; = —2 plane.
Fig. 3. Cross-sectional cut through the spherically symmetric funetian
used in the example.
x 107
A. Physical Configuration 154 1ul =2 (p, 1)
We consider a three-dimensional (3-D) spherically symmet- 10
ric inhomogeneous object confined within the sphere 1, 5
wherer = |r|. The radial dependence 6i(r) is given by g -
Or)=ct—(2r—12 @V <1 (36) 3 > t
. . . - 10
A cross section ofO is depicted in Fig. 3. Note that the 1 5
medium is continuous at the boundary= 1. The background 0 0

is assumed to be uniform with wave speeg = 1. The _ . . oy, .
.. . . Fig. 5. Twice-integrated impulse respons% (p, t) corresponding to the
origin of coordinates is located at the center of the spheige, in Fig. 4. T

and scattered field data is taken on the measurement plane at

z = —2. The incident pulse is the Gaussian . . . .
scale of the integrated data, the convolution yields essentially

Ft) = Ty ta= Y2~ flu) = ¢~ Tw/2”  (37)  the second derivative af{™?. The Gaussian pulse response

o - _2) :
with the pulse lengthly chosen to be 0.01, i.e., short on th%nd the twice-integrated impulse responge” are shown in
object scale. igs. 4 and 5, respectively.

B. Evaluation of Scattered Field C. Calculation of the Local Spectrum

The Born-approximated scattered field has been evaluate ) Calculation from the Data Via (1)We evaluate the lo-

directly in the TD via [1, eq. (20)], which for the sake of‘f:a sp;;trum ofth(_a ﬁel? in Fi%ed' f(XB: (%, ) :f(?]’ 0), i'gl"
numerical evaluation will be recast in the form or a PB propagating along theaxis. Because of the problem
. 1 symmetry, the 3-D [i.e.(x, )] integration in (1) reduces to
u(r, t) =P e — /d?’T//dt/O(r/) a two-dimensional integral
UO

) ug(r/a t/)G(I‘, t; I‘/, t/))|rEZ1Dlane (38) UI(E)|X=(O, 0) = / 27rpdp/dtul(p7 t)w(pv t— %) (40)
0

whereu(r, t) = §(t — z/v,) simulates an impulsive incidentwherew( ; . . . .
’ : o p, t) is the space—time processing window function
wave. Heref(?)(¢) is the second derivative gf(t) where the . [1, eq. (38)], which foiX = (0, 0), is given after (34). The

term to the right of the convolution is the twice integratea:indow parameters chosen abe= 5, « = 1 and T = 0.01
(wit? respect tot) impulse response, hereafter denoted Y was chosen to be equal to th’e excitation plﬂs,éof
us (r, t). Due to the spherical symmetry O, the resulting (37); pifferent sampling rates were tested. Convergence was
field depends only on(p, t) where p = \/zf +23. The achieved for temporal sampling at a ratevf = 7/8 which
impulsive behavior of the incident plane wave fiefiand of onsyres a minimum of eight sampling points per window
G reduces the integral far;~* in (38) to the two-dimensional puise length (see discussion following [1, eq. (42)]) and for

surface integration spatial sampling at the rate ak, = 0.025 = D/18 [1,
. 1 -t VI—oP eq. (43)] which .correspo_nds to 18 sgmples per window width
w(p, t)=f"()® / dx / dal D. The integration domain was restrictedde< pax = 10D
2mvo Jy —y/1—a and t,.. = 607 for which the integral converges. These
-0, (R + 72 — =) (39) results are in accord with a previous study on the numerical

implementation of the local spectrum [4].
wherez’ = 3(v,t+21)—3[x—%'*/(v;t—21), =1 - p? < The resulting local spectrunt/; (£)|x—(o, 0y is shown in
7 </1—p? andR = \/|x —x|>+ (2 — z1)%. Next, the Fig. 6 (dashed curve). Note that this waveform exists mainly in
convolution ofug_” with f)(t) is performed numerically. the rangef = [0, 4] corresponding to the axial data in Fig. 4.
Since the Gaussian pulse width was taken to be short on fftee slight broadening of the local spectrum with respect to
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Fig. 6. Numerical results for the local spectrutn as a function oft  Fig. 7. The beam-axis approximation for the local spectfiniY'), calcu-
for X = 0,¢ = 0. Dashed curve: direct evaluation by processing thgyted via (19) as a function df for x = 0, £ = 0 (dotted). This result is
time-dependent data via (40). Solid curve: evaluation via spatial sampliegmpared ta/; (Y) as obtained by processing the data via (40) with three
of O(r) via (41). Window parametergt = 5, « = 1, andT = 0.01. values of7: T = 10~*, 10~", and10~F (full curves). Window parameters:

g =5anda = —i.

the ranget = [0, 4] is attributed to the temporal width of the

window. 0.4
2) Calculation by Object Space Sampling Via [1, eq. (26)]:
To explain the results of the local spectrum, as calculated 0.3
above by processing the scattered data, we calculate the local
spectrum of the data from the local (phase-space) diffraction 0.2
tomography relation in [1, eq. (26)], i.e., by local sampling of
O(r). The spatial windowA;(r’; Y) in [1, eq. (26)] corre- 0.1
sponding to the data window(x, t) in [1, eq. (38)] is given
in [1, eq. (56)] witha = 1. Setting(X, £) = (0, 0), the object 0 Z

domain integration in [1, eq. (26)] is thus reduced to

Fig. 8. Reconstruction along the beam axis. The three full curves are the
results for7 = 10—%, 10~%, and10—%. The dotted curve is the exact object

1
Ur(®)|x=0,0) 227r/ pldpl/dZ/O(T/)Al(p/; 25 t) function (36).
0

N (41)

An analytic bound on the validity of the beam axis approx-
imation can be found by expanding the object functifr)
into a first-order Taylor series about the beam axis

with

Mo, 25 B
ig* , 2
~ R g, A1) Olp, ) = O(z) + 0'() = (43)

2z
+(3) |:—_£T_ -1 <2 o 1 / /2>:| 42
K 27\ Zl+2 A=)e (42) where p = /21 + 23 is the distance from the axis. The
) o beam axis approximation is valid if the second term in (43)
whereQ(z') = (' —2 —if*)~*. The resulting/y (?) is plotted may be neglected with respect to the first term fopatt pume
in Fig. 6 (solid curve) on the same scale as the calculation Qhere p,, ... is the width of the transverse integration domain

U1 (¢) via (40). The two waveforms are almost identical. Thigsee discussion after (40)]. Using (43) and (36) we obtain
calibrates both the asymptotics so that [1, eq. (26)] with [1,

eq. (56)] is valid for7” < 0.01, and the numerical algorithm \/—, -

for the data processing in (1). pmax < 220(2)/|0'(2)] = 0.14. (44)
3) Calculation Via Beam-Axis Approximation (1&)inally,

we validate the beam-axis sampling approximationlfofY)

in (18) by comparison with the local spectrum calculatio

by processing the data via (40). For the c&e= (0, 0) )

considered here, (18) reduces to (29); the window parametngF'g' 7.

were taken to be3 = 5 and « = —¢ in accord with the ) )

condition discussed after (22). The result of (29) is showld ©OPiect Reconstruction

in Fig. 7 (dotted curve) together with the results of (41) for Finally, we use (30) to reconstruct the object function along

the same values ofr and /3, and for three values of’, the beam axis (which, for the present casexof 0, £ = 0,

T =10"*, 10~%, and10—° (solid curves). One observes thats simply thez axis). By applying (30) to the local spectrum

asT becomes successively shorter with respect to the scalesbbwn in Fig. 7 forT = 10~*, 10~%, and 105, we obtain

O, the local spectrum converges toward the result in (29). three reconstructions of the object function. The results in

Recalling that numerical convergence was obtaineg@fqr, =
aOD, it follows using [1, eq. (43)] that’ should satisfy
T « 1073, which is in accord with the numerical results
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Fig. 8 (solid curves) demonstrate that good reconstruction is |
obtained for7 < 107°.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this two-part investigation, we have injected into the pre-
viously formulated plane-wave-based TD slant-stack diffrac-
tion tomography [5] the spatial resolution that results from
PB postprocessing of thecatteredfield. By this mechanism,
both the forward and inverse algorithms simplify substantially
because the interrogated portion of the scattering domain is
thereby localized to a space—time-resolved scattering cell. This

; . . . . . Fig. 9. (Time-domain local spectrum)—(object) relation under PB excita-
cell orients itself dynamically with respect to the directions qf'g (T ' pectrum)—(object) s "

on. The figure depicts the incident RB propagating in th&! direction and
incidence and observation in such a manner that it is replacggattered PB(r, #; Y) in the®, direction. This scattered PB is related via
by an equivalent one-dimensionally stratified medium. A cof46) to the local Radon transform 6f over the spatial windowA: (r'; Y).
responding scattering phenomenology in terms of Fermat I’Hif* scattering cell is oriented along the bise@prbetweenx’ andx.
paths has been suggested as a better parameterizer of the highly

localized wave physics. This trend is carried to its ultimatgto (46) we obtain

potential by PB preprocessing of the incident signal together

with PB postprocessing of the scattered signal. Under theseAx(r/. v %i)
conditions, the scattering mechanism involves localized source ™"~~~

domains and localized observation domains, which render the . -1 —if det Q; (%)
point-to-point Fermat ray paths #se logical model. The PB 20,C z — it || det Q;(0)
preprocessing is implemented via interrogation with a PB field ' P
[8] x 6 {%—%(TJFTO) — vt
. 1 2 . i
Zi — 'Lﬁz 2 (48)

1 4
(e gotia-im)|
2 This result implies the following. The sampling window in (48)
is more localizeda priori than the one in [1, eq. (56)] because
any deviationp; and/orx; from its center coordinates gives

wherez; andp; = (/27 + z? are the beam coordinates of the’ . . .
o . [ . . rise to a complex delay and therefore to spatial damping with
incident field obtained via a conventional rotation transform

. o . . respect to the peak valyg = x;, = 0 on the incident beam
from r to r; in the direction(v;, ¢;), which determines the axis. Since the window center is located along the incident

incident beam axis. This incident PB gives rise to the BOI‘IE ; .
: : . B, axis, the phase-space varialeshould be chosen so as
approximated induced sources which generate the scattered

field. Applying the local transform and denoting by(Y; ) to ensure probing of the object function in the vicinity of this

the local spectrum on the; plane due to PB illumination in aflsb(stee F|g£ g) TTe tﬁr'entaﬁlolﬁ céaﬁn bz ifounqthas%ln
the direction*, we obtain [1], but now it bisects the angle betwe#&h and%;, with &

beam steering allowing arbitrary look angles at the equivalent
1-D profile stratification. Another important advantage of the
U;(Y; %i) - /d?’r’O(r’)Aj(r’; Y, ﬁi) (46) PB illumination is that it probes only the region relevant
for imaging and thus minimizes scattering contributions from
irrelevant zones.
where the sampling window kernel is given by It is now widely recognized that efficient and robust
modeling of wave interaction with complex environments is
A Y, %@) _ /dt/ui(r/7 ¢ %’i)(—vf)affllfj(r’, #:Y). aided substapt?ally through the availabilit’y of phenomenolo_gy-
matched efficiently calculable Green’s functions, which
(47) furnish the building blocks for representation of arbitrary
fields. The utility of such Green'’s functions is enhanced further
Here, ¥, is the wave object defined in [1, eq. (25)]. Foif they also account for preprocessing and postprocessing op-
the Gaussiar® window in [1, eq. (38)], this wave object istions at their most elemental level. Within these perspectives,
evaluated in [1, eq. (47)]. Thusy; is a PB propagating in the PB scattering algorithm in (46)—(48) can be regarded as
the directionk; determined by the phase-space (processing)phase-space Green’s function for weak scattering scenarios
variable£ via [1, eq. (17)].Q; and the beam coordinates arghat incorporates both the configurational (space—time) and the
defined in [1, eq. (45)] and [1, eq. (46)]. Inserting [1, eq. (47¥pectral (wavenumber-frequency) characteristics in the form
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of analytic delta functions. Via analytic delta functions, whicfrhe width of this axial sampling window is given essentially
model physical wavepackets rather than spherical impulseg,v,7'/4 cos 95,. Sincev, T is small on the scale o, the
issues pertaining to resolution and related aspects are already, T’/ cos U, term in (52) may be neglected, giving the

taken into account.
The very preliminary numerical results presented here illus-
trate some of the forward and inverse modeling capabilities
and efficiencies of the PB algorithm. These results Iooil]
encouraging. Further studies will have to establish how thi
ultimately localized diffraction tomographic procedure com-
pares with more conventional tomographic and other forwarijz]
and inverse scattering techniques.
[3]
APPENDIX
DERIVATION OF (22)

Substituting (21) into (19) and changing variable yte=
(s, F s tan ¥,,) we obtain

—v,a 3*0?

(4]

(5]

oo 2 B [ @
where (6]
h(y) = | dz,,\/Q11Qalc+ aa:§2 -2 (50) M

with @ = —Q22/2v, andc = —(i/2)T — v, }(—2 cos U,,s +

£42Q11 cos? J,,4%). Next, using the standard integral

2 (e + az®)"2dz = w(2a¥%*/%)7L Imy/c/a > 0 we

evaluate (50) as

h(y) = 2mv? \/éll(ivoT — 4scos Us 4+ Qq cos? asij)*?’/Q.
(51)

(8]

To evaluate they integral, we insert this result into (49)
and neglect they dependence ofy;;. Using ffooo(az2 +

result in (22).
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