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Abstract—Orthonormal wavelets have been successfully used
as basis and testing functions for the integral equations and ex-
tremely sparse impedance matrices have been obtained. However,
in many practical problems, the solution domain is confined in
a bounded interval, while the wavelets are originally defined
on the entire real line. To overcome this problem, periodic
wavelets have been described in the literature. Nonetheless, the
unknown functions must take on equal values at the endpoints
of the bounded interval in order to apply periodic wavelets as
the basis functions. In this paper, we present the intervallic
Coifman wavelets (coiflets) for the method of moments (MoM).
The intervallic wavelets release the endpoints restrictions im-
posed on the periodic wavelets. The intervallic wavelets form
an orthonormal basis and preserve the same multiresolution
analysis (MRA) of other usual unbounded wavelets. The coiflets
possesses a special property that their scaling functions have
many vanishing moments. As a result, the zero entries of the
matrices are identified directly, without using a truncation scheme
with an artificially established threshold. Further, the majority
of matrix elements are evaluated directly without performing
numerical integration procedures such as Gaussian quadrature.
For an n�n matrix, the number of actual numerical integrations
is reduced from n

2 to the order of 3n(2L� 1), when the coiflets
of order L is employed. The construction of intervallic wavelets
will be presented. Numerical examples of scattering problems
are discussed and the relative error of this method is studied
analytically.

Index Terms—Boundary integral equation methods, wavelet
transforms.

I. INTRODUCTION

I T is well known that the finite element method (FEM)
is a technique that results in sparse matrices amenable to

efficient numerical solution. For the FEM, the solution times
tend to increase as , where , with being
the number of points in one dimension. Using surface integral
equations, implemented as the method of moments (MoM),
the solution times have been demonstrated to increase as,
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where . It is obvious that is much smaller than
and, therefore, the MoM has many fewer unknowns than does
the FEM. Unfortunately, the matrix from the MoM is dense
and the solution of dense complex matrices is prohibitively
expensive, especially for electrically large problems.

Recently, a new category of orthogonal systems, namely,
orthogonal wavelets, has emerged from applied mathematics
[1]–[5]. Employing wavelets as the basis and testing functions
in the MoM, very sparse impedance matrices have been
obtained [6]–[17]. It has been reported that the number of
nonzero elements for an matrix is proportional to
for certain integral kernels [1]. This intriguing result is due
to the numerous useful features of wavelets, including natural
support for multiresolution analysis (MRA), their localization
properties in both the spatial and spectral domains and the zero
moments, similar to the Dirac-functions, all of which result
in a much greater likelihood of achieving sparse systems of
linear algebraic equations [5].

Wavelets have been successfully used in the modeling of
electromagnetic systems to solve scattering, resonance, and
interference problems via integral equation, differential equa-
tions, and finite-difference time-domain (FDTD) formulations.

Although some progress has been made in the application
of wavelets to electromagnetic (EM) problems, a number of
concerns and limitations still exist. For example, wavelets
are defined on the real line, while in many practical ap-
plications the domain of the independent variable is on a
finite interval. To overcome this difficulty, so-called periodic
wavelets have been introduced [1]. However, in order to
use periodic wavelets the unknown current must have equal
values at the two endpoints of the interval. Another concern
which has been raised in regard to the use of wavelets in
the MoM is that the advantage of achieving sparse matrices
is outweighed by the complexity of the numerical integration
and its high computational cost of evaluation due to the poor
regularity and the nonexistence of a closed-form description
for most wavelets. In this paper, we will demonstrate the use
of intervallic wavelets as reported in [12], but in a form that
removes the aforementioned constraints. By selecting Coifman
wavelets, which have vanishing moments for both the scaling
functions and for the wavelets themselves, the numerical
integration process can be greatly simplified. In fact, the Dirac-
-like coiflets of order reduce the numerical integrals from

to .
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II. I NTERVALLIC WAVELETS

A. Basic Wavelet Theory

Basic wavelet theory can be found in many excellent books
[1]–[3]. However, for readers without rigorous mathematical
training, it is not a trivial task to comprehend some of the
arcane concepts and convert them into meaningful engineering
tools. In this section, we briefly list basic wavelet principles
that are used to construct and facilitate the wavelets. A
multiresolution analysis of is defined as a sequence
of closed subspaces of . A scaling function

, with a nonvanishing integral, exists such that the
collection forms a Riesz basis of .

Since , a sequence exists such that
the scaling function satisfies

(1)

This functional equation is referred to as the dilation equation,
where are coefficients of the low-pass filter and

(2)

The collection of functions , with

(3)

forms a Riesz basis of .
We will use to denote a space complementing in

; that is, a space that satisfies

(4)

and

(5)

A function is a wavelet if the collection of functions
forms a Riesz basis of . The collection

of wavelet functions then forms a Riesz basis
of . The definition of is similar to that of . Since
the wavelet is an element of , a sequence
exists such that

(6)

In the previous equation, the bandpass filter for the orthogonal
wavelets can be represented by the low-pass filters as

(7)

B. Intervallic Father Wavelets

Standard wavelet analysis involves the construction of a
basis for collections of functions on the real line,, for
example, the square integrable functions on the real line

. For many applications it is necessary, or at least more
natural, to work on a subset of the real line.

1) Scaling Functions on : Let us sketch the construc-
tion of orthogonal wavelets on , which is a modification
of the approach in [18] and [19]. Starting from an orthogonal
Coifman scaling function with nonzero coefficients (where

is the order of the Coifman wavelets), we will assume that
the scale is fine enough so that the endpoints are independent.
Since the Coifman wavelets have the vanishing moments
properties in both scaling functions and wavelets, we have

(8)

(9)

(10)

Scaling functions under the norm exhibit the Dirac-
like sampling property for smooth functions. Namely, if
is supported in and we expand at a point within

, then

This property in a simple sense is similar to the Dirac-
function property

Of course, the Dirac- function is the extreme example of
localization in the space domain, with infinite number of
vanishing moments.

All polynomials of degree can be written as linear
combinations of for , with coefficients that
are polynomials of degree . More precisely, if is a
polynomial of degree , then a polynomial , of
the same degree, exists such that

Since is an orthonormal basis for , any monomial
, , by using (8) and (9), has the representation

where is the level of the Coifman wavelets. The restriction
to can be written as

(11)
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Let

(12)

and

(13)

where subscript and represent left and right, respectively.
Hence

(14)

Define spaces , to be a linear span of func-
tions , , and ,
namely

(15)

Collections , , and

are mutually orthogonal.
As discussed in the previous paragraph, all polynomials of

degree are in , and spaces form an increasing
sequence

It can be proven that form the multiresolution analysis
(MRA) of . All of the functions in the collections
are linearly independent and can be used as basis functions.
In order to form an orthonormal basis, we only have to
orthogonalize the functions and .

2) Orthogonalization: More specifically, let us consider the
left-end point, and set

(16)

Defining

the orthonormality condition is then

(17)

Now note that is positive, definite, and symmetric; hence,
the Cholesky decomposition holds, namely . The
selection of

(18)

will perform the orthogonalization process. That is, we have
proven that the functions in are orthonormal.
Similarly, we can perform the orthogonalization of .

Fig. 1. Coifman intervallic scaling function at Level 5 for use in solution
of integral equations.

Let us order the basis elements of as follows:

if
if
if

(19)

Following the construction procedure, the intervallic Coifman
wavelets can be built. Fig. 1 depicts the resultant scaling
functions for and . It can be seen in Fig. 1
that there are three kind of basis functions, namely the left-
edge functions, right-edge functions, and the complete basis
functions as indicated by thin solid lines.

C. Wavelets On

To obtain the corresponding wavelets, we will use to
denote a space complementing in . Next we will con-
sider the detail spaces and their associated wavelets. From
material presented earlier, we can easily calculate dimensions
of the spaces involved

(20)

(21)

There are certain functions that are both completely
supported inside and belong to , for example, when

belongs to the set

(22)

These functions are thus in . Comparing this ex-
pression against the dimension of , we still need to find
additional functions. Approximately half of these functions
are located near the left end point and the other half are close
to the right-end point.

To find the remaining functions, we shall identify functions
in , that cannot be written as combinations of either the
functions in or the functions , that we have already
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identified. From the MRA, any in can be written
as

(23)

First, we consider the left-edge base of , and separately
substitute into (23). In this
sequence of functions, every second one is linearly dependent
on the previous ones (modulo functions in). The additional
functions in at the left point can be written now as

(24)

In the same way, we can identify the functions at the
right-end point; that is

(25)

Let us order the basis elements of as follows:

if
if
if

(26)

It is simple to orthonormalize the functions .

III. SOLVING THE INTEGRAL EQUATIONS

In this section, we apply the intervallic Coifman wavelets
to the solution of the integral equation

(27)

where is a known function.

A. Expansion in Terms of Coifman Intervallic Wavelets

Within the integration domain , let us expand the
unknown function in the integral equation in terms of
scaling functions at the highest levelon the bounded interval
as

(28)

Define

for . The expansion of is
substituted in the integral equation (27), and the resultant
equation is tested with the same set of expansion functions

(29)

(30)

As a result, a set of linear equations is formed

where

(31)

(32)

IV. NUMERICAL INTEGRATION AND ERROR ESTIMATE

The evaluation of the coefficient matrix entries involves
time consuming numerical integrations. However, by taking
advantage of vanishing moments and compact support of the
coiflets, many entries can be directly identified or calculated
without performing the quadrature procedures. Away from
singular points of the kernel, the integrand behaves as a
polynomial locally. Consequently, the integral that contains
at least one complete wavelet function as the basis or testing
function will result in a zero value. On the other hand, the
integral that contains only complete scaling functions as basis
and testing functions will take a zero order moment of the
kernel. Even if supports of basis and testing functions overlap
but not coincide, it is still possible to impose the vanishing
moment property and reduce partially the double integration
to single integration for the nonsingular part.

Using the Taylor expansion of the integral kernel, we can
approximate the nonsingular coefficient matrix entries in (31),
which contain complete wavelets and scaling functions. For
ease of reference, three basic cases are considered and relative
errors are analyzed.

1) Double integral, containing only Coifman scaling func-
tions. Consider the second term of (31). The integral
that only contains scaling functions as basis and testing
functions

(33)

will take a zero-order moment of the kernel. It follows
that for nonzero entries, the error between the exact
value and the coiflet approximation is

(34)
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where is a support of the th scaling function,
is the same support after a coordinate transform

.
2) Double integral, containing only Coifman wavelet func-

tions on levels and

(35)

It follows that for near-zero entries, the error between
the exact value and the coiflet approximation is

3) Double integral containing Coifman wavelet and scaling
functions on levels and

(36)

For zero entries, the error between the exact value and
the coiflet approximation is seen at the bottom of the
page.

Fig. 2 shows the error introduced by the fast evaluation
of the impedance matrix elements as will be discussed in
Example 5.1, where the basis and testing functions consist
of and both at level 7. Using the Galerkin procedure,
the impedance matrix has the block structure which involves
combinations of basis and testing functions

Let us select a given row (for example row 96 at level 6 and
row 192 at level 7) while varying the column number. This row
crosses blocks and . The corresponding entries
are plotted in Fig. 2, where the solid lines are computed by
the Gaussian quadrature method and the dash-dotted lines are
cerror introduced by the zero-moment property of coiflets. To
illustrate the effects of the resolution level on the error, we
also plotted two curves (dashed versus solid) on level 6 for the
corresponding locations. It may be observed from the figure
that at higher levels, the error is reduced.

Fig. 2. Error distribution induced by Coifman zero-moment approach on
resolution levels 6 and 7.

We need just a few items in each summation to estimate
the order of the approximation error. Expressions, which
involve derivatives of the kernel, can be estimated manually
or using symbolic derivation software—Maple for example.
The moment integrals

(38)

can be calculated directly, using the wavelet theory.
The th moment integral for the scaling function can be

identified using the Fourier transform of the scaling function

(39)

where .
Interestingly enough, the right-hand side of (39) has a

closed-form expression of

(40)

with

(41)

where is the low-pass filter. The th moment integral for
the wavelet can be evaluated in a similar fashion.

(37)



1194 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 7, JULY 1999

TABLE I
FIRST NINE MOMENT INTEGRALS FORCOIFLET SCALING FUNCTION OF

ORDER 2N = 4 AND THE ASSOCIATED ERROR AS EXPRESSED BY(37)

The first two terms in the right-hand side in (34) are of the
same order and represents the dominant part of the error. The
main part of the approximation error in (37) is also represented
by the first term. Tabulated in Table I are the first nine moment
integrals for the scaling function and the associated error
of (37) for the elliptic cylinder in Example 5.1.

It will be shown in Appendix A that for a matrix,
we need to perform numerical integration, not in the order
of separate two-fold Gaussian quadrature operations, but
only of the order of
integrations, where is the order of the Coifman
wavelets, as mentioned before. For a practical problem of

unknowns, instead of requiring 100 000 000 numerical
integrations, we will need only 210 000.

For those integrals in which the basis and testing functions
overlap, causing the kernel singular point to lie within the
integration interval, numerical integration has to be conducted.
Even though the integration limit ranges from zero to one,
intervals of actual integrations are much smaller because of the
compact support of the intervallic father and mother wavelets.

V. NUMERICAL EXAMPLES

A. Conducting Cylinders, TM Case

Consider a perfectly conducting cylinder excited by an
impressed electric field . In the TM case, the impressed field
induces current on the conducting cylinder, which produces
a scattered field . By applying boundary conditions, the
integral equation is derived as

on (42)

where is known, is to be determined, is the
Hankel function of the second-kind zero order, , and

, and the incident field

(43)

After the current is found, the scattered field and the
scattering coefficient can be evaluated using the following
formulas from [22]:

Fig. 3. Radar cross section of a perfectly conducting elliptic cylindrical
surface: TM case, as computed by MoM and by vanishing moment wavelets.

Fig. 4. Magnitude of impedance matrix at Level 6, generated by intervallic
wavelets method.

where

and

(44)

We will consider TM plane wave scattering by an elliptic
cylindrical surface; the geometric configuration for which is
depicted in Fig. 3. In this case, the impressed field is a uniform
plane wave, which is incident on the cylinder along the direc-
tion of the positive axis. Using the procedures described in
Section IV, the solution for is then found by expanding it to
the Coifman intervallic wavelets. Fig. 4 shows the impedance
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Fig. 5. Current distribution on an infinitely long perfectly conducting elliptic
cylinder: as computed by using Gaussian quadrature and by using vanishing
moment wavelets.

matrix, which is produced by the intervallic Coifman scaling
function on level 6. In the figure, the magnitude of the entries
have been digitized into eight-bit gray levels. Fig. 5 shows
the surface current density produced by using vanishing
moment properties of the Coifman wavelets. We compare
it with the current found by using Gaussian quadrature for
the calculation of matrix elements. The magnitude of matrix
elements, which are set to zero, does not exceed 0.1% of the
largest element in the matrix. In this example, the scaling
functions and wavelets are both chosen on level 6 with a
total of 60 basis functions. The circumference of the cylinder
is approximately ; thus, we have 12 basis functions per
wavelength. Fig. 3 shows the radar cross section as computed
by the conventional MoM and by this method. The results
from the conventional MoM and this method agree very well.

As long as the boundary curve is a closed contour, there
is no need to employ the intervallic wavelets nor the periodic
wavelets. Instead, the standard wavelets are sufficient. At the
left edge, portions of the wavelets that are beyond the interval
are circularly shifted to the right edge. This procedure is
similar to the circular convolution in the discrete Fourier trans-
form. In this example, we employed the intervallic Coifman
wavelets, although we could have used the standard wavelets.
This example is a typical one-fold wavelet expansion, which
is mainly designed to demonstrate the fast construction of
an impedance matrix for general problems in the confined
interval. More detailed discussion can be found in Appendix A.

B. Conducting Cylinders with Thin Magnetic Coating

The total fields in free space can be considered to be the
sum of the incident fields and the scattered fields radiated by
equivalent sources in the thin coating and electric currents
on the surface of a perfect conductor. If the contribution of
volume integration over all real sources is denoted byand

, based on the equivalence principles, the integral equations

for the and fields can be established as

(45)

(46)

where

(47)

(48)

(49)

(50)

(51)

(52)

and

if
otherwise

and are equivalent electric and magnetic current
sources [21].

In the two-dimensional (2-D) case, for the TM wave, we
have

(53)

where

is the 2-D Green’s function.
Equation (53) is an electric field integral equation for 2-D

bodies with arbitrary cross sections. Compared to the case of
the perfect conductor [21], an extra term is contributed by
the equivalent magnetic current. The contribution from the
magnetic current will give a scattering different from that of
a perfect conductor with a coating.

When the current density is known, the radar cross section
can be evaluated by asymptotic expressions of the Bessel
functions. Here we are interested in the bistatic scattering cross
section, which is defined by
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Fig. 6. Current distribution on an infinitely long right circular cylinder for three different coating cases, assuming symmetrical incident waves.

The normalized radar cross section of a circular cylinder
excited by TM wave is given by

(54)

The intervallic wavelet approach was introduced in the pre-
vious sections of this paper. Based on these formulations,
numerous numerical results have been obtained. To validate
the new surface integral equation, the current distribution and
the radar cross section of a circular cylinder were calculated
using the intervallic wavelet approach.

Consider an infinitely long perfectly conducting circular
cylinder with , where is the radius of the circular
cylinder. The perfectly conducting cylinder is assumed to be
partially coated with a magnetic film which covers 25% of the
circumference over the range of .
The normalized permeability is . A
uniform plane wave with an electric field is assumed to
be propagating along the axis (Fig. 6) and at 135(Fig. 8)
in free-space. Assuming TM excitation, the radar cross section
and the current distribution on a fully coated, a partially coated,
and a bare cylinder are plotted in Figs. 6–9.

The current distribution of a partially coated cylinder ex-
hibits rapid variations at the edges of the coating. On the
remaining portion of the cylinder without coating, the current
is almost the same as that of an uncoated cylinder. The radar
cross section of a partially coated cylinder is between that of a
fully coated cylinder and that of a bare cylinder except near the
edges of the coating. Again, for this example of 2-D cylinder
with a closed contour, standard wavelets may be employed.

Fig. 7. Radar cross section of a perfectly conducting rightcircular cylinder:
TM case, as computed by intervallic wavelets method for different amounts
of surface coating, assuming symmetrical incident waves.

C. Perfect Electrically Conducting (PEC) Spheroids

To demonstrate the application of the 2-D wavelet expansion
to a three-dimensional (3-D) geometry, the generalized Mie
scattering is considered, where the analytical solution and
published results are available. We do not utilize the symmetry
of revolution, otherwise the one-dimensional wavelet would be
sufficient. A perfectly conducting prolate spheroid is excited
by a uniform plane wave which is incident along the positive

axis. The total electric current density induced at any
point on the surface of the spheroids can be found from the
magnetic field integral equation (MFIE)
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Fig. 8. Current distribution on an infinitely long right circular cylinder for
three different coating cases, assuming asymmetric incident waves.

Fig. 9. Radar cross section of a perfectly conducting rightcircular cylinder:
TM case, as computed by intervallic wavelets method for different amounts
of surface coating, assuming asymmetric incident waves.

where is the surface gradient defined on the primed
coordinates; is the unit surface normal. The integral is
interpreted in the Cauchy principal value sense. In a spherical
coordinate system the tangential electric current
density on the spheroid surface can be described by its two
components , where and .
Formally, we can consider the coordinateon a bounded
interval while coordinate is on a closed contour.

Following the intervallic wavelet approach from Section IV,
the unknown components of the surface current are expanded
in the finite series of basis functions as

where

Functions are intervallic Coifman scaling functions
of level ; functions are ordinary Coifman scaling

function of level which are defined on a closed contour;
is a double summation index.

PEC Sphere For an incident plane wave with

the surface current distribution for a sphere
has been calculated. Fig. 10 shows the com-
puted current distribution along the prin-
cipal cuts for a sphere with radius ,
where the variation is discretized into 12
intervallic Coifman scaling functions and
the variation into 32 standard Coifman
scaling functions. These results are in good
agreement with the exact solution.

PEC Spheroid Depicted in Fig. 11 is the configuration
of the scattering of electromagnetic waves
from a PEC spheroid with , where

and are respectively the semi-minor
axis and semi-major axis of the spheroid.
Here we used 12 intervallic Coifman scaling
functions in the and 32 regular Coifman
scaling functions in the directions, respec-
tively. Employing the MFIE formulation,
we computed the bistatic radar cross section
and plotted it into Fig. 12 with .
This solution agrees well with previously
published data [23].

Fig. 13 illustrates the backscattering coefficient versus the
normalized wavenumber . Our numerical results agree well
with the curve and data given by Moffat [24].

VI. CONCLUSION

In this paper, Coifman intervallic wavelets were constructed
and applied to the solutions of boundary integral equations
for 2-D and 3-D electromagnetic problems, in which the
unknown functions are defined on a finite interval. Very
sparse impedance matrices were obtained with this method. In
fact, the zero elements of the matrices are identified directly,
without using a truncation scheme to force those elements
with very small numerical values to become identically zero
through the use of an artificially established threshold. The
relative error of the new approach is analyzed symbolically
and numerically, showing high precision. Further, the majority
of matrix elements are evaluated directly, without perform-
ing numerical integration procedures such as the Gaussian
quadrature. This method yields enormous savings in compu-
tational effort compared to the prior methods, particularly for
large matrices. Numerical examples derived from real-world
structures were analyzed and results presented in this paper
to demonstrate the effectiveness of the method; these results
agreed well with the moment method solutions. The algorithm
outlines in this paper may lead to a fast construction of the
impedance matrices.

APPENDIX A
FAST CONSTRUCTION OFIMPEDANCE MATRIX

Consider a case where the set of basis functions consists of
scaling functions only. The total number of basis functions in
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Fig. 10. Current distribution along the principal cuts on a conducting sphere evaluated by using coiflet scaling functions.

Fig. 11. End-on plane wave scattering by a prolate perfect electric conductor
spheroid.

the set is , where is the level of resolution,
and is the order of the coiflets. The number of
the left-edge basis functions is and that of the right-edge
basis functions is also. As a result, the number of the center
(complete coiflet) basis functions, which are complete Coifman
scaling functions, is . The Galerkin method
suggests the following structure of the impedance matrix

(55)

Fig. 12. Normalized bistatic scattering coefficient�(�) as a function of�
on theH plane.

Specifically, we need to count the interactions of the left-edge
basis functions with the left-edge testing functions, denoted
as ; the left-edge basis functions with the center basis
functions as and so on. Note that only these items
within may fully facilitate the coiflet zero moments
for a two fold integration, provided that the corresponding
basis and testing functions do not overlap in their supports. If
only one (basis or testing function) is complete, we may use
a coiflet zero moment for that function, and perform the other
integration with Gaussian quadrature.
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Fig. 13. Normalized backscattering coefficient of a prolate spheroid for
end-on plane wave incidence.

Fig. 14. Structure of the impedance matrix as computed by the intervallic
coiflet method.

The Coifman scaling functions have a finite support length
of , i.e., . The following derivation eval-
uates the number of double and single Gaussian quadrature
operations, referring to Fig. 14.

A. Double Gaussian Quadrature

1) Edge functions react with edge functions. The edge-basis
functions are constructed from incomplete coiflets, there-
fore the coiflet vanishing moments cannot be imposed.
The total number of elements is , as indicated by the
four corner terms in (55) or the four corners in Fig. 14.

2) The center functions react with left (right)-edge func-
tions. The support length of the edge functions is ,
i.e., one unit shorter than the length of the complete
scaling functions. Therefore, each edge function over-
laps with center functions. Since there are

edge functions, the total number of elements is
, where an additional factor of two counts

for the commutation between testing and expansion.
3) Center basis functions versus center testing functions.

a) Incomplete diagonal (the number of complete testing
functions to the left of the complete basis func-
tion does not equal the number of complete testing
functions to its right). The leftmost complete center
function overlaps with complete center
functions, i.e., the leftmost with itself and
to its right. The second left complete center function
overlaps with complete center functions,
the additional one is the overlap to its left neighbor.
The third left complete center function overlaps
overlaps with complete center functions,
the additional two are the overlaps to its left two
neighbors.

The last left complete center function overlaps with
complete center functions. Sum-

ming up the above numbers, we obtain the number
of total elements as , where a factor
of two has been multiplied, taking into account of
the reactions among right center functions.

b) Complete diagonal (the number of complete testing
functions to the left of the complete basis function
equals the number of complete testing functions
to its right). For these tasting functions, that may
overlap with sufficient number of complete basis
functions on both sides, the overlap width is

. The number of such functions is
. Thus, the number of complete

overlap is . The summation of all
the above items gives us the total number that needs
to be implemented in two-fold Gaussian quadrature
operations:

. These operations are indicated in Fig. 14
as dark regions.

B. Single Gaussian Quadrature

In a similar but simpler fashion, we obtain the total number
for single Gaussian quadrature operations as .
These areas are marked in Fig. 14 as light shadows.

C. Double Coiflet Vanishing Moment

The reminder in Fig. 14 is the area where no numerical
integration is needed. It is very clear that as the number
increases, the coiflets becomes more efficient.

In Fig. 14 we created the impedance matrix for the scatter-
ing problem, where and the total number of
unknown functions . The number of double Gaussian
quadrature elements is reduced from 3600 to 1206, a factor
of three. If the number of unknown function is 10one may
reduce the number of double Gaussian quadrature operations
by a factor of 5 000.

Note that the conclusion we draw in this Appendix is for
the case in which all basis functions are scaling functions. The
number of in twofold Gaussian quadratures does
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not represent nonzero entries (although it closely relates to
nonzero elements). If both scaling functions and wavelets are
employed, the matrix sparsity may be further improved and
the complexity of matrix construction may also be increased.
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