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On the Use of Coifman Intervallic Wavelets in the
Method of Moments for Fast Construction
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Abstract—Orthonormal wavelets have been successfully used whereM ~ N?2. Itis obvious thatV? is much smaller thafv3
as basis and testing functions for the integral equations and ex- and, therefore, the MoM has many fewer unknowns than does
tremely sparse impedance matrices have been obtained. However,;ne FEM Unfortunately, the matrix from the MoM is dense

in many practical problems, the solution domain is confined in . . . o
a bounded interval, while the wavelets are originally defined 2nd the solution of dense complex matrices is prohibitively

on the entire real line. To overcome this problem, periodic €xpensive, especially for electrically large problems.

wavelets have been described in the literature. Nonetheless, the Recently, a new category of orthogonal systems, namely,
unknown functions must take on equal values at the endpoints orthogonal wavelets, has emerged from applied mathematics
of the bounded interval in order to apply periodic wavelets as [1]-[5]. Employing wavelets as the basis and testing functions

the basis functions. In this paper, we present the intervallic . he MoM - d . h b
Coifman wavelets (coiflets) for the method of moments (MoM). N the MoM, very sparse impedance matrices have been

The intervallic wavelets release the endpoints restrictions im- Obtained [6]-[17]. It has been reported that the number of
posed on the periodic wavelets. The intervallic wavelets form nonzero elements for alw/ x A4 matrix is proportional tal/

an orthonormal basis and preserve the same multiresolution for certain integral kernels [1]. This intriguing result is due
analysis (MRA) of other usual unbounded wavelets. The coiflets ¢, w0 nymerous useful features of wavelets, including natural

possesses a special property that their scaling functions have . . . . >
many vanishing moments. As a result, the zero entries of the support for multiresolution analysis (MRA), their localization

matrices are identified directly, without using a truncation scheme properties in both the spatial and spectral domains and the zero
with an artificially established threshold. Further, the majority moments, similar to the Diraéfunctions, all of which result

of matrix elements are evaluated directly without performing iy 3 much greater likelihood of achieving sparse systems of
numerical integration procedures such as Gaussian quadrature. linear algebraic equations [5]

For an n x n matrix, the number of actual numerical integrations . .
is reduced from 2 to the order of 3n(2L — 1), when the coiflets ~ Wavelets have been successfully used in the modeling of

of order L is employed. The construction of intervallic wavelets electromagnetic systems to solve scattering, resonance, and
will be presented. Numerical examples of scattering problems interference problems via integral equation, differential equa-
are di_scussed and the relative error of this method is studied tions, and finite-difference time-domain (FDTD) formulations.
analytically. Although some progress has been made in the application
Index Terms—Boundary integral equation methods, wavelet of wavelets to electromagnetic (EM) problems, a number of
transforms. concerns and limitations still exist. For example, wavelets
are defined on the real line, while in many practical ap-
I. INTRODUCTION plications the domain of the independent variable is on a
finite interval. To overcome this difficulty, so-called periodic

;:t\évceglnikr:xoewtrr]]atth?éstl:?s fi':';e ae:::q;r:trzzgéhggnéigtl)\l/le %velets have been introduced [1]. However, in order to
- qt . P . . uge periodic wavelets the unknown current must have equal
efficient numerical solution. For the FEM, the solution times

. 3 . Values at the two endpoints of the interval. Another concern
tend to increase as - log(n), wheren ~ N?, with N being . . . .
o : . ; . which has been raised in regard to the use of wavelets in
the number of points in one dimension. Using surface integr, . o .
e MoM is that the advantage of achieving sparse matrices

equations, implemented as the method of moments (MoM), . . e .

q P ( is’ outweighed by the complexity of the numerical integration

and its high computational cost of evaluation due to the poor

regularity and the nonexistence of a closed-form description
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Il. INTERVALLIC WAVELETS 1) Scaling Functions ofD, 1]: Let us sketch the construc-
tion of orthogonal wavelets of), 1], which is a modification

of the approach in [18] and [19]. Starting from an orthogonal
Coifman scaling function witlé NV nonzero coefficients (where

N is the order of the Coifman wavelets), we will assume that

e scale is fine enough so that the endpoints are independent.
ince the Coifman wavelets have the vanishing moments

nr%perties in both scaling functions and wavelets, we have

A. Basic Wavelet Theory

Basic wavelet theory can be found in many excellent boo
[1]-[3]. However, for readers without rigorous mathematicetl
training, it is not a trivial task to comprehend some of thg
arcane concepts and convert them into meaningful engineeri
tools. In this section, we briefly list basic wavelet principleg

that are used to construct and facilitate the wavelets. A

multiresolution analysis of.2(R) is defined as a sequence /‘P(x)dx =1 (8)
of closed subspacds; of L?(R), j € Z. A scaling function

¢(z) € Vo, with a nonvanishing integral, exists such that the /95%(35)5595 =0, p=12-2N~1 ()

collection{p(¢ — 1) | I € Z} forms a Riesz basis dfj.
Sincey € Vy C V1, a sequencéh;} € £ exists such that
the scaling function satisfies

o(z) = V2 hip(2w — k).

/xpz/)(x)dx:(), p=20,1,2,---,2N —1. (10)

Scaling functions under th&? norm exhibit the Diracs
like sampling property for smooth functions. Namelyifz)
is supported inp, q] and we expandf(x) at a point within

This functional equation is referred to as the dilation equatioh% q], then

where {h, } are coefficients of the low-pass filter and q .
/ f(@)e(z) 2/ {f(0)+f’(0)3;+...
) P P

Z hi = 1.
% FAN=L(0)z2V 1
The collection of functiongp;,; | I € Z}, with (2N —1)!

D

1)

+ +-- }w(w)dw
~ f(0).

This property in a simple sense is similar to the Difac-
function property

pia(w) = 2020w - ©)
forms a Riesz basis of;.

We will use W; to denote a space complementihg in
V;+1; that is, a space that satisfies

/ F(@)6(x) dz = £(0).

Vi =V, &W; (4) Of course, the Diraé- function is the extreme example of
and localization in the space domain, with infinite number of
vanishing moments.
@Wj = L*(R). (5) All polynomials of degree<2N can be written as linear
J combinations ofy,; for k € Z, with coefficients that

are polynomials of degree2/N. More precisely, ifA is a

A function ¢ is a wavelet_ if the _collection of funct_ions polynomial of degree < 2V — 1, then a polynomialB, of
{¢(x—1) |l € Z} forms a Riesz basis dVy. The collection {he same degree, exists such that

of wavelet functiong{+; ; | [, j € Z} then forms a Riesz basis
of L*(R). The definition ofy; ; is similar to that ofp; ;. Since
the wavelet) is an element o¥;, a sequencég} € ¢?(R)
exists such that

P(x) =V2) grp(2e — k).

Alz) =Y B(k)pjn().

Since {¢; «} is an orthonormal basis fd¥;, any monomial
%, a < 2N — 1, by using (8) and (9), has the representation

> @, oinein(x)

k
k(l/
= zk: it Dy $ik(®)

wherej is the level of the Coifman wavelets. The restriction

to [0, 1] can be written as
Standard wavelet analysis involves the construction of a

(6)

‘TOé

In the previous equation, the bandpass filter for the orthogonal
wavelets can be represented by the low-pass filters as
g1 = (=1 h_gyy. (7)

B. Intervallic Father Wavelets

basis for collections of functions on the real lin&, for 2N 2/—4N 242N

. . . Q
example, the square integrable functions on the real line & o,y = E + E + E
L?(R). For many applications it is necessary, or at least more k=—4N+2 k=2N+1 k=2/-4N+1

natural, to work on a subset of the real line. X (x%, 0;,k) 95k (®)][0,1]- (11)
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Let 12 r . : T
N Edge Basis o: gr:ero i
) 10| samananens. Edge Basis of Order 1
:L'?L =97 (at1/2) Z <$a7 ;5 k>§01 k($)|[0 1 (12) L eeeea- Edge Basis of Order2 i
b g ’ ’ ’ 8 — — — — Edge Basis of Order3
k=—4N+2 N F Coifman Scaling Function Bases B
and 3
S
27 42N B
wip =20 N o ein(@py (13) &
k=27 —4N+1 g
©
where subscrip, and R represent left and right, respectively. @
Hence
27 4N
2]/2(2137)@ _ x;xL + 9i(at+1/2) Z <$a7<ﬂj,k><ﬂj,k($)|[o,11
hERNH %0 02 04 06 08 1.0
+ xj:R' (14) Position on Bounded Interval, x
Define spacesﬂ_/j,j > jo}, to be a linear span of func-Fig. 1. Coifman intervallic scaling function at Level 5 for use in solution
i ¢ a 27 7 H . i
tions {xﬁL}(y§21\’—1, {$j7R}a§2A’—1, and{%’,kho,l 2 QAJL\{\+1, of integral equations
namely
o _ si_unN _ Let us order the basis elements 60, 1] as follows:
J— o o
V= {%’,L}QSQN_;L U {¢j:k|[0:11}k=21\7+1 U {xj:R}a§2N—l'
(15) Pt 2Nk :
O if k=1,---,2N
Collections_ {25 Lra<an -1, {75 rta<an-1, and =< g4, _ if k=2N+4+1,---,2/—4N
{eirlor }f—ﬁ\’,\jrl are mutually orthogonal. <p§‘;§j+4N_1, if k=29 —4N +1,---, k=2 — 2N.
As d|scussed in the prewous paragraph, all polynomials of (29)
degree<2N — 1 are inV;, and space¥; form an increasing _ . . . .
sequence Following the construction procedure, the intervallic Coifman
_ _ wavelets can be built. Fig. 1 depicts the resultant scaling
Vi C Vi functions forj = 5 and NV = 2. It can be seen in Fig. 1

that there are three kind of basis functions, namely the left-
edge functions, right-edge functions, and the complete basis
Qctlons as indicated by thin solid lines.

It can be proven tha¥; form the multiresolution analysis
(MRA) of L?([0,1]). All of the functions in the collections
are linearly independent and can be used as basis funct|oH
In order to form an orthonormal basis, we only have to
orthogonalize the functions?, andz¢ . C. Wavelets Ori0, 1]

2) Orthogonalization: More specmcally let us consider the To obtain the corresponding wavelets, we will ugg to

left-end point, and set denote a space complementifigin V;;. Next we will con-
ON_1 sider the detail spacd%’; and their associated wavelets. From
o ,8
oy, = Z o5 . (16) material presented earlier, we can easily calculate dimensions
of the spaces involved

Defining dimV; =2/ — 2N (20)

A= {an 5} dimW; =dimV;; —dim V; = 27 (22)

X ={(@s,.2] )} There are certain functiong; ; that are both completely

supported insid¢0, 1] and belong td/; 41, for example, when

the orthonormality condition is then k belongs to the set

I = AXA*. (7) {k:3N<k<2 —3N-1}. (22)

Now note thatX is positive, definite, and symmetric; hence

the Cholesky decomposition holds, namety = CC*. The These functionsy; are thus inW;. Comparing this ex-
selection of pression against the dimension Bf;, we still need to find

additional6 vV functions. Approximately half of these functions
A=C7! (18) are located near the left end point and the other half are close
to the right-end point.
will perform the orthogonalization g}r\oc;ass That is, we have 1, fing the remaining functions, we shall identify functions
proven that the functions ifyj },—, " are orthonormal. i, 7 that cannot be written as combinations of either the
Similarly, we can perform the orthogonallzatlonxrij. functions inV; or the functionsy; x, that we have already
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identified. From the MRA, any; 1 5 in L?(R) can be written As a result, a set of linear equations is formed

as

Ax=g
Pj+1, k Z hi— 2m¥Pj,m ) + ng72m¢j,m($)- (23)
m where

First, we consider the left-edge basedf.;, and separately '
substitutek = 8N — 1,8N — 2,---,2N + 1 into (23). In this G = / (@) B () Br () de
sequence of functions, every second one is linearly dependent ) ) )
on the previous ones (modulo functionsiif). The additional +/ K(z,2")Bn(2") By (2) do’dz (31)
functions inV; at the left point can be written now as

N Gm = /g(x)Bm(x) dx. (32)
PIL = Pi+1,8N—20+1 — Z(‘Pj—l—l,SN—Qa—l—la di0di0- (24)

In the same way, we can identify tt&V functions at the

{
IV. NUMERICAL INTEGRATION AND ERROR ESTIMATE

right-end point; that is The evaluation of the coefficient matrix entries involves

P R= ¥ 41,29t 10N420 — Z<<Pj+1,2j+1—101v+2m i)

time consuming numerical integrations. However, by taking

advantage of vanishing moments and compact support of the

(25) coiflets, many entries can be directly identified or calculated
without performing the quadrature procedures. Away from

i

Let us order the basis elements1of; as follows: singular points of the kernel, the integrand behaves as a
1/)]7%{” if k=0,---,3N—1 polynomial locally. Consequently, the integral tha_t contain_s
Ui =< Yk if k=3N,...,20-3N—-1 (26) & Iegst one complgte wavelet function as the basis or testing
PN i L_9i 3N ... =2, functlon will result. in a zero value. On .the othe_r hand, thg
o SR T T integral that contains only complete scaling functions as basis
It is simple to orthonormalize the functiong; ;.. and testing functions will take a zero order moment of the
kernel. Even if supports of basis and testing functions overlap
Ill. SOLVING THE INTEGRAL EQUATIONS but not coincide, it is still possible to impose the vanishing
In this section, we apply the intervallic Coifman waveletshnoment property and reduce partially the double integration
to the solution of the integral equation to single integration for the nonsingular part.
Using the Taylor expansion of the integral kernel, we can
/f ") dz’ + c(x) f(x) = g(x) (27)  approximate the nonsingular coefficient matrix entries in (31),

which contain complete wavelets and scaling functions. For

wherec(x) is a known function. ease of reference, three basic cases are considered and relative

A. Expansion in Terms of Coifman Intervallic Wavelets

errors are analyzed.
1) Double integral, containing only Coifman scaling func-

Within the integration domair0, 1], let us expand the tions Consider the second term of (31). The integral
unknown functionf(x) in the integral equation in terms of that only contains scaling functions as basis and testing
scaling functions at the highest levélon the bounded interval functions
as

B _ ! ! !
_ ZfJ,kd)J,k(x) 1 S k‘ S 2J —9N. (28) bn,rn — /Sn /5m K(.T,J} )¢J,rn(x )<)0J,n(x) d.%‘ d.%‘ (33)
k

for i = 1,2,3,---,27 — 2N. The expansion off(x) is
substituted in the integral equation (27), and the resultant . o—7 Z
equation is tested with the same set of expansion functions -

will take a zero-order moment of the kernel. It follows
that for nonzero entries, the error between the exact
Bi(z) = ¢g,i(7) value and the coiflet approximation is

Gy = f.],i

Define

b — 277K (270,27 m)|

_ K(,) n,27‘]m
g1t Kar 2 )H/Sylw(y)dy‘

I>2N
/ / / (l) o -
zﬂ:an{C(ai)Bn(x) + /Bn(ai YK (z,2") dx } =g(x) (29) N Z - KD J;!%Q Im) o
I>2N
Zan{/C(a:)Bm(a:)Bn(a:) dx o5 s Ki{l(;))(Q—Jn’Q_Jm)‘
1,p>2N Ip!
/ K(x,2")B(«") By (x) dx’ da:} P>
—/ (2)Bm(x) da. (30) X /Sy’<p(y) dy /Sy’%p(y) dy (34)
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where S, is a support of themth scaling function, Zero Moments on Level 6
. . Full Integration on Level 6
S is the same support after a coordinate transform ---- Zero Moments on Level 7
_ o—J 0 == Full Integration on Level 7
x =27"(y +m). 10
2) Double integral, containing only Coifman wavelet func-
tions on levelsJ; and .J, 3
o 102} 4
Cnym = / / K(z; 2" g, m (2 by, n(x) da’ dz. (35) 3 Lo
Sn s Sm € 103} H 4 J
5 ; ok
. = e .-
It follows that for near-zero entries, the error between’, o4,/ ™. SN 1
the exact value and the coiflet approximation is % / “~HHE
w 105} Vi E
= -6 §
el 27 G20 ST g (s g AN
Lp>2N 107 L o
D) 9=ty 91T PN
X K’”:W’ (27%n, 27" m) 108 L iYX W
I1p! | i !
10-9 1 1 1 - 1 L 1 1
64 96 128 160 192 224 256
{ Matrix Index
X / yp(y) dy / yPp(y) dy
5 5 Fig. 2. Error distribution induced by Coifman zero-moment approach on

resolution levels 6 and 7.
3) Double integral containing Coifman wavelet and scaling

functions on levels/, and J; We need just a few items in each summation to estimate
, , , the order of the approximation error. Expressions, which
dn,m :/S /S K2 )0 m(@) ¢, n(x) dz’ dz. (36) jnyolve derivatives of the kemel, can be estimated manually
e or using symbolic derivation software—Maple for example.
For zero entries, the error between the exact value amble moment integrals
the coiflet approximation is seen at the bottom of the
page. / y" () dy, / v p(y)dy, n=22N  (38)
Fig. 2 shows the error introduced by the fast evaluation s s
of the impedance matrix elements as will be discussed ¢an be calculated directly, using the wavelet theory.
Example 5.1, where the basis and testing functions consistfhe nth moment integral for the scaling function can be
of ¢ and+ both at level 7. Using the Galerkin procedureidentified using the Fourier transform of the scaling function
the impedance matrix has the block structure which involves $(™(0)
combinations of basis and testing functions /t" (t)dt = yEnT (39)
‘(w,wi) (z/),<p:> . wherei = /—1.
(. 9) (.97) Interestingly enough, the right-hand side of (39) has a

Let us select a given row (for example row 96 at level 6 arfdosed-form expression of

row 192 at level 7) while varying the column number. This row . m(n)(o)

crosses blocksgy, 1) and (v, ¢'). The corresponding entries d)(")(O) = 22—1, 2N <n<4N -1 (40)
are plotted in Fig. 2, where the solid lines are computed by B

the Gaussian quadrature method and the dash-dotted linesvéte

cerror introduced by the zero-moment property of coiflets. To (n) (=)™ "

illustrate the effects of the resolution level on the error, we my(0) = W Ek:k b, n=0,1,2,-- (41)

also plotted two curves (dashed versus solid) on level 6 for the
corresponding locations. It may be observed from the figuveherer,, is the low-pass filter. Theth moment integral for
that at higher levels, the error is reduced. the wavelet can be evaluated in a similar fashion.

K;l)(Z_Jzn,Z_Jlm)

I %

|| S 27CHR2ED T a7
I>2N

+ Z 2—(J1P+J21)

Lp22N

/S y' () dy

K(l)(,P) (2_‘]271 9—J1 m)
T

X

/ ' (y) dyH / v o(y) dy‘ 37)
S S
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TABLE | 8 K , . . ; , ,
FIRST NINE MOMENT INTEGRALS FOR COIFLET SCALING FUNCTION OF Sutace of |
ORDER 2N = 4 AND THE ASSOCIATED ERROR AS EXPRESSED BY(37) | e oyl / ..... Intervallic Wavelet Method ,
n | Moment integral value | Associated error = 5 j: CUEEEAD < ) wan S Moment Method ,’h
0 1.0000000 N/A S on CL_ s\ A, T
1 0.0000000 N/A 2 Ly 9 PN il
2 0.0000000 N/A 5 | u B! :
3 0.0000000 N/A A a2 2 ;
1 1.9333c-11 0.00038057 £ o F !
5 -0.1348373 0.00013809 § H P :
6 3.5308e-10 0.00004144 = ol ! Y .
7 -3.2646135 0.00000960 8 H A :
8 -8.5859678 0.00000210 £ - s
S R A . SN
o —e T ’ ]
The first two terms in the right-hand side in (34) are of the . ) 1 , ) . \
O ——"%g 700 150 200 250 300 350

same order and represents the dominant part of the error. The
main part of the approximation error in (37) is also represented
by the first term. Tabulated in Table | are the first nine momenRiy. 3. Radar cross section of a perfectly conducting elliptic cylindrical
integrals for the scaling functiop(y) and the associated errorsurface: TM case, as computed by MoM and by vanishing moment wavelets.
of (37) for the elliptic cylinder in Example 5.1.

It will be shown in Appendix A that for o x n matrix,
we need to perform numerical integration, not in the order
of n? separate two-fold Gaussian quadrature operations, but
only of the order of3n(2L — 1) — 7L(L — 1) + 2L* — 2
integrations, wherel,. = 2N is the order of the Coifman
wavelets, as mentioned before. For a practical problem-of
10000 unknowns, instead of requiring 100 000 000 numerical
integrations, we will need only 210 000. E

For those integrals in which the basis and testing functionsz
overlap, causing the kernel singular point to lie within the 2
integration interval, numerical integration has to be conducted.®
Even though the integration limit ranges from zero to one, E
intervals of actual integrations are much smaller because of the
compact support of the intervallic father and mother wavelets.

Azimuth Angle, ¢

[
-]
Ko
£

V. NUMERICAL EXAMPLES

A. Conducting Cylinders, TM Case 5 20 9 7T 50 “20

Consider a perfectly conducting cylinder excited by an Matrix Column Number
!mpressed electric flelEé' In the TM Cas_e’ the |mpressed fleldFig. 4. Magnitude of impedance matrix at Level 6, generated by intervallic
induces curreny. on the conducting cylinder, which producesyavelets method.

a scattered field2s. By applying boundary conditions, the
integral equation is derived as

ok (@) / / where
E.=7 | () Hg (klp—p)dl’ ponC  (42) 1 psnsa
c K(p) = 87rkpe

where Ei(p) is known, J. is to be determinedH{” is the gng

Hankel function of the second-kind zero ordér= QT’T and o2 5
n = 1207, and the incident field o(¢) = % / T,y eIk cos@)td s gt (44)
Ei _ ejk(wcos(qbg)-i—ysin(qbg)) (43) . .C . ..
= ) We will consider TM plane wave scattering by an elliptic

After the current.. is found, the scattered field and theylindrical surface; the geometric configuration for which is

scattering coefficient can be evaluated using the foIIowirﬂfpiCtEd in Fig. 3. In this case, the impressed field is a uniform
plane wave, which is incident on the cylinder along the direc-

formulas from [22]: ’ - . ) - g
tion of the positiver axis. Using the procedures described in
E°(¢) = U/fK/ Jz(a;”y’)ejk(%" cos(p)+y’ sin()) g/ Section |V, the solution fod is then found by expanding it to
c the Coifman intervallic wavelets. Fig. 4 shows the impedance
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for the E and H fields can be established as

w

---------- Coifiet Solution

Pl i Quadi Etotal(r) :TEZ+T/
v

[—jwuox% I X V'

N

eq
+ pLV’@} av’ +T/[—jwuo(ﬁ x H)®
€0 S
+ (A x E)x Vo + (a-E)V'®|dS’  (45)
Htotal(r) = TH! + T/ [—ijoJff}‘I’ +JM9x V'

-

-

eq
+ @v’cp} av’ —l—T/[—jweo(ﬁ x E)®
Ho S

+ (A x H)x V& + (A- H)V'®|dS  (46)

Magnitude of Normalized Current Density, IJZI

o Y Y et ; where

0.0 0.2 0.4 0.6 0.8 1.0 kR
Normalized Contour Length d(r.v) = ¢ 47
. . o R ,x') drR 47
Fig. 5. Current distribution on an infinitely long perfectly conducting elliptic R— | . /| (48)

cylinder: as computed by using Gaussian quadrature and by using vanishing =jr—-r
moment wavelets. I = jw(p — po)H (49)
I = juw(e — ¢9)E (50)
. . . . . . vI=_V. — E 51
matrix, which is produced by the intervallic Coifman scaling Z (¢ — «0)E) (51)
Pt = =V - (1 = po)H) (52)

function on level 6. In the figure, the magnitude of the entries
have been digitized into eight-bit gray levels. Fig. 5 shows d
the surface current density, produced by using vanishing
moment properties of the Coifman wavelets. We compare 2, ifres

it with the current found by using Gaussian quadrature for = {1, otherwise

the calculation of matrix elements. The magnitude of matrix

elements, which are set to zero, does not exceed 0.1% of #ié and J7! are equivalent electric and magnetic current
largest element in the matrix. In this example, the scalirgpurces [21].

functions and wavelets are both chosen on level 6 with aln the two-dimensional (2-D) case, for the TM wave, we
total of 60 basis functions. The circumference of the cyIind&\*’J‘Ve

is approximately5X; thus, we have 12 basis functions per )

wavelength. Fig. 3 shows the radar cross section as computetr £ (7) = 270:mtJ ()|tan + {/C [(omt)(B x J(F)

by the conventional MoM and by this method. The results I ias p o
from the conventional MoM and this method agree very well. % (Vt PG = Juned(P)G
As long as the boundary curve is a closed contour, there +L(V; +382) - I(P)N V', + 7’/3;})@} dl’}
cow ) ) tan

is no need to employ the intervallic wavelets nor the periodic

wavelets. Instead, the standard wavelets are sufficient. At the

left edge, portions of the wavelets that are beyond the interval

are circularly shifted to the right edge. This procedure ¥here

similar to the circular convolution in the discrete Fourier trans- T oo, /75| —
form. In this example, we employed the intervallic Coifman G= }HO( (k2 =27 =7'l)
wavelets, although we could have used the standard wavelets, ; .

This example is a typical one-fold wavelet expansion, whidf the 2-D Green's function.

is mainly designed to demonstrate the fast construction of=duation (53) is an electric field integral equation for 2-D
an impedance matrix for general problems in the confin dies with arbitrary cross sections. Compared to the case of

interval. More detailed discussion can be found in Appendix Ahe perfect conductor [21], an extra term is contributed by

the equivalent magnetic current. The contribution from the
magnetic current will give a scattering different from that of
a perfect conductor with a coating.

B. Conducting Cylinders with Thin Magnetic Coating When the current density is known, the radar cross section
The total fields in free space can be considered to be @ be evaluated by asymptotic expressions of the Bessel

sum of the incident fields and the scattered fields radiated tyctions. Here we are interested in the bistatic scattering cross

equivalent sources in the thin coating and electric currerction, which is defined by

on the surface of a perfect conductor. If the contribution of

volume integration over all real sources is denotediyand o(¢) = lim 2mp

H*, based on the equivalence principles, the integral equations p—0o0

(53)

s 12

=
%
Ez
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essscssesaces Partially Coated

Magnitude of Normalized Current Density, |J, |
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1] 50 100 150 200 250 300 350
Azimuth Angle, 0

0.0

Fig. 6. Current distribution on an infinitely long right circular cylinder for three different coating cases, assuming symmetrical incident waves.

The normalized radar cross section of a circular cylinder 20 . . . . , : ;

excited by TM wave is given by < 1sl ]
®
a(¢) (kaﬁ)2 Tml / g /
N s 1= o cos(6" — @) g Fully Coated [
5 8 = wmw= e No Coating
XJZ(QI)Cjka cos(8"— ) a0l (54) (-g’, ......... Partially Coated q
% i
. . . . 8r ‘
The intervallic wavelet approach was introduced in the pre—f
vious sections of this paper. Based on these formulations,§ &t i
numerous numerical results have been obtained. To validate 4| \ ~z"’—— “~\§\‘ ni |
the new surface integral equation, the current distribution andg R ’J ]
the radar cross section of a circular cylinder were calculated 21 W\ —
using the intervallic wavelet approach. % 50T To0 T B0 200 250 300 350
Consider an infinitely long perfectly conducting circular Azimuth Angle, &

cylinder with kya = 2=, whereaq is the radius of the circular _ S _

cylinder. The perfectly Conducting cylinder is assumed to . 7. Radar cross section of a p_erfectly conducting nghtqrcular cylinder:
. . L . 0 case, as cqmputed by_ intervallic V\(ave!ets_ method for different amounts

partially coated with a magnetic film which covers 25% of the surface coating, assuming symmetrical incident waves.

circumference over the range t0° — 45° < # < 180°+45°.

The normalized permeability ig..#/a = 0.01 — j0.03. A" ¢ perfect Electrically Conducting (PEC) Spheroids

uniform plane wave with an electric field” is assumed to

be propagating along thex axis (Fig. 6) and at 135(Fig. 8)

in free-space. Assuming TM excitation, the radar cross secti

To demonstrate the application of the 2-D wavelet expansion
i a three-dimensional (3-D) geometry, the generalized Mie
and the current distribution on a fully coated, a partially coatea?aﬂe”ng IS conS|dered', where the analy.tl'cal solution and

published results are available. We do not utilize the symmetry

and a bare cylinder are plotted in Figs. 6-9. . . . .
The current distribution of a partially coated cylinder ox0f revolution, otherwise the one-dimensional wavelet would be

hibits rapid variations at the edges of the coating. On tr.IQ,(;}11°ficient. A perfectly conducting prolate spheroid is excited

remaining portion of the cylinder without coating, the currerﬁ’y a uniform plane wave which is incident along the positive

is almost the same as that of an uncoated cylinder. The raddt'S: The total electric current densify(r) induced at any

cross section of a partially coated cylinder is between that ofgintr on the surface of the spheroids can be found from the

fully coated cylinder and that of a bare cylinder except near tHa2gnetic field integral equation (MFIE)
ecjges of the coating. Again, for this example of 2-D cylinder J=—2h xH + iﬁ % / I(r') x V'Glr,r') dS’
with a closed contour, standard wavelets may be employed. 27 s
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N
t

function of level ./, which are defined on a closed contour;
Hi ] k = {m,n} is a double summation index.

2L Y ] PEC Sphere For an incident plane wave with
E' = Egkxe 7%, H'= Hyye 7%

X the surface current distribution for a sphere
' ] has been calculated. Fig. 10 shows the com-
puted current distribution along the prin-
cipal cuts for a sphere with radiud2A,
where thef variation is discretized into 12
intervallic Coifman scaling functions and
1 the ¢ variation into 32 standard Coifman
scaling functions. These results are in good
__/ agreement with the exact solution.
100 130 200 250 300 350 PEC Spheroid Depicted in Fig. 11 is the configuration
Azimuth Angle, 0 of the scattering of electromagnetic waves
Fig. 8. Current distribution on an infinitely long right circular cylinder for from a PEC spheroid Wiﬂb/a = 2, where
three different coating cases, assuming asymmetric incident waves. a and b are respectively the semi-minor
axis and semi-major axis of the spheroid.
Here we used 12 intervallic Coifman scaling
181 1 functions in thed and 32 regular Coifman
scaling functions in the» directions, respec-

"
X
5y

-
o
T

-
)
T

e
(4]
T

—— Fully Coated
e e NO Coating
.......... Partially Coated

Magnitude of Normalized Current Density, |Jz|

o

o
©
]
o

20 T T T T T T T

16 - -

—_—— :‘;"‘é:a‘::::d tively. Employing the MFIE formulation,
fad R A Partially Coated ] we computed the bistatic radar cross section
12+ . and plotted it into Fig. 12 withka = 1.7.

This solution agrees well with previously
published data [23].

] Fig. 13 illustrates the backscattering coefficient versus the
6 8 normalized wavenumbéra. Our numerical results agree well
with the curve and data given by Moffat [24].

4 JA) - e wﬂg’ :
\v,", e \4-\‘
2 et N\ VI. CONCLUSION

In this paper, Coifman intervallic wavelets were constructed
and applied to the solutions of boundary integral equations
Fig. 9. Radar cross section of a perfectly conducting rightcircular (:ylindefr(')r 2-D and 3._D eleCtroma.gnetIC problgms, .In which the

"o nknown functions are defined on a finite interval. Very

TM case, as computed by intervallic wavelets method for different amourtd! : g ‘ - -
of surface coating, assuming asymmetric incident waves. sparse impedance matrices were obtained with this method. In

where V' is the surface gradient defined on the rimela’:\ct, the zero elements of the matrices are identified directly,
9 PIMeg i thout using a truncation scheme to force those elements

coordinates;n is the unit surface normal. The integral is . - . .
9 W|}h very small numerical values to become identically zero

interpreted in the Cauchy principal value sense. In a Sphe”?ﬁrough the use of an artificially established threshold. The

gg(rjlrs?tmegi t?ff”ﬁ;gf;:; ecet?:g?\egga(ljeifr(i:lgrelz% Eur:fsntt\rlgzlative error of the new approach is analyzed symbolically
y P y 4Rd numerically, showing high precision. Further, the majority
components{.Jy, J,}, where0 < § < 7 and0 < ¢ < 2.

Formallv. we can consider the coordinaeon a bounded of matrix elements are evaluated directly, without perform-
. Y, W X i ing numerical integration procedures such as the Gaussian
interval while coordinatey is on a closed contour.

Following the intervallic wavelet approach from Section quuadrature. This method yields enormous savings in compu-

ational effort compared to the prior methods, particularly for
the unknown components of the surface current are expande . . .
. - . . ; arge matrices. Numerical examples derived from real-world
in the finite series of basis functions as

structures were analyzed and results presented in this paper

10+ b

Normalized Scattering Coefficient, a/\

1 1 1 1 1 1
50 100 150 200 250 300 350
Azimuth Angle, ¢

o

Jo(0, ) = ZGZBk(9,<P) to demonstrate the effectiveness of the method; these results
k agreed well with the moment method solutions. The algorithm
J(0,0) = Zaka(e,@ outlines in this paper may lead to a fast construction of the
k impedance matrices.
where
APPENDIX A
Bi(0,9) = ¢grm(0) b n(9)- FAST CONSTRUCTION OF IMPEDANCE MATRIX

Functionsé,, ..(#) are intervallic Coifman scaling functions Consider a case where the set of basis functions consists of
of level Ji; functionsé¢,, ..(¢) are ordinary Coifman scaling scaling functions only. The total number of basis functions in
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Magnitude of Normalized Current Density, |J 9|, |J¢[
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Fig. 10. Current distribution along the principal cuts on a conducting sphere evaluated by using coiflet scaling functions.

X

180°

Fig. 11. End-on plane wave scattering by a prolate perfect electric conduckdg. 12. Normalized bistatic scattering coefficientd) as a function of9
spheroid. on the H plane.

the set isn = 2/ — L, where is the level of resolution, specifically, we need to count the interactions of the left-edge
and L = 2N is the order of the coiflets. The number ohasis functions with the left-edge testing functions, denoted
the left-edge basis functions i and that of the right-edge 5q B Bj; the left-edge basis functions with the center basis
basis functions is als@. As a result, the number of the Cente'functions asB.B.. and so on. Note that only these items
(complete co_iflet) pasis functions, which are complete COifm%thin BBl may fully facilitate the coiflet zero moments
zﬁglgl;l:egst??r(\:(tal?‘gﬁ(’)\lj;lg_sifuzt&;c?th.hz]i?np?eﬂZrnkég nr;Zi?iid for a two fold integration, provided that the corresponding
basis and testing functions do not overlap in their supports. If
B1B), BcBj BrbBj only one (basis or testing function) is complete, we may use
BB BeBi BrBg |- (55)  a coiflet zero moment for that function, and perform the other
BLByR BcBy BrBjy integration with Gaussian quadrature.



PAN et al.: COIFMAN INTERVALLIC WAVELETS IN METHOD OF MOMENTS 1199

10 . . 2L edge functions, the total number of elements is
Coflet Solution 4L(3L — 2), where an additional factor of two counts
# Measurements for the commutation between testing and expansion.
3) Center basis functions versus center testing functions.
a) Incomplete diagonal (the number of complete testing
functions to the left of the complete basis func-
tion does not equal the number of complete testing
4 functions to its right). The leftmost complete center
] function overlaps with(3L — 1) complete center
functions, i.e., the leftmost with itself anglL, — 2
to its right. The second left complete center function

102 |

Normalized Radar Cross Section, o/A2

103 ¢ E overlaps with(3L —1+1) complete center functions,
the additional one is the overlap to its left neighbor.
The third left complete center function overlaps

o4 ) 1 ) ‘ overlaps with(3L—14-2) complete center functions,
0 1 2 3 the additional two are the overlaps to its left two

. . " . .
Normalized Semi-Minor Axis, L)‘a_, of Spheroid nelghbors.

Fig. 13. Normalized backscattering coefficient of a prolate spheroid for ) .
end-on plane wave incidence. The last left complete center function overlaps with

(3L — 14 3L — 3) complete center functions. Sum-
{ ming up the above numbers, we obtain the number
L of total elements a§3L —2)(9L —5), where a factor
b gssssssssssssss, T jiaad of two has been multiplied, taking into account of
L-
1

0

3

2 30 the reactions among right center functions.

b) Complete diagonal (the number of complete testing
functions to the left of the complete basis function
equals the number of complete testing functions
to its right). For these tasting functions, that may
overlap with sufficient humber of complete basis
functions on both sides, the overlap width(&. —

3). The number of such functions({s—2L—2(3L—

2)) = (n — 8L +4). Thus, the number of complete
overlap is(6L—3)(n—8L+4). The summation of all

the above items gives us the total number that needs
to be implemented in two-fold Gaussian quadrature
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, operations3n(2L — 1) — 7TL(L — 1) + 2L? — 2 =~
SESsERsesesEes 3n(2L—1). These operations are indicated in Fig. 14
30 “ 50 & as dark regions.

Matrix Column, X

Fig. 14. Structure of the impedance matrix as computed by the intervalf®: Single Gaussian Quadrature

coiflet method. In a similar but simpler fashion, we obtain the total number

The Coifman scaling functions have a finite support Ieng{ﬁ:esslzg;ereigujselamna?t:griitulzr%?Eirggﬂ%i?gadﬁv: 2).
of 3L — 1, i.e.,[-L,2L — 1]. The following derivation eval-
uates the number of double and single Gaussian quadrat@reDouble Coiflet Vanishing Moment
operations, referring to Fig. 14.

L— 6L-3

Matrix Row, Y

3

60

Lt_
!

0

The reminder in Fig. 14 is the area where no numerical
integration is needed. It is very clear that as the number
increases, the coiflets becomes more efficient.

1) Edge functions react with edge functions. The edge-basidn Fig. 14 we created the impedance matrix for the scatter-
functions are constructed from incomplete coiflets, thererg problem, wherej = 6, L = 4, and the total number of
fore the coiflet vanishing moments cannot be imposednknown functions: = 60. The number of double Gaussian
The total number of elements44.?, as indicated by the quadrature elements is reduced from 3600 to 1206, a factor
four corner terms in (55) or the four corners in Fig. 14of three. If the number of unknown function is®0ne may

2) The center functions react with left (right)-edge funcreduce the number of double Gaussian quadrature operations
tions. The support length of the edge function8is-2, by a factor of 5000.

i.e., one unit shorter than the length of the complete Note that the conclusion we draw in this Appendix is for
scaling functions. Therefore, each edge function ovethe case in which all basis functions are scaling functions. The
laps with 3L — 2 center functions. Since there arenumber of3n(2L — 1) in twofold Gaussian quadratures does

A. Double Gaussian Quadrature
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not represent nonzero entries (although it closely relates to thin magnetic coatings,/JEEE Trans. Antennas Propagatol. 39, pp.
nonzero elements). If both scaling functions and wavelets ﬁgg] 448-454, Apr. 1991.

employed, the matrix sparsity may be further improved a

R. Harrington,Field Computation by Moment MethodMalabar, FL:
Krieger, 1982.

the complexity of matrix construction may also be increaseg®3] A. J. Poggio and E. K. Miller, “Integral equation solutions of three-

dimensional scattering problems,” @omputer Techniques for Electro-
magnetics R. Mittra, Ed. New York: Pergamon, 1973.
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