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Absorbing Boundary Conditions for
Convex Object-Conformable Boundaries

Omar M. RamahiMember, IEEE

Abstract—Absorbing boundary conditions (ABC's) are devel- to apply second-order BT operators (higher order operators
oped that can 'be applied on object-conformable outer boundaries. employ radial derivatives and, thus, cannot be determaed
The new ABC's are based on the local enforcement of thth or- 55517 o the surface of the structure). However, the novelty of
der Bayliss—Turkel boundary conditions where a scattering center ina | I tteri t in th K of Kreigsnemal
is defined for each outer boundary node. A demonstration of the using local scattering centers in the work or Kreigs . .
effectiveness of the new construction is provided by considering led others to extend the concept of the local scattering center
representative numerical experiments using the finite-elements to outer boundaries that are positioned at a distance from the
method. Results show that the new ABC’s provide accuracy that structure’s surface [3], [5], [6].
compares very favorably with the method of moments solution. The comparative study of Lichtenberg al. [3] showed

Index Terms—Absorbing boundary conditions, finite-elements that enforcing BT operators with local scattering centers
method. outperforms other ABC'’s that use a single point of origin

for all boundary points. We will refer to thé&/th order BT
|. INTRODUCTION operator applied with a local scattering center ashBT.

. 7 . However, despite its superior performance in comparison to
BSORBING boundary conditions (ABC’s) are essentigliher operators, the BT, does not give practical accuracy

. . .. . cal

elements for solving open-region radiation or scatteriNgnen enforced close to the scatterer. In [3], for instance, good
problems because they allow limiting the computational d.cracy level was possible only when the outer boundary
main to a finite size. Several ABC’s were developed for outgy, o pushed two wavelengths away from the structure. Third-
boundaries that form canonical shapes. Most practical radiatigRyer or higher order BT operators were not implemented for

or scattering problems have geometrical shapes that do Bgfjication on circular or noncircular outer boundaries because
conform to a box, circle, or sphere. Hence, when using agy ihe complexity of their previous formulations.
of these shapes as outer boundaries for mesh termination, thg, 5 recent work. BT operators were implemented in an

white space around the scatterer might be unnecessarily 13196 + fashion resulting in an appreciably enhanced accuracy
resulpng in costly simulation in terms of both memory anf‘7]. The exactness of this recent implementation and the
run time. _ relative superiority of B, in comparison to previous tech-

To address this problem, ABC’s were developed that can R, ,es makes it only logical to extend the application of higher
applied to boundaries that conform, as close as practicableglder BT operators to noncircular outer boundaries using the
the radiating geometry. Several attempts were made {0 appif,cept of local scattering centers. This paper develops these
Bayliss—Turkel (BT) ABC'’s to noncircular outer boundariegeaiors that are implemented without any approximation
(see [1] as a representative example of such efforts). In thegger than the descretization needed to transform derivatives.

works, the BT operators werprojectedonto a noncircular  gher mesh-truncation techniques that were developed for
boundary while employing different approximations for mixeeqneircular outer boundaries in frequency domain include the

partial derivatives. Another class of flexibieode-annihilating ¢j5s5 of material-based terminations. This includes impedance

ABC'’s were developed that were also applied to noncirculgp, nqary conditions and perfectly matched layers [8]-[10].
outer boundaries [2] (see also [3] and references therein). Ingllvever, these techniques witnessed analytical formulation

of the previous ABC constructions, the outer boundary had 6%)/ and no numerical results have been made available to
be positioned few wavelengths (at least two) from the neargst; heir effectiveness.

surface of the structure to obtain practical levels of accuracy
[3].

In a total departure from the philosophy employed earlier,
Kreigsmanet al. [4] applied the BT operator directly on the The development here will be demonstrated by solving
surface of the scatterer, while assuming that the origin tfe problem of plane wave scattering from a perfect electric
waves is at the center of the osculating circle at each outemductor (PEC) in two-dimensional (2-D) space. The method
boundary node. The result of the application of Kreigsmaof solution employed here will be the finite-elements method
et al. was not very satisfactory because it was only possiblfEEM), however, the discussion applies equally to the finite-

Manuscript received October 6, 1998; revised May 28, 1999, difference method. The governing Helmholtz equation is given
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mutually orthogonal curves wherel is the identity operatorS—! is the space-shift opera-
tor, andA# is the normal separation between boundary layers.
—T Substituting (5) into (3) we have
1
' i 1 51
BY = — 4 5k + Fnode(26 — 3/2) )T — =— ).
local Zl;[l <<A]L+J + K d( 4 / )) Ah)
(6)
The implementation of (6) requires that the outermost
/‘ boundary nodes that are involved in the definition of (5) lie on
object-conformable outer boundary mutually orthogonal curves (as shown in Fig. 1). For instance,

Fig. 1. Diagram for a scattering object showing an object-conformable me\éfhen using B-Focal' five nodes Iylng on the normal to the
termination boundary. outer boundary are needed.

Let us denote the boundary nodes that lie on the outermost
boundary surface a¥J,, the nodes that are adjacent to the
utermost surface and are involved in the descriptioBgf,,
sU,, and the remaining nodes &$;. Enforcing (6) at each
,\?oundary node, we arrive at the algebraic boundary equation

where k is the wave number. Equation (1) is subject t
Dirichlet or Neumann (or both) boundary conditions on thg
surface of the scattering object.

Consider the scattering object shown in Fig. 1. Using FE
we mesh the region bounded by the PEC scatterer and the U, = BU,. )
object-conformable outer boundary, as shown in Fig. 1. The
Nth order BT operator specified at a circular boundary with The finite elements or finite-difference matrix can be sym-

origin at p = 0 is given by bolically represented as
N .
. a  20—3/2 M,, M, U, F,
N _ K
BY =T] <_ap + — +Jk>- (2) My, My, My | |U, | = |Fy |. (8)
i=1 Mzb M” I.J-Z Fz

We enforce (2) on the outer boundary at each node using th
osculating circle approximation. This requires determining t tri
: . rix
curvature of the osculating circle at each node (the node ang
two adjacent ones are sufficient to determine the curvature). MyoB + My, My | | Up | _ | Fy
Effectively, we can represent the ABC at each node as M, M;; | |U; F; |

(?:inally, we substitute (7) in (8) to obtain the reduced system

(9)

N N 9 This procedure is simple and, furthermore, for finite-
Biea =] <% + Finode(2¢ — 3/2) +j/€>- (3) elements simulation, it has the added advantage of eliminating
i=1 the need to numerically evaluate the surface (boundary)

Fnode FEPresents the curvature of the osculating circle at out8fegral that is inherent in finite-elements formulation.

boundary nodes. For the special case of zero curvature, as in
the case of planar terminal boundaries, (3) reduces to IV. NUMERICAL EXPERIMENT

N P Testing ABC’s can never be an absolute procedure; that is, it
Blf;"wl = H <_ + Jk) (4) isdifficult to construct a numerical experiment that can test the
on effectiveness of ABC’s in a uniform fashion. This is the case

=1
) L . because the field generated or scattered by an object can have
When the outer boundary is planar and coinciding with th£ variety of waves (traveling, evanescent,, etc.), and the

Cartesian planes, (4) reduces to Higdon's boundary conflijaiive magnitude of these waves can also differ depending
tion when it is apphed‘ in the frequency domain (after thg, ihe shape, size, and composition of the object (see [12] for a
transformation 0fd; to j2) [11]. discussion on the testing of ABC’s). Therefore, while a single
example will not suffice, here we present several numerical
lIl. | MPLEMENTATION IN FINITE-ELEMENTS experiments that include objects of varying shapes and sizes
AND FINITE-DIFFERENCE SIMULATIONS with the goal of providing a good feel of the behavior of the

Here, we will present a simple procedure that implemer&BC,s proposgdd. h bi ¢ | i
the series of boundary conditions constructed above in an e>:‘;slcll'et #S cor}3| ?r the problem CT. 2-D phane wave scatterr:.ng
fashion. To this end, the operator in (3) is discretized usi m the perfectly conducting cylinder shown in Fig. 2. This

the following finite-difference approximation for the normaPPlect 1S composed of a rgcta_ngle W'Fh two sgmmrcles_, one
derivative at each end. TM-polarization is considered with two differ-

ent angles of incidence {Gand 90). The mesh-terminating
9 - (-5 5) boundary is taken to conform to the structure. The spacing
on Ah between node layeray is 0.05\. The outer boundary is taken
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Fig. 2. Scattering object used in the first numerical experiment. ) o . ) )
Fig. 4. Scattered electric field alonf in Fig. 2 as obtained for 90
incidence, TM-polarization, using the MoM solution and the FEM solution
1.04 L — using BT, __, (BT2) and BT, (BT4).
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Fig. 3. Scattered electric field alodgin Fig. 2 as obtained forQincidence, 164 :
TM-polarization, using the MoM solution and the FEM solution usingf()@;l"1 / ‘- -
(BT2) and BT, (BT4). outer boundary 1.95%

] ] ] ] Fig. 5. Computational domain used for the problem of scattering by a
to be as conformable as possible with uniform separation frarerfectly conducting square cylinder.
the conductor ofa.
n '.:'g‘?" 3 and 4 we present re.sults showing the sqatterlggge distance from the conductor to obtain practical levels of
electric field at the contour (see Fig. 2) for two separations;

r n example).

a = 0.3Xx and a = 0.4X. A total of 240 nodes span theaCcu acy (see [3] as an exa ple) .
. . . As a second experiment, we consider the problem of scatter-
contour, starting at the upper right-hand corner as shown.in

Fig. 2. Comparison is made with the FEM solutions employi ' r? by ai'%i‘ EIL%? p(la)rfect(ljy cofndt:ﬁ_tmg squatre gyl|nder.
BT2 and BT._, and the method of moments (MoM) e most suitable outer boundary for this geometry is a square

local as shown in Fig. 5. The outer boundary is positioned such

solution. The first observation we make is that{B]; results hat th ; ) h X h
in a very satisfactory agreement with the MoM solutiorihat the separation between it and the conductOrisA. The

This agreement is especially satisfactory for the case bf 9BPacing between node layers is as before.

incidence which is more challenging since scattered waves 19- 6(@) and (b) shows the magnitude and phase of the
are generated on the conductor's top and bottom surfagdgctric field on the observation contolr (see Fig. 5) as
that engage the outer boundary at angles of incidence clégéculated using the FEM solution. A total of 164 nodes span
to grazing incidence. The second observation concerns the observation contour. The numbering of the nodes starts at
relative convergence of BJ.,; and BT _,;. We notice from the lower left-hand corner and proceeds clockwise. So node
Fig. 4 that the convergence of the solution usingZB] number 20 corresponds to the middle point on the left-hand
as the distance from the outer boundary to the conducgigle, and node number 105 corresponds to the middle point
increases is much slower than the case when using) BT on the right-hand side. Results are only shown for field values
This observation confirms earlier results which showed that the the upper half of the contour due to the symmetry of the
BT? and BT;,_,, operators need to be enforced at a relativelyroblem. For comparison, the MoM solution is also provided
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Fig. 6. Scattered electric field, TE-polarization, aldngn Fig. 5 obtained

using the MoM solution, and the FEM solution using BT, (BT2) and Fig. 8. RCS for the problem of TE-polarization scattering from the ellipse
BT! . (BT4). (a) Magnitude. (b) Phase. shown in Fig. 7.

local

for this problem. The FEM solutions were obtained usingmall” refers to the solution obtained while using BT,
BTi..; and BT,.,;- The agreement between BT,; and MOM  gver the contourl’ and “BT2-large” refers to the solution
solutions is very satisfactory, especially in the observati@ibtained while using BY over the larger circular contour.
region closest to the corner of the conducting box. In facthe agreement between the two solutions is very strong, thus

it is observed from Fig. 6(a) that the maximum error in theestifying to the strength and efficiency of BT ;.
field magnitude is kept below 1.2% over the entire observation

contour when B¥,_, is used. (Notice that the conducting box
was modeled as having precisely°9orners.) V. CONCLUSION

As a third and final example, we consider the problem of This paper presented the development of a new class of
TE-polarization scattering from a perfectly conducting ellips@BC’s that can be applied on noncircular convex mesh-
having a major axis o5\ and a minor axis 0.5 (axial ratio termination boundaries. The new ABC'’s are based on the exact
of 0.1). An object-conformable boundary was constructedpplication of BT operators using local scattering centers. Also
as shown in Fig. 7, such that the separation between ihesented, the implementation of these ABC's in a finite-
conductor and outer boundary(si5A. For this problem, we elements and finite-difference simulation methods. Several
obtain the FEM solution while employing BT.,, on the outer representative examples were given, which showed that the
boundaryl’. We also obtain the solution while enforcing thenew ABC's give very satisfactory solutions.
classical second-order BT operator, BTt a circular outer  Finally, we note that this work demonstrated the application
boundary, which is distancetiOX from the nearest conductorto scattering problems in 2-D space and in the frequency
surface, as shown in Fig. 7. The solutions, in terms of the raddomain. However, these ABC’s and their implementation are
cross section (RCS), are shown in Fig. 8. In Fig. 8, “BT4directly applicable to scattering problems in three-dimensional
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