1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 8, August 1999

Table of Contents for this issue

Complete paper in PDF format

Millimeter-Wave Tapered-Slot Antennas on Synthesized Low Permittivity Substrates

Jeremy B. Muldavin, Student Member, IEEE, and Gabriel M. Rebeiz, Fellow, IEEE

Page 1276.

Abstract:

This paper presents 30-GHz linear-tapered slot antennas (LTSA) and 94-GHz constant-width slot antennas (CSWA) on synthesized low dielectric constant substrates (r= 2.2). The performance of tapered-slot antennas (TSA) is sensitive to the effective thickness of the substrate. We have reduced the effective thickness by selectively machining holes in the dielectric substrate. The machined substrate antenna radiation patterns were significantly improved independent of the machined hole size or lattice as long as the quasi-static effective thickness remained the same, even if the hole/lattice geometry is comparable to a wavelength. The method was applied at 94 GHz on a CSWA with excellent radiation pattern improvement, making it suitable for f /1.6 imaging array applications.

References

  1. P. J. Gibson, "The Vivaldi aerial," in Proc. 9th Eur. Microwave Conf., Brighton, U.K., June 1979, pp. 101-105.
  2. K. S. Yngvesson, "Endfire tapered slot antennas on dielectric substrates," IEEE Trans. Antennas Propogat., vol. 33, pp. 1392-1400, Dec. 1985.
  3. K. S. Yngvesson, T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg, and J. F. Johansson, ,"The tapered slot antenna--A new integrated element for millimeter-wave applications," IEEE Trans. Microwave Theory Tech., vol. 37, pp. 365-374, Feb. 1989.
  4. P. R. Acharya, H. Ekstrom, S. S. Gearhart, S. Jacobsson, J. F. Johansson, E. L. Kollberg, and G. M. Rebeiz, "The tapered slot antennas at 802 GHz," IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1715-1719, Oct. 1993.
  5. U. K. Kotthaus and B. Vowinkel, "Investigation of planar antennas for submillimeter receivers," IEEE Trans. Microwave Theory Tech., vol. 37, pp. 375-380, Feb. 1989.
  6. G. P. Gauthier, A. Courtay, and G. M. Rebiez, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Trans. Antennas Propogat., vol. 45, pp. 1310-1314, Aug. 1997.
  7. J. F. Zürcher, "The SSFIP--A global concept for high performance broadband planar antennas," Electron. Lett., vol. 24, no. 23, pp. 1433-1435, Nov. 1988.
  8. B. Zürcher, J.-F. Zürcher, and F. Gardiol, "Broadband microstrip radiators: The SSFIP concept," Electromagn., vol. 9, pp. 385-393, Nov. 1988.
  9. T. J. Ellis and G. M. Rebiez, "millimeter-wave tapered slot antennas on micromachined photonic bandgap dielectrics," in IEEE-MTT Int. Microwave Symp., San Francisco, CA, June 1996, pp. 1157-1160.
  10. --, "Improvements in tapered slot antennas on thick dielectric substrates," in IEEE Int. Symp. Antennas Propagat., Baltimore, MD, July 1996, pp. 992-995.
  11. S. Sugawara, Y. Maita, K. Adachi, K. Mori, and K. Mizuno, "Characteristics of a millimeter-wave tapered slot antenna with corrugated edges," in IEEE-MTT Int. Symp., Baltimore, MD, June 1998, pp. 533-536.
  12. D. B. Rutledge, D. P. Neikirk, D. P. Kasilingam, and K. J. Button, "Integrated-circuit antennas," in Infrared and Millimeter Waves.New York: Academic, 1983, vol. 10, ch. 1.
  13. D. M. Pozar, Microwave Engineering.Reading, MA: Addison-Wesley, 1990.
  14. T. M. Weller, L. P. B. Katehi, and G. M. Rebeiz, "High-performance microshield line components," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 534-543 Mar. 1995.