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Robust Adaptive Beamforming for Wide-Band,
Moving, and Coherent Jammers
via Uniform Linear Arrays

Monika Agrawal and Surendra Prasad

Abstract—The problem of providing robustness to the conven- a priori, the algorithm proposed by Gershmanal. [1] for
tional narrow-band uniform linear array configuration so as to  jmplementing the required derivative constraints is based on a
handle wide-band and moving jammers is addressed here. This g ification of the Hung—Turner [3] algorithm for estimating
robustness is achieved via the use of derivative constraints in . .
jammer directions. However, since the jammer directions are the SF"Ca”ed Jammer-plps-n0|se subspape. The.Hung—Turner
not known a priori, these constraints are incorporated with a algorithm assumes the interference-to-signal ratio to be large
maximum likelihood characterization of the so-called jammer and uses the observed data vectors directly to characterize the
subspace. This formulation does not need to assume the avai|-jammer-p|us-noise subspace. Alternatively, as suggested in [1]

ability of signal-frge observations, as stipulateq in earlier work. and [8], it may be possible to observe signal-free snapshots in
Computer simulation results are presented, which show that the

algorithms proposed here yield significantly better performance Sc_)me appl'cat'ons Slj'Ch as radar where an appropriate temporal
as compared to the previous algorithms of Gershmaret al. [1], Windowing of data is used so as to have a more accurate
[2] and Hung and Turner [3] in a variety of situations required  characterization of the so-called jammer-plus-noise subspace.
to handle wide-band, moving, and coherent jammers. These conditions, however, are restrictive and limit the
Index TermS_Adaptive arrays, array Signa| processing_ Usefulness Of the algorithm in applications I|ke Communica-
tions and other passive listening systems. Also, in a moving
jammer scenario, it is difficult to separate or categorize the
observations as signal free or otherwise. Finally, many smart
NE of the important applications of optimum adaptivgammers would attempt to cancel the main beam signal via
beamforming is to suppress jamming signals, whicie so-called coherent jamming—a situation that is difficult to
would normally be strong enough to leak through sidelobésndle via conventional adaptive beamforming.
of the beam pattern. There is a very large body of literatureIn this paper, we obtain a formulation of a robust op-
on such optimum beamforming techniques. Typically, in #mum beamforming technique that does not suffer from
narrow-band optimum beamformer, the sensor outputs dhese restrictions. More specifically, it is aimed that: 1) the
combined by a weight vector to pass a desired (look directiogignal-free jammer-plus-noise subspace (which is essentially
signal without distortion, while maximizing the attenuation obrthogonal complement of the desired signal subspace) may be
the interference signals or jammers (see [4] and referenadmracterized from the observed data without any application
cited there). restriction; 2) the array should be effective, both against wide-
The performance of such optimum beamformers, howevédand as well as moving jammers; and 3) it should be able
degrades significantly in the presence of jammers, which ace handle coherent jammers as effectively as uncorrelated
wide-band and/or moving. The problem of rejecting wide-barjdmmers without undue signal cancellation.
jammers via antenna arrays is rendered particularly difficult Our approach is based on a very elegant characterization
when the signal of interest is also wide-band in nature. It &f the orthogonal complement of the signal subspace for the
possible, in principle, to use wide-band arrays [5]-[7], whicbniform linear arrays due to Bresler and Macovski [9]. Such
have an finite impulse response (FIR) filter associated with characterization is robust, does not depend on assump-
each sensor or use frequency-domain wide-band beamfotions regarding the input signal-to-noise ratio (SNR), and is
ing algorithms to provide additional degrees of freedom viequally applicable to active and passive systems, including
space-time processing. However, such solutions are expensh& communications scenarios. Breskdral. [10] used this
in terms of hardware and software complexity. An interestincharacterization earlier to show that it is possible to steer deep
approach, proposed recently in [8], attempts to make thetches in the directions of interferences, irrespective of their
narrow-band beamformer reject wide-band as well as moviggherent or incoherent relationship with the desired signal.
jammers via the use of certain derivative constraints in the jamn-this paper, we extend this formulation of the beamforming
ming directions [1], [2]. Since these directions are not knowproblem to handle wide-band and moving sources and jammers
by using a narrow-band array.

I. INTRODUCTION
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of the jammer subspace. The resulting beamformer exhibitsections ofmovingandwide-bandnterferences regardless of
all the desirable properties and is shown to yield significatiieir mutual correlation or correlation with the desired source.
performance improvement, not only in a correlated jammerlt has been established that flat nulls provide robustness
environment, but also for the classical uncorrelated case in toewide-band [8] as well as moving jammers [1]. It is this
presence of wide-band and moving jammers. property of the “flat” or “broad” nulls which is exploited
The paper is organized as follows. Section Il formulates tlie the sequel to formulate a beamforming problem, which
beamforming problem with derivative constraints assumirgnables elimination of wide-band and moving jammers by
jammer directions to be known. These constraints are sulsing a narrow-band array configuration. This flathess can
sequently expressed in terms of the signal subspace spanpedachieved by incorporating derivative constraints in the
by jammers (also called here jammer subspace). Maximuiitections of the jammers. This implies, therefore, that the
likelihood estimation of this jammer subspace and solutionbustness is achieved by paying some price in terms of an
of the beamforming problem are presented in Section lihcreased number of required sensors.
Section IV briefly comments on some implementation, com- To start with, let us assume that the jammer directions are
plexity, and performance issues. Simulation studies are pksmown. The beamforming problem of interest here can then
sented in Section V, where it is demonstrated that the tedte formulated as follows:
nique proposed here yields significant performance benefits in

a variety of situations incorporating wide-band and moving mui,n Ee(t)e(t)] (5a)
jammers. ] .
subject to the constraints
Il. PROBLEM FORMULATION wa(f) =1 (5b)

Consider a uniform linear array @ff sensors. Let a desired w'a(6,) =0 p=1,2 ., P—1 (5¢)
signal impinge on the array from a known directidg
along with 7 — 1 jammer signals from unknown directions I (wH al0
{61, 6, ---, 6p_1}, respectively. Therefore, thegh snapshot (w"a(6)) 0 m=1,2 -, q
of the M x 1 received vector at the sensors can be written as drm™ b=0,

y(t) = a(fo)so(t) + As(t) +n(t) t=0,1,2,--- (1) p=12---,P-1. (5d)
wheresy(t) is the scalar signal waveform of the desired signazombining (2) and (3) with (5c) and (5d) these two constraint
Here thes(t) a [51(£), s2(t), « -+, Sp_l(t)]T is the P— 1) x sets can be written more compactly as
1 vector quammeryvavgforms amlis anM x (P—l)_ array wC™a(0,)=0 m=0,1, .-, ¢ p=1,2 .., P-1
matrix of jammer direction array steering vectors given by ©6)

A=[a(61), a(b2), - a(6p-1)]" (2) Wwhere
where theM x 1 array steering vectog(6) is given by C =diag{0, 1, ---, M — 1} (6a)
a(f) = [1, exp(jme), -, a(j(M — D)7)]"  (2a) is an M x M diagonal matrix of space coordinates of the

sensors. From (6), it follows that the desired weight veasor
lies in the orthogonal complement to thfé” — 1)(q + 1)-
dimensional subspace spanned by vec®f8a(f,), m =
0,1,---,q,p=1,2,---, P—1. It is easy to see then that
the weight vectorw, which satisfies the constraints (5c¢) and
(5d) will equivalently satisfy the following identity:

with 7 = weAsinf/c, A being the sensor spacing, aed
denoting the velocity of propagation. THé x 1 vectorn(t)
denotes the additive sensor noise in ttiesnapshot, assumed
here to be spatially white and Gaussian with power at
each sensor. Define
A= [a(fo), A 3
[CL( 0)7 ] ( ) w = Dw (7)
such that (1) can be written as ) o )
whereD is the M x M projection matrix onto the orthogonal
y(t) = A{{o(tt)} +n(t). (3a) complement of the subspace spanned by the vectBia(6,),
5(t) m=20,1,---,¢,p=1,2 ---, P—1, and is given by
Consider next the output of the beamformer associated with
a weight vectorw. This can be written as

wly(t) = wa(0y)so(t) + w (As(t) + n(t)) (4) HereF is a matrix of sizeM x (¢ +1)(P — 1) given by

D=I1-F(F"F)"'F", (8a)

or more succinctly as F= [}1, CA, -, C”fl} (8b)

wly(t) = wa(by)so(t) + et 4a "

y() (Bo)so(t) + e(?) (42) with A given in (2). 1t is clear that with (P — 1) jammers

wheree(t) denotes the undesired contribution to the output damd ¢ derivative constraints, the array would need >
to jammers and noise. It is desired to form deep nulls in thfe + 1)(P — 1) + 1 sensors.
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It is straightforward to show that the solution of the opti- A Toeplitz matrix B of dimensionM x (M — P+1) for
mization problem (5) can be written as [1] RL(A), similar to B of (11), can be constructed by replacing
b(z) with the (P — 1) degree polynomial
Da(90) )

¥~ a(60)"Da(6o)’ ®) b(z) = boz"t +b1z" o+ bpoy (13)

This solution, unfortunately, requires knowledge of thWhose roots are given byexp(—j7e;), 1 <@ < P—1}. Hence,
jammer directions as embeddedh In the next section, we the columqs ofB are ort.hogonal to all but the direction vector
consider a method for the maximum likelihood characterizQf the desired signal, i.e.,
tion of this matrix from the observed data, evenwhen the latter  pH g9y 20 4 =6,
contains both the desired signal and noise. -0 06, i=12 - P—1. (14)

. CHARACTERIZATION OF THE JAMMER SUBSPACE The b can be calculated frqrb in a least-square sense as i_n
AND SOLUTION TO THE BEAMFORMING PROBLEM [10]. Let bl(g) be polynomial of degree one, whose root is
exp(—j7g,), i.€.,
A. Jammer Subspace Characterization bi(z) = z — exp(—j7g,)- (15)

Bresleret al. [10] have suggested a method for estimatinghen it has been shown in [10], thiatcan be obtained from
the signal-free snapshot vector from the observed data vecpg,i4

It has been shown in [9] that for the array matdxdefined . . -
in (3), there exists a unique generating polynomial) of the b= (B1 B1) Bi'b (16)

form whereB; is a(P + 1) x P dimensional Toeplitz matrix con-

b(2) = bzt + bzl 4+ bp (10a) structed fromb, (2), in the same manner & was constructed
from b(z) in (12).
whoseP roots are{exp(—j7e;), 0 < i < P — 1}. Define the
vectorb associated with the coefficients bfz) as follows: ~ B. Solution of the Beamforming Problem
The main idea here is to use the ML estimate of the span
of orthogonal complement oA defined in (2) for use in (9),

. . in order to place flat nulls in the unknown jammer directions.
Lemma [9]: Let A be a Vandermonde matrix as deflnetgince P J

in (3), with {#;, 0 < ¢ < P — 1} distinct, and letb(z) ) )

be its generating polynomial. TheR*(A), the orthogonal R(A) = RY(B) a7
complement to the space spanned by the columng,ois
spanned by the columns dB given asM x (M — P)-

b= [bo, b1, ---, bp]”*. (10b)

it follows that

dimensional Toeplitz matrix I1-P;="Py (18a)
E*P o 0 where
. P P | " Py =A(A74) A" (18b)
by by - - and
8 P b Py = B(BH B)_IBH . (18c)
In other words, we can write the following projector relationSimilarly, it can be shown that
ships: R(C™A) = R* (0*'"1”3) (19a)
I—A(A"A)'A" = B(BYB) 'BY.  (12) and
I=Piomzy =Piomisy (19b)

O

Clearly, a knowledge oB is sufficient to characterize thelt follows that the span of the columns &f defined in (8b)
so-called noise subspace, which is essentially the orthog@n also be written as
nal complement of the signal-plus-jammer subspace. An Mlgnoi 7y —sparf(P:. P..-. -+ . P.. - 20a
method of estimating the vectér(called IQML) and, hence, part )_ P ni[IA’PFAI’ I; cl I_p ( )
constructingB from one or more observed data vectors is =spai[l - Py, I~ Pcoap, -, I = Peoyp]).
also outlined in [10]. (20b)

Howevgr, we may recall that our objective here is t?) defined in (8a) can, therefore, be equivalently calculated
characterize and estimate the orthogonal complement onlyﬂ%fm (20). Define
the jammer subspace, spanned by the column4. dfhis can '
be done as follows. Q=[I-Pj,I—-Pcp, -, I-P. 5] (21)
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and B. Remarks on Performance of the Proposed Algorithm

1 It may be noted that the approach of Hung and Turner [3]
U=1-Q(Q"Q) Q" (222) and Gershmaet al. [1] for estimation of the jammer subspace

is ad-hoc and heuristic. As a consequence, their simulation
which is equivalent taD in the sense that studies show that even though the use of derivative constraints

leads to improved performance in terms of the SINR for both

spaiD} = spafU} (22b) wide-band and moving jammers, the performance remains well

below the optimal value. This may be attributed to a noisy and
and, thereforelJ serves as projection matrix onto the saménperfect estimation of the jammer subspace even when the
subspace aD. weight vector is calculated on the basis of a signal-free snap-
As discussed earlieh, b and, hencel/ can be estimated Shot. This noisy estimate prevents the derivative constraints to
from one or more observed data snapshots. Since in a moviigyoPeyed satisfactorily. The situation is expected to become
jammer situation, the background scenario changes with tint@nsiderably worse when such signal-free snapshots are not

it is desirable to updaté and U with each snapshot/ then available. o
becomes a function of. This update can be carried out via 1he algorithm proposed in this paper, on the other hand,

the IQML algorithm discussed in [9] or its variants, such a§ based on ML estimation of the jammer subspace (within
the IQML with norm constraint [11] and, more recently, thdhe limitations of the IQML algorithm). The approach outlined

modified IQML (MIQML) proposed by Kristensscet al.[12]. here may, therefore, be considered torgch closer to optimal

The weight vector defined in (9), is now given by in this sense. The simulation studies reported in Section V
indeed demonstrate this superiority of the proposed algorithm,

U(t)a, even though it remains a heuristic so far as wide-band jamming

w(t) = AU (D, (23) in concerned. Finally, the approach suggested here will work

equally well for correlated (smart) as well as uncorrelated
jammers, whereas the approach of [1] may be expected to
suffer in a correlated jamming scenario.

in terms of the matrixU.

IV. IMPLEMENTATION |ISSUES AND REMARKS C. Limitations

We now briefly discuss a few limitations of the approach
proposed in this paper. First and foremost, the algorithm

The implementation of (23) in real time would requirgoroposed here is applicable only to uniform linear arrays.
updating ofb, b, and the resultind/ with every observation, This, of course, is a limitation associated with the IQML
especially for the case of moving jammers. The computatiorfakmulation. It may be mentioned here, though, that the
complexity associated with the calculation bfis O((M + approach suggested here can be extended to the case of
1)(3M + 4)(M — P)/2) flops per iteration [13]. The numberuniform planar arrays. Clark and Scharf [9], [15] have, in
of iterations required for this method to converge is not fixefact, extended the simple IQML algorithm to the case of
making the computational complexity of this technique to ba&-D damped harmonic signals, which can be easily adapted
somewhat variable. But our experience shows that threettodirection of arrival (DOA) estimation via uniform planner
five iterations are usually sufficient for convergence. Calcasrays. Their approach can, therefore, be modified to include
lation of the weight vector requires an addition@a(M3g) the derivative constraints in the manner proposed in this paper.
multiplications and additions and(M¢q) square root and It may be mentioned here that deviations of the array
division operations. In contrast the complexity of the robustom the uniform linear array (ULA) configuration, or the
sample matrix inversion (SMI) [2] and the robust Hung—Turnexssumption of perfectly decoupled omnidirectional antenna
algorithms areD(N?Mq) andO(N M?q), respectively, mak- elements or nonplanarity of the wavefront (say from a near-
ing our method computationally more complex. However, theeld jammer) may also adversely affect the performance of
performance gain justifies the additional computational cosihe proposed algorithm. Some of these issues have been taken
Also, the complexity is well within the ability of modern dayup in our simulation studies and, fortunately, there appears
digital signal processor (DSP) devices for moderate valuestofbe a generally graceful degradation in performance in the
M, P, and q. presence of many of these imperfections.

In some applications, it may not be possible to tolerate theNext, a few words of caution are in order when using the
delay incurred in completing the above computation within tHQML algorithm. IQML estimates have been shown to be
current snapshot interval. Assuming that the scenario charmased and inconsistent [13], [14]. Also, sometimes the number
is insignificant over two successive snapshots, it is possibledbiterations required for convergence may be large. Recently
implement a suboptimal beamformer where the weight vectproposed modifications, viz., IQML with the norm constraint
for the current snapshot is computed from the immediate pékl] and modified IQML [12] largely mitigate some of these
shapshot. The simulation results reported in the next sectideficiencies.
show that the performance loss in doing so is indeed marginalFinally, we would like to point out that use of “spatial
even in the case of moving jammers. only” processing to deal with wide-band sources via derivative

A. Computational Complexity and Related Issues
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g, -1 HT beamformer.
z 0 9=
] 10 e 9=0 ]
ED q=2 [2] are used to estimate the covariance matrix. An optimal
3 -20 window length of six (as per the guidelines suggested in [17])
.30 - a3 | is used to study the performance of the robust Hung—Turner
40 60 80 100 (HT) algorithm.
snapshot index The performance of the algorithms has been evaluated by
(©) computing the output SINR, which can be written as
Fig. 1. Output SINR versus snapshot index in the presence of a wide-band |w(t)Ha, |2
jammer at 40 with 5% bandwidth. (a) Robust IQML beamformer. (b) Robust SINR(t) - _Ps|Wt) as[ (24)
HT beamformer. (c) Robust SMI beamformer. w(t)? R(t)w(t)
where
constraints, is associated with a cost. We are clearly decreasing o H
the available degrees of freedom to satisfy these additional R(t) = E[?/(t)?/(t) ] (242)

constraints, which, in turn, would affect performance. |
contrast, use of space-time processing is more suited to wide-
band scenarios and would yield superior performance at the y(t) = Ag(t) +n(t). (24Db)
cost of some increased processing complexity.
In the next section, we present the results of simulatiofe optimal SINR defined by

studies, which support the remarks and observations made in  Hp-1
this section. SINRy(t) = psa, R (t)a, (25)

serves as a benchmark for performance comparison [16].

V. SIMULATIONS STUDIES

Simulation studies have been carried out separately f%'r Wide-Band Jammers

both wide-band and moving jammer scenarios. For ease off he following scenarios are typical of those studied.
comparison and also for bringing out the salient features of our 1) Single uncorrelated jammer at4®ith a bandwidth of
algorithm, several scenarios discussed in the sequel have been 5% of the center frequency.

chosen for study. In each of these cases, ambient noise at eac) Single wide-band jammer at 4Qvith a bandwidth of
sensor is assumed to be spatially uncorrelated and to have a 20% of center frequency.

reference power level of unityp§; = 1 or 0 dB) at each sensor.  3) Single uncorrelated jammer af Hi.e., close to the
The desired signal is also assumed to have a power of 0 dB  desired signal direction) with a bandwidth of 5% of
with one or more jammers, each of 30-dB strength introduced the center frequency.

as relevant. A uniform linear array of 16 sensoid = 16) 4) Two uncorrelated wide-band jammers (5% bandwidth)
was considered. For the robust SMI algorithm 32 snapshots  at 40 and 20, respectively.
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F O g=1-
Z q=3
w
::;:_20 q=6 (Fig. 1), ¢ = 2 yields a near optimum performance in our
3 g=4 case, with an improvement of nearly 7 dB over the robust
0 Hung-Turner (HT) [1] algorithm. In contrast, the performance
40 60 80 100 of the robust SMI [2] method improves initially with the first
snapshot index derivative constraint but deteriorates below the unconstrained
() algorithm for higher values of;. This trend was observed

Fig. 3. Output SINR versus snapshot index in the presence of a wide-b:ﬁW‘OSt ConSiStemly _in all S_’imUIation studies with rObUSt SMmI
jammer at 8 with 5% bandwidth. (a) Robust IQML beamformer. (b) Robusaind, hence, comparison with SMI has not been considered any

HT beamformer. (c) Robust IQML-norm beamformer. further. Higher bandwidth (Fig. 2) seems to require a some-
what higher value ofy to approach the optimal performance,

5) Two wide-band jammers correlated with the desirelut performance of our approach remains significantly better
signal, (5% bandwidth) at 40and 20, respectively.  for all values ofq. This is a significant observation, since

6) Single uncorrelated jammer at4®&ith a bandwidth of 4, the number of derivative constraints has a direct bearing

5% of the centre frequency with random perturbationsn the minimum number of sensors required in the array.

in sensor positions. Further, the presence of more than one wide-band jammer
In each case, the desired source has been taken to lie indheses a significant degradation in the performance of robust
broadside direction. HT approach, whereas it has a relatively minor impact on the

Figs. 1-6 summarize the results obtained for these scenapesformance of the algorithm proposed here (Fig. 4).
by plotting the output SINR as a function of the snapshot Fig. 3 shows the behavior of the various algorithms when a
index, both for the algorithm proposed here and that of [Jammer lies close to the desired signal direction. In all cases,
The following general conclusions can be drawn from theseis seen that the use of derivative constraints causes some
results. initial improvement in performance (mostly withh = 1 or

The case of; = 0 (i.e., without any derivative constraints)sometimes withy = 1, 2), but soon the performance begins to
yields equally poor SINR=£ —11 to —13 dB for the 5% degrade rather than improving with higher valueg ot his is
bandwidth case and degrading to abetit7 dB for the 20% because the broadening of the null (and, hence, of bandwidth)
bandwidth case, against a benchmark optimal value of 12 d&)hieved via derivative constraints now also tends to eliminate
for both sets of algorithms. Also shown in Fig. 1(c) is théhe desired signal. This observation also points to a general
performance of the robust SMI algorithm proposed recentlyeakness that may be expected to be shared by all robust
[2], which appears to have a similar performance ot 0. algorithms based on derivative constraints. The unconstrained
However, as the derivative constraints are introduced, there iseamformers in all cases, of course, have very poor perfor-
phenomenal improvement in the performance of our algorithmance for closely spaced jammers. In fact, at low SNR’s and
over those of Gershmaat al. [1], [2], viz., over both the closely spaced jammers, the unconstrained IQML beamformer
robust HT and the robust SMI. For the 5% bandwidth casgseen to be much worse than the corresponding HT algorithm.
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Fig. 7. Output SINR versus snapshot index in the presence of two uncor-
related moving jammer moving with 20+ 0.1°¢ and 40 — 0.1°¢ profile.

(a) Robust IQML beamformer. (b) Robust HT beamformer. (c) Robust SMI
beamformer.

Finally, Fig. 6 shows the effect of perturbations in the
array manifold. The sensor locations were perturbed randomly
around their nominal positions using a uniform distribution
over +10% of sensor spacings. With = 0, the SINR
obtained from both the algorithms is of the order-af7 dB,
indicating a loss of about 6—7 dB in performance over the
unperturbed array. Incorporation of the derivative constraints
leads to significant improvement in the performance of the
proposed algorithm, whereas the robust HT algorithm fails to
yield similar results.

Fig. 6. Study of perturbations in array sensor position: output SINR versus

shapshot index in the presence of a wide-band jammer atwith 5%
bandwidth. (a) Robust IQML beamformer. (b) Robust HT beamformer.

B. Moving Jammers
We consider two moving jammers with their azimuthal

This may be ascribed partially to the bias and inconsistené@jectories given by

of the IQML algorithm. In fact, a considerable improvement
is observed if IQML is replaced by its modification such as

the IQML with the

norm constraint [11]

61(t) =20+ 0.1%;  62(t) =40 — 0.1t  (26)

wheret is the snapshot index. Again experiments have been

Next, it is seen that the robust HT algorithm completelgarried out for the following scenarios:

breaks down in the presence of correlated jammers, whereasl) jamming signals and the desired signal mutually uncor-
these seem to have little effect on the performance of the related;

proposed beamfor

mer (Fig. 5).

2) same as 1) with correlated jammers;
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over dimension” is carried out by taking an optimal window
[17] of size six. Moreover, the robust SMI algorithm [2] yields
only marginal performance improvement on incorporation of
the first derivative constraint and, to our surprise, causes per-
formance degradation for higher valuesqgofiust as observed

in the wide-band case. Further, the robust HT algorithm [1]
once again breaks down completely for correlated jammers,
whereas there is little or no effect on the algorithm proposed
here. Although not shown here, it is seen that in both cases 1)
and 2),use of the immediate past snapshot for calculation of
the weight vector instead of current snapshot, appears to cause
no degradationFinally, the robust IQML is seen to be much
superior compared to the robust HT in the presence of array
manifold perturbations.

VI. CONCLUSION

It is shown that for uniform linear arrays, it is possible to
reject wide-band, moving, and correlated jammers, even when
the jammer directions are unknown and separate signal-free
observations are not available. The robust IQML beamforming
algorithm described here yields considerably superior perfor-

Fig. 8. Output SINR versus snapshot index in the presence of two correlafédnce as compared to that proposed by Gershetah. [1]
moving jammer moving with 20+ 0.1°¢ and 40’ — 0.1°¢ profile. (a) Robust  jn g situations of wide-band and moving jammers considered

IQML beamformer. (b) Robust HT beamformer.
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