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Robust Adaptive Beamforming for Wide-Band,
Moving, and Coherent Jammers

via Uniform Linear Arrays
Monika Agrawal and Surendra Prasad

Abstract—The problem of providing robustness to the conven-
tional narrow-band uniform linear array configuration so as to
handle wide-band and moving jammers is addressed here. This
robustness is achieved via the use of derivative constraints in
jammer directions. However, since the jammer directions are
not known a priori, these constraints are incorporated with a
maximum likelihood characterization of the so-called jammer
subspace. This formulation does not need to assume the avail-
ability of signal-free observations, as stipulated in earlier work.
Computer simulation results are presented, which show that the
algorithms proposed here yield significantly better performance
as compared to the previous algorithms of Gershmanet al. [1],
[2] and Hung and Turner [3] in a variety of situations required
to handle wide-band, moving, and coherent jammers.

Index Terms—Adaptive arrays, array signal processing.

I. INTRODUCTION

ONE of the important applications of optimum adaptive
beamforming is to suppress jamming signals, which

would normally be strong enough to leak through sidelobes
of the beam pattern. There is a very large body of literature
on such optimum beamforming techniques. Typically, in a
narrow-band optimum beamformer, the sensor outputs are
combined by a weight vector to pass a desired (look direction)
signal without distortion, while maximizing the attenuation of
the interference signals or jammers (see [4] and references
cited there).

The performance of such optimum beamformers, however,
degrades significantly in the presence of jammers, which are
wide-band and/or moving. The problem of rejecting wide-band
jammers via antenna arrays is rendered particularly difficult
when the signal of interest is also wide-band in nature. It is
possible, in principle, to use wide-band arrays [5]–[7], which
have an finite impulse response (FIR) filter associated with
each sensor or use frequency-domain wide-band beamform-
ing algorithms to provide additional degrees of freedom via
space–time processing. However, such solutions are expensive
in terms of hardware and software complexity. An interesting
approach, proposed recently in [8], attempts to make the
narrow-band beamformer reject wide-band as well as moving
jammers via the use of certain derivative constraints in the jam-
ming directions [1], [2]. Since these directions are not known
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a priori, the algorithm proposed by Gershmanet al. [1] for
implementing the required derivative constraints is based on a
modification of the Hung–Turner [3] algorithm for estimating
the so-called jammer-plus-noise subspace. The Hung–Turner
algorithm assumes the interference-to-signal ratio to be large
and uses the observed data vectors directly to characterize the
jammer-plus-noise subspace. Alternatively, as suggested in [1]
and [8], it may be possible to observe signal-free snapshots in
some applications such as radar where an appropriate temporal
windowing of data is used so as to have a more accurate
characterization of the so-called jammer-plus-noise subspace.

These conditions, however, are restrictive and limit the
usefulness of the algorithm in applications like communica-
tions and other passive listening systems. Also, in a moving
jammer scenario, it is difficult to separate or categorize the
observations as signal free or otherwise. Finally, many smart
jammers would attempt to cancel the main beam signal via
the so-called coherent jamming—a situation that is difficult to
handle via conventional adaptive beamforming.

In this paper, we obtain a formulation of a robust op-
timum beamforming technique that does not suffer from
these restrictions. More specifically, it is aimed that: 1) the
signal-free jammer-plus-noise subspace (which is essentially
orthogonal complement of the desired signal subspace) may be
characterized from the observed data without any application
restriction; 2) the array should be effective, both against wide-
band as well as moving jammers; and 3) it should be able
to handle coherent jammers as effectively as uncorrelated
jammers without undue signal cancellation.

Our approach is based on a very elegant characterization
of the orthogonal complement of the signal subspace for the
uniform linear arrays due to Bresler and Macovski [9]. Such
a characterization is robust, does not depend on assump-
tions regarding the input signal-to-noise ratio (SNR), and is
equally applicable to active and passive systems, including
the communications scenarios. Bresleret al. [10] used this
characterization earlier to show that it is possible to steer deep
notches in the directions of interferences, irrespective of their
coherent or incoherent relationship with the desired signal.
In this paper, we extend this formulation of the beamforming
problem to handle wide-band and moving sources and jammers
by using a narrow-band array.

Taking a cue from Gershmanet al. [1], it is shown that this
robustness can be achieved by incorporating derivative con-
straints with the maximum likelihood (ML) characterization
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of the jammer subspace. The resulting beamformer exhibits
all the desirable properties and is shown to yield significant
performance improvement, not only in a correlated jammer
environment, but also for the classical uncorrelated case in the
presence of wide-band and moving jammers.

The paper is organized as follows. Section II formulates the
beamforming problem with derivative constraints assuming
jammer directions to be known. These constraints are sub-
sequently expressed in terms of the signal subspace spanned
by jammers (also called here jammer subspace). Maximum
likelihood estimation of this jammer subspace and solution
of the beamforming problem are presented in Section III.
Section IV briefly comments on some implementation, com-
plexity, and performance issues. Simulation studies are pre-
sented in Section V, where it is demonstrated that the tech-
nique proposed here yields significant performance benefits in
a variety of situations incorporating wide-band and moving
jammers.

II. PROBLEM FORMULATION

Consider a uniform linear array of sensors. Let a desired
signal impinge on the array from a known direction
along with jammer signals from unknown directions

, respectively. Therefore, theth snapshot
of the received vector at the sensors can be written as

(1)

where is the scalar signal waveform of the desired signal.

Here the is the ( )
1 vector of jammer waveforms and is an array
matrix of jammer direction array steering vectors given by

(2)

where the array steering vector is given by

(2a)

with , being the sensor spacing, and
denoting the velocity of propagation. The vector
denotes the additive sensor noise in theth snapshot, assumed
here to be spatially white and Gaussian with power at
each sensor. Define

(3)

such that (1) can be written as

(3a)

Consider next the output of the beamformer associated with
a weight vector . This can be written as

(4)

or more succinctly as

(4a)

where denotes the undesired contribution to the output due
to jammers and noise. It is desired to form deep nulls in the

directions ofmovingandwide-bandinterferences regardless of
their mutual correlation or correlation with the desired source.

It has been established that flat nulls provide robustness
to wide-band [8] as well as moving jammers [1]. It is this
property of the “flat” or “broad” nulls which is exploited
in the sequel to formulate a beamforming problem, which
enables elimination of wide-band and moving jammers by
using a narrow-band array configuration. This flatness can
be achieved by incorporating derivative constraints in the
directions of the jammers. This implies, therefore, that the
robustness is achieved by paying some price in terms of an
increased number of required sensors.

To start with, let us assume that the jammer directions are
known. The beamforming problem of interest here can then
be formulated as follows:

(5a)

subject to the constraints

(5b)

(5c)

and

(5d)

Combining (2) and (3) with (5c) and (5d) these two constraint
sets can be written more compactly as

(6)
where

(6a)

is an diagonal matrix of space coordinates of the
sensors. From (6), it follows that the desired weight vector
lies in the orthogonal complement to the -
dimensional subspace spanned by vectors ,

, . It is easy to see then that
the weight vector , which satisfies the constraints (5c) and
(5d) will equivalently satisfy the following identity:

(7)

where is the projection matrix onto the orthogonal
complement of the subspace spanned by the vectors ,

, , and is given by

(8a)

Here is a matrix of size given by

(8b)

with given in (2). It is clear that with jammers
and derivative constraints, the array would need

sensors.
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It is straightforward to show that the solution of the opti-
mization problem (5) can be written as [1]

(9)

This solution, unfortunately, requires knowledge of the
jammer directions as embedded in. In the next section, we
consider a method for the maximum likelihood characteriza-
tion of this matrix from the observed data, even when the latter
contains both the desired signal and noise.

III. CHARACTERIZATION OF THE JAMMER SUBSPACE

AND SOLUTION TO THE BEAMFORMING PROBLEM

A. Jammer Subspace Characterization

Bresleret al. [10] have suggested a method for estimating
the signal-free snapshot vector from the observed data vector.
It has been shown in [9] that for the array matrixdefined
in (3), there exists a unique generating polynomial of the
form

(10a)

whose roots are , . Define the
vector associated with the coefficients of as follows:

(10b)

Lemma [9]: Let be a Vandermonde matrix as defined
in (3), with , distinct, and let
be its generating polynomial. Then , the orthogonal
complement to the space spanned by the columns of, is
spanned by the columns of given as -
dimensional Toeplitz matrix

(11)

In other words, we can write the following projector relation-
ships:

(12)

Clearly, a knowledge of is sufficient to characterize the
so-called noise subspace, which is essentially the orthogo-
nal complement of the signal-plus-jammer subspace. An ML
method of estimating the vector(called IQML) and, hence,
constructing from one or more observed data vectors is
also outlined in [10].

However, we may recall that our objective here is to
characterize and estimate the orthogonal complement only of
the jammer subspace, spanned by the columns of. This can
be done as follows.

A Toeplitz matrix of dimension for
, similar to of (11), can be constructed by replacing

with the degree polynomial

(13)

whose roots are given by , . Hence,
the columns of are orthogonal to all but the direction vector
of the desired signal, i.e.,

(14)

The can be calculated from in a least-square sense as in
[10]. Let be polynomial of degree one, whose root is

, i.e.,

(15)

Then it has been shown in [10], thatcan be obtained from
via

(16)

where is a dimensional Toeplitz matrix con-
structed from , in the same manner as was constructed
from in (12).

B. Solution of the Beamforming Problem

The main idea here is to use the ML estimate of the span
of orthogonal complement of defined in (2) for use in (9),
in order to place flat nulls in the unknown jammer directions.
Since

(17)

it follows that

(18a)

where

(18b)

and

(18c)

Similarly, it can be shown that

(19a)

and

(19b)

It follows that the span of the columns of defined in (8b)
can also be written as

span span (20a)

span

(20b)

defined in (8a) can, therefore, be equivalently calculated
from (20). Define

(21)
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and

(22a)

which is equivalent to in the sense that

span span (22b)

and, therefore, serves as projection matrix onto the same
subspace as .

As discussed earlier,, and, hence, can be estimated
from one or more observed data snapshots. Since in a moving
jammer situation, the background scenario changes with time,
it is desirable to update and with each snapshot. then
becomes a function of. This update can be carried out via
the IQML algorithm discussed in [9] or its variants, such as
the IQML with norm constraint [11] and, more recently, the
modified IQML (MIQML) proposed by Kristenssonet al. [12].
The weight vector defined in (9), is now given by

(23)

in terms of the matrix .

IV. I MPLEMENTATION ISSUES ANDREMARKS

A. Computational Complexity and Related Issues

The implementation of (23) in real time would require
updating of , , and the resulting with every observation,
especially for the case of moving jammers. The computational
complexity associated with the calculation ofis

flops per iteration [13]. The number
of iterations required for this method to converge is not fixed,
making the computational complexity of this technique to be
somewhat variable. But our experience shows that three to
five iterations are usually sufficient for convergence. Calcu-
lation of the weight vector requires an additional
multiplications and additions and square root and
division operations. In contrast the complexity of the robust
sample matrix inversion (SMI) [2] and the robust Hung–Turner
algorithms are and , respectively, mak-
ing our method computationally more complex. However, the
performance gain justifies the additional computational cost.
Also, the complexity is well within the ability of modern day
digital signal processor (DSP) devices for moderate values of

, , and .
In some applications, it may not be possible to tolerate the

delay incurred in completing the above computation within the
current snapshot interval. Assuming that the scenario change
is insignificant over two successive snapshots, it is possible to
implement a suboptimal beamformer where the weight vector
for the current snapshot is computed from the immediate past
snapshot. The simulation results reported in the next section
show that the performance loss in doing so is indeed marginal,
even in the case of moving jammers.

B. Remarks on Performance of the Proposed Algorithm

It may be noted that the approach of Hung and Turner [3]
and Gershmanet al. [1] for estimation of the jammer subspace
is ad-hoc and heuristic. As a consequence, their simulation
studies show that even though the use of derivative constraints
leads to improved performance in terms of the SINR for both
wide-band and moving jammers, the performance remains well
below the optimal value. This may be attributed to a noisy and
imperfect estimation of the jammer subspace even when the
weight vector is calculated on the basis of a signal-free snap-
shot. This noisy estimate prevents the derivative constraints to
be obeyed satisfactorily. The situation is expected to become
considerably worse when such signal-free snapshots are not
available.

The algorithm proposed in this paper, on the other hand,
is based on ML estimation of the jammer subspace (within
the limitations of the IQML algorithm). The approach outlined
here may, therefore, be considered to bemuch closer to optimal
in this sense. The simulation studies reported in Section V
indeed demonstrate this superiority of the proposed algorithm,
even though it remains a heuristic so far as wide-band jamming
in concerned. Finally, the approach suggested here will work
equally well for correlated (smart) as well as uncorrelated
jammers, whereas the approach of [1] may be expected to
suffer in a correlated jamming scenario.

C. Limitations

We now briefly discuss a few limitations of the approach
proposed in this paper. First and foremost, the algorithm
proposed here is applicable only to uniform linear arrays.
This, of course, is a limitation associated with the IQML
formulation. It may be mentioned here, though, that the
approach suggested here can be extended to the case of
uniform planar arrays. Clark and Scharf [9], [15] have, in
fact, extended the simple IQML algorithm to the case of
2-D damped harmonic signals, which can be easily adapted
to direction of arrival (DOA) estimation via uniform planner
arrays. Their approach can, therefore, be modified to include
the derivative constraints in the manner proposed in this paper.

It may be mentioned here that deviations of the array
from the uniform linear array (ULA) configuration, or the
assumption of perfectly decoupled omnidirectional antenna
elements or nonplanarity of the wavefront (say from a near-
field jammer) may also adversely affect the performance of
the proposed algorithm. Some of these issues have been taken
up in our simulation studies and, fortunately, there appears
to be a generally graceful degradation in performance in the
presence of many of these imperfections.

Next, a few words of caution are in order when using the
IQML algorithm. IQML estimates have been shown to be
biased and inconsistent [13], [14]. Also, sometimes the number
of iterations required for convergence may be large. Recently
proposed modifications, viz., IQML with the norm constraint
[11] and modified IQML [12] largely mitigate some of these
deficiencies.

Finally, we would like to point out that use of “spatial
only” processing to deal with wide-band sources via derivative
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(a)

(b)

(c)

Fig. 1. Output SINR versus snapshot index in the presence of a wide-band
jammer at 40� with 5% bandwidth. (a) Robust IQML beamformer. (b) Robust
HT beamformer. (c) Robust SMI beamformer.

constraints, is associated with a cost. We are clearly decreasing
the available degrees of freedom to satisfy these additional
constraints, which, in turn, would affect performance. In
contrast, use of space-time processing is more suited to wide-
band scenarios and would yield superior performance at the
cost of some increased processing complexity.

In the next section, we present the results of simulation
studies, which support the remarks and observations made in
this section.

V. SIMULATIONS STUDIES

Simulation studies have been carried out separately for
both wide-band and moving jammer scenarios. For ease of
comparison and also for bringing out the salient features of our
algorithm, several scenarios discussed in the sequel have been
chosen for study. In each of these cases, ambient noise at each
sensor is assumed to be spatially uncorrelated and to have a
reference power level of unity ( or dB) at each sensor.
The desired signal is also assumed to have a power of 0 dB
with one or more jammers, each of 30-dB strength introduced
as relevant. A uniform linear array of 16 sensors
was considered. For the robust SMI algorithm 32 snapshots

(a)

(b)

Fig. 2. Output SINR versus snapshot index in the presence of a wide-band
jammer at 40� with 20% bandwidth. (a) Robust IQML beamformer. (b) Robust
HT beamformer.

[2] are used to estimate the covariance matrix. An optimal
window length of six (as per the guidelines suggested in [17])
is used to study the performance of the robust Hung–Turner
(HT) algorithm.

The performance of the algorithms has been evaluated by
computing the output SINR, which can be written as

SINR (24)

where

(24a)

with

(24b)

The optimal SINR defined by

SINR (25)

serves as a benchmark for performance comparison [16].

A. Wide-Band Jammers

The following scenarios are typical of those studied.

1) Single uncorrelated jammer at 40with a bandwidth of
5% of the center frequency.

2) Single wide-band jammer at 40with a bandwidth of
20% of center frequency.

3) Single uncorrelated jammer at 5(i.e., close to the
desired signal direction) with a bandwidth of 5% of
the center frequency.

4) Two uncorrelated wide-band jammers (5% bandwidth)
at 40 and 20, respectively.
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(a)

(b)

(c)

Fig. 3. Output SINR versus snapshot index in the presence of a wide-band
jammer at 5� with 5% bandwidth. (a) Robust IQML beamformer. (b) Robust
HT beamformer. (c) Robust IQML-norm beamformer.

5) Two wide-band jammers correlated with the desired
signal, (5% bandwidth) at 40and 20 , respectively.

6) Single uncorrelated jammer at 40with a bandwidth of
5% of the centre frequency with random perturbations
in sensor positions.

In each case, the desired source has been taken to lie in the
broadside direction.

Figs. 1–6 summarize the results obtained for these scenarios
by plotting the output SINR as a function of the snapshot
index, both for the algorithm proposed here and that of [1].
The following general conclusions can be drawn from these
results.

The case of (i.e., without any derivative constraints)
yields equally poor SINR ( to dB for the 5%
bandwidth case and degrading to about17 dB for the 20%
bandwidth case, against a benchmark optimal value of 12 dB)
for both sets of algorithms. Also shown in Fig. 1(c) is the
performance of the robust SMI algorithm proposed recently
[2], which appears to have a similar performance for .
However, as the derivative constraints are introduced, there is a
phenomenal improvement in the performance of our algorithm
over those of Gershmanet al. [1], [2], viz., over both the
robust HT and the robust SMI. For the 5% bandwidth case

(a)

(b)

Fig. 4. Output SINR versus snapshot index in the presence of two uncorre-
lated wide-band jammer with 5% bandwidth. (a) Robust IQML beamformer.
(b) Robust HT beamformer.

(Fig. 1), yields a near optimum performance in our
case, with an improvement of nearly 7 dB over the robust
Hung–Turner (HT) [1] algorithm. In contrast, the performance
of the robust SMI [2] method improves initially with the first
derivative constraint but deteriorates below the unconstrained
algorithm for higher values of . This trend was observed
almost consistently in all simulation studies with robust SMI
and, hence, comparison with SMI has not been considered any
further. Higher bandwidth (Fig. 2) seems to require a some-
what higher value of to approach the optimal performance,
but performance of our approach remains significantly better
for all values of . This is a significant observation, since
, the number of derivative constraints has a direct bearing

on the minimum number of sensors required in the array.
Further, the presence of more than one wide-band jammer
causes a significant degradation in the performance of robust
HT approach, whereas it has a relatively minor impact on the
performance of the algorithm proposed here (Fig. 4).

Fig. 3 shows the behavior of the various algorithms when a
jammer lies close to the desired signal direction. In all cases,
it is seen that the use of derivative constraints causes some
initial improvement in performance (mostly with or
sometimes with ), but soon the performance begins to
degrade rather than improving with higher values of. This is
because the broadening of the null (and, hence, of bandwidth)
achieved via derivative constraints now also tends to eliminate
the desired signal. This observation also points to a general
weakness that may be expected to be shared by all robust
algorithms based on derivative constraints. The unconstrained
beamformers in all cases, of course, have very poor perfor-
mance for closely spaced jammers. In fact, at low SNR’s and
closely spaced jammers, the unconstrained IQML beamformer
is seen to be much worse than the corresponding HT algorithm.
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(a)

(b)

Fig. 5. Output SINR versus snapshot index in the presence of two correlated
wide-band jammer with 5% bandwidth. (a) Robust IQML beamformer. (b)
Robust HT beamformer.

(a)

(b)

Fig. 6. Study of perturbations in array sensor position: output SINR versus
snapshot index in the presence of a wide-band jammer at 40� with 5%
bandwidth. (a) Robust IQML beamformer. (b) Robust HT beamformer.

This may be ascribed partially to the bias and inconsistency
of the IQML algorithm. In fact, a considerable improvement
is observed if IQML is replaced by its modification such as
the IQML with the norm constraint [11]

Next, it is seen that the robust HT algorithm completely
breaks down in the presence of correlated jammers, whereas
these seem to have little effect on the performance of the
proposed beamformer (Fig. 5).

(a)

(b)

(c)

Fig. 7. Output SINR versus snapshot index in the presence of two uncor-
related moving jammer moving with 20� + 0.1�t and 40�� 0.1�t profile.
(a) Robust IQML beamformer. (b) Robust HT beamformer. (c) Robust SMI
beamformer.

Finally, Fig. 6 shows the effect of perturbations in the
array manifold. The sensor locations were perturbed randomly
around their nominal positions using a uniform distribution
over 10% of sensor spacings. With , the SINR
obtained from both the algorithms is of the order of17 dB,
indicating a loss of about 6–7 dB in performance over the
unperturbed array. Incorporation of the derivative constraints
leads to significant improvement in the performance of the
proposed algorithm, whereas the robust HT algorithm fails to
yield similar results.

B. Moving Jammers

We consider two moving jammers with their azimuthal
trajectories given by

(26)

where is the snapshot index. Again experiments have been
carried out for the following scenarios:

1) jamming signals and the desired signal mutually uncor-
related;

2) same as 1) with correlated jammers;
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(a)

(b)

Fig. 8. Output SINR versus snapshot index in the presence of two correlated
moving jammer moving with 20� + 0.1�t and 40� � 0.1�t profile. (a) Robust
IQML beamformer. (b) Robust HT beamformer.

(a)

(b)

Fig. 9. Study of perturbations in array sensor position: output SINR versus
snapshot index in the presence of two uncorrelated moving jammer moving
with 20� + 0.1�t and 40� � 0.1�t profile. (a) Robust IQML beamformer.
(b) Robust HT beamformer.

3) study of the effect of perturbations in sensor position.

The results are summarized in Figs. 7–9. The improve-
ments obtained by our algorithms are remarkable even for
the uncorrelated case. With one or two derivative constraints,
the performance is seen to be nearly optimal. This is quite
unlike the algorithms of [1] and [2], which yield SINR
considerably below the optimal value, even when “averaging

over dimension” is carried out by taking an optimal window
[17] of size six. Moreover, the robust SMI algorithm [2] yields
only marginal performance improvement on incorporation of
the first derivative constraint and, to our surprise, causes per-
formance degradation for higher values of, just as observed
in the wide-band case. Further, the robust HT algorithm [1]
once again breaks down completely for correlated jammers,
whereas there is little or no effect on the algorithm proposed
here. Although not shown here, it is seen that in both cases 1)
and 2),use of the immediate past snapshot for calculation of
the weight vector instead of current snapshot, appears to cause
no degradation.Finally, the robust IQML is seen to be much
superior compared to the robust HT in the presence of array
manifold perturbations.

VI. CONCLUSION

It is shown that for uniform linear arrays, it is possible to
reject wide-band, moving, and correlated jammers, even when
the jammer directions are unknown and separate signal-free
observations are not available. The robust IQML beamforming
algorithm described here yields considerably superior perfor-
mance as compared to that proposed by Gershmanet al. [1]
in all situations of wide-band and moving jammers considered
here.

REFERENCES

[1] A. B. Gershman, G. V. Serebryakov, and J. F. Bohme, “Constrained
Hung–Turner adaptive beam-forming algorithm with additional ro-
bustness to wide-band and moving jammers,”IEEE Trans. Antennas
Propagat., vol. 44, pp. 361–366, Mar. 1996.

[2] A. B. Gershman, U. Nickel, and J. F. Bohme, “Adaptive beamforming
algorithms with robustness against jammer motion,”IEEE Trans. Signal
Processing, vol. 45, pp. 1878–1885, July 1997.

[3] E. K. L. Hung and R. M. Turner, “A fast beamforming algorithm for
large arrays,”IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, pp.
598–607, July 1983.

[4] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,”IEEE Acoust., Speech, Signal Processing Mag., vol.
5, pp. 4–24, Apr. 1988.

[5] B. Widrow, P. E. Mantey, L. G. Griffiths, and B. B. Goode, “Adaptive
antenna systems,”Proc. IEEE, vol. 55, pp. 2143–2159, Dec. 1967.

[6] O. L. Frost, “An algorithm for linearly constrained adaptive antenna
array processing,”Proc. IEEE, vol. 60, pp. 926–935, Aug. 1972.

[7] I. Thug, A. Cantoni, and Y. H. Leung, “Derivative constrained optimum
broad band antenna arrays,”IEEE Trans. Signal Processing, vol. 41, pp.
2376–2388, July 1993.

[8] K. Takao and K. Komiyama, “An adaptive antenna for rejection of wide-
band interference,”IEEE Trans. Aerosp., Electron. Syst.,vol. AES-16,
pp. 452–459, July 1980.

[9] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter
estimation of superimposed exponential signals in noise,”IEEE Trans.
Acoustics, Speech, Signal Processing, vol. ASSP-34, pp. 1081–1089,
Oct. 1986.

[10] Y. Bresler, V. U. Reddy, and T. Kailath, “Optimum beamforming
for coherent signals and interferences,”IEEE Trans. Acoustics, Speech,
Signal Processing, vol. 36, pp. 833–842, June 1988.

[11] V. Nagesha and S. Kay, “On frequency estimation with IQML algo-
rithm,” IEEE Trans. Signal Processing, vol. 42, pp. 2509–2513, Sept.
1994.

[12] M. Kristensson, M. Jansson, and B. Ottersten, “Modified IQML and a
statistically efficient method for direction estimation without eigende-
composition,” inProc. IEEE ICASSP’98,Seattle, WA, May 1998, pp.
2069–2072.

[13] J. Li, P. Stoica, and Z. Liu, “Comparative study of IQML and MODE
direction-of-arrival estimators,”IEEE Trans. Signal Processing,vol. 46,
pp. 149–160, Jan. 1998.

[14] P. Stoica, J. Li, and T. Soderstrom, “On the inconsistency of the IQML,”
Signal Processing, vol. 56, no. 2, pp. 185–190, Jan. 1997.



AGRAWAL AND PRASAD: ROBUST ADAPTIVE BEAMFORMING FOR JAMMERS VIA UNIFORM LINEAR ARRAYS 1275

[15] M. P. Clark and L. L. Scharf, “Two-dimensional modal analysis based
on maximum likelihood,”IEEE Trans. Signal Processing, vol. 41, pp.
1443–1451, June 1994.

[16] R. A. Monzingo and T. W. Miller,Introduction of Adaptive Arrays.
New York: Wiley, 1980.

[17] M. Zatman, “Comment on ‘Constrained Hung–Turner adaptive beam-
forming algorithm with additional robustness to wide-band and moving
jammers’,” IEEE Trans. Antennas Propagat., vol. 46, pp. 1897–1898,
Dec. 1998.

Monika Agrawal received the B.Tech. degree in
electrical engineering and the M.Tech. degree in
electronics and communications engineering from
the Regional Engineering College, Kurukshetra, In-
dia, in 1993 and 1995, respectively. She is currently
working toward the Ph.D. degree in the Indian
Institute of Technology, Delhi.

She is currently a Research Scholar at the In-
dian Institute of Technology. Her research interests
include digital signal processing, array processing,
and communications.

Surendra Prasad received the B.Tech degree in
electronics and electrical communication engineer-
ing from the Indian Institute of Technology, Kharag-
pur, in 1969, and the M.Tech and Ph.D. degrees
in electrical communication engineering from the
Indian Institute of Technology, New Delhi, in 1971
and 1974, respectively.

He has been with the Indian Institute of Technol-
ogy, New Delhi, since 1971, where he is presently a
Professor of electrical engineering and Coordinator
of the Research and Training Program in telem-

atics. He was a visiting Research Fellow at the Loughborough University
of Technology, Loughborough, U.K., from 1976 to 1977, where he was
involved in developing algorithms for adaptive array processing for high
frequency arrays. He was also a Visiting Faculty Member at Pennsylvania
State University, University Park, from 1985 to 1986. His teaching and
research interests include communications and statistical signal processing.
He has been a Consultant to a number of government agencies as well as to
industry in these and related areas. He has also published more than 75 papers
in these areas in reputed journals, has edited a special issue of theJournal
of Institution of Electronics and Telecommunications Engineers(IETE) (India)
in March/April 1989, in the area of statistical signal processing, and a book
on signal processing for the IETE book series.

Dr. Prasad was the recipient of the Vikram Sarabhai Research Award in
Electronics and Telecommunications in 1987, the Shanti Swarup Bhatnagar
Award for Engineering Sciences in 1988, and the Om Prakash Bhasin Prize for
Research in Electronics and Communications in 1994. He was a cochairperson
for the Indo–U.S. Workshop in One and Two Dimensionsin New Delhi,
India, in November 1989. He is a fellow of the Indian National Academy of
Engineering, the Indian National Science Academy, and the Indian Academy
of Sciences.


