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Complex Source Radiation in a
Cylindrical Radome of Metal-Dielectric Grating

Ayhan Altintas, Senior Member, IEEESIim Ouardani, and Vladimir B. Yurchenko

Abstract—The radiation fields of a line source enclosed in a of the radome is needed. However, metal reinforcements
circular dielectric radome with grating consisting of an array  are rather strong scatterers of electromagnetic waves. They
of thin lossy metal strips are analyzed. The variations of the geqrade the antenna parameters, distort the antenna beam
directivity of the source beam with respect to the beam direction . L -
are studied. The possibility of damping these variations by an and decrease the d_|rect|V|ty. There_fore, one has to design the
appropriate design of the radome is demonstrated. structure carefully in order to minimize the effect of metal
elements. Although actual radomes are usually of spherical
shape, cylindrical structures are more feasible for the analysis
providing valuable physical insight and practical recommen-

I. INTRODUCTION dations valid for more complicated structures as well.

HE effect of a dielectric layer on the penetration of The aim of our analysis is to minimize the_neggt_ive effect
T electromagnetic waves has been extensively analyZ¥dthe metal grating of the radome on the directivity of the
in recent years due to its numerous applications such asdipfenna beam. In d.IStInCtIOI’] from typ|f:al research concerning
the design of a radar antenna enclosed in a radome [RfgN€ wave scattering by planar gratings (see, e.g., [8]), we
Both accurate and approximate approaches have been Ug¥Rpider the propagation of the beam through the curved
to study the effect and various configurations of the radorffeet@l-dielectric grating representing the wall of a cylindri-
are considered [1]-[5]. Two-dimensional (2-D) configurationcd! radome. We focused on studying the variations of the

are of particular interest providing the most accurate analy¥€ctivity with respect to the beam direction and found the
of the problem. In [4] and [5], full-wave analysis of twoPossibility of damping these variations by the proper design

problems involving circular cylindrical radome is provided®f the metal-dielectric radome. _
The incident and scattered fields are presented by cylindricaf*ccording to the geometry of our problem, the fields on the

functions and exact boundary conditions are applied to tH@Ncave and convex sides of the radome are represented by
fields at the radome to obtain accurate solutions. modal cylindrical waves. Solution is then found by application

If the wall of the radome can be modeled as a thifif the.boundary conditions sugg_ested in [6] to relate the
structure described in terms of effective boundary conditiorfter fields of the radome to the inner ones. Although these
the computational problem is much less intense. In [6] dpoundary conditions were initially derived for planar sheets,
fective boundary conditions of a new generalized form af8€ numerical data obtained justify strongly the validity of
obtained for conductive and dielectric layers as well as fgur method for circular geometry as well. The results for
multilayer compositions of different kind. They provide athe. far-field patterns and .the directivity are galculqted fo_r
useful approximation valid for the broad class of problem&rious structures as functlon_s of the beam orientation, strip
including the radome problems as well. Radomes of compiidth, and the number of strips for both metal and metal-

cated structure and of special shape are particularly suitaBI§'€Ctric gratings. Also, the dependence of the directivity on
for the approximate analysis of this kind. the thickness of the dielectric shell is investigated.

In this paper, we study the effect of a circular cylindrical The organizatiqn of this paper is as follows. In Section Il we
radome consisting of an array of thin metal strips parallel jgtroduce the basic concept of the method and the formulation

the axis (metal grating) or, similarly, of alternating metal strip&f the problem. Numerical results are presented in Section Il1.
and dielectric shells that form a cylindrical surface (metaliain conclusions follow in Section IV. o
dielectric grating) on the radiation of a complex line source of 1hroughout the analysis, the time-dependence”’ is
E polarization enclosed in the radome. assumed and suppressed.

Dielectric radomes with metal supporting elements are often
used in practice when reinforcement of a thin dielectric wall

Index Terms—Complex source, gratings.

Il. FORMULATION
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subject to the boundary conditionssat ¢« and the Sommer-

. feld radiation condition at infinity.
NS The boundary conditions we use are given in the form [6]
2 - . R .
AN N ® 3[Er2(9) + Eri(9)] = R(¢)h x [Hra(p) — Hri(p)]  (5)
l 1 d:,'/'/ T \\ (Pap
\ o Je [Hra(9) + A (@) = =50} X [Era() - Eri(e)] (6
R whereET172(<p) and ﬁT172(<p) are the tangential components
\\\-’ of electric and magnetic fields at the interface wher aF0,
respectively,R(¢) and S(y) are the parameters interpreted
| @ as the electric resistivity and magnetic conductivity of the

interface, respectively, andl is the outward unit normal.
Fig. 1. Geometry of a circular metal grating. Metal strips are shown by solid |y the case ofF polarization, the boundary conditions (5)
arcs. Dashed arcs represent either air slots or dielectric shells depending on . L . .

nd (6) relate the field&. and H ., in the following way:

the problem considered.
Hyo(p) = Ho(p) =iZ5 €(0)[Eaa(0) + Ea(9)] - (7)
fields. Formulation of the problem is carried out for a thin
periodic metal grating in free-space and then extended to the _ _
case of periodic metal-dielectric gratings. E2(p) = Balp) = —iZon(@)lHe(e) + Hale)] - ()
Fig. 1 shows a grating consisting of an array of thin metathere
strips of angular widti2¢,,;, located on a circular cylinder of i o i
radiusa. The array is periodic with the periogy = 27 /M o) =—5 Rig)’ ne)=35 5 502) ©)
where A is the number of strips. In the case of metal- A 021¥
dielectric gratings, the slots between metal strips are filled wigihd Zo is the intrinsic impedance.
dielectric shells as shown by the dashed arcs. Typical valuedNotice that the boundary conditions of this kind, although
of the parameters are given in the captions of Figs. 2—8. Théitten in another form, were derived earlier for absorbing
radome layer is represented by a sheet with effective bound&Rglls in [12] (with extension for the curved surfaces), for
conditions at the radius. cylindrical metal membranes in [13], and for electric and
The position of a line source parallel tcaxis and radiating Mmagnetic current sheets in [14] (the sheet model [14] relates (6)
the beam pattern in the, 5 plane is specified by the complexand (8) to magnetic sheets only, providing no general formulas

vector [9]-[11] for R and S).
. o L The electric resistivity/t and the magnetic conductivity
7y = 7o + ib = ro& + tb(cos B + sin B) (1) s are complex parameters which depend on the material

wherei = /=T, the real numbeb is a measure of the SourCeproperties and thickness of the interface layer. For a relatively

directivity, and the angl¢ represents the beam direction. thin layer (kh < 1) characterized by material parameters

The incident electric field due to the line source at the/”” and thICkrje.SSh’ u_nder the °°”d'“°'? ofZ] < ZO.
complex position#, is given by WhereZ = Zy/+/¢, is the impedance of the interface medium
s (ér = € +ic/weo, €. = €/eo, 1 = o), the respective values

Ein(7) = Hél)(k|F—Fs|) ) of R and S are given as [6]

1 k.h i1 k.h
where k is the free-space wavenumber arﬁfﬁl)(-) is the R= %Zcot( 5 ) and S = % Ecos( 5 ) (10)
Hankel function of the first kind. With the use of the addition
theorem for the Hankel fUnCtiO[Eén(F) can be written as [11] where ke = k\/g (One can eas"y reproduce (10) by consid-
ing N )/ o ing N ering a plane wave normally incident on a slab). Note that
BN (r,g) = snHD(br)e™e, > rs| - (3) |Z| < Zo assumese, | >> 1. Substituting (10) in (9), one gets

where s, = J,(krs)e ™%, J.() are the Bessel func- ¢ = —y/¢.tan <k‘h> and 7= #tan <M> (11)

tions, r, = \/7’3 — b2 + 2ibrgcos 3, Re r,>0, and ¢, = 2 Ve 2

cos™ ((ro +ibcos 3)/7s). If b # 0, the values ofr; andy,; that implies

are complex numbers that results in the beam pattern of the ~

complex source as shown by dotted curves in Fig. 8. n=—¢/e, [l < €. (12)
Relations (12) in conjunction with (7) and (8) justify un-

B. Boundary Conditions der the conditionsl¢| < || and |é.| > 1, the validity

The total field £, (7) satisfies 2-D Helmholtz equation (except very oblique wave incidence [15]) of the resistivity
approximationy = 0 which is widely used for the analysis of

2 2
<8_ 19 19 + /%‘2)EZ(F) -0 (4) scattering from conducting and dielectric shells [15]-[17] (the
ar* r or  r? 0p* approximation breaks iftan(k.h/2)| > |¢,.[1/2).
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Depending on the values éfandé,, there are four limiting C. Solution Technique
cases of interest: a very thin or relatively thick layer of either Coming back to our problem, we note that metal strips form
metal or dielectric material. _ _ _a periodic contour. Thus, the parametérandn are periodic

In the case of a thin layer characterized by inequaliyten functions ofp. For a metal grating in free-space, the
|[keh| <1 (penetrable sheet), relations (10) and (11) yieldsefficients¢ and) take the valueg,, andn,, at the metal
R~ 1/oh [14] and & ~ —iZooh/2 for metal strips(é, ~  gyips and drop to zero at the slqi&s = s = 0) to account
iojweg = ioZo/k), R~ iZo/erkh [18] and € ~ _9‘kh/2 for the continuity of the total electric and magnetic fields there.
for dielectric shells(c, ~ ¢. > 1), and S ~ i/Zokh |t the slots are filled with a dielectric material (the case of
andn ~ kh/2 for both of qum. In all the cases, one hag,ea).dielectric grating)¢ and# do not vanish between the
[R| > Rumin and [S| > R i, where Ruin = |Z] < Zo  metq) strips but take the valugs andss calculated from (11)

corresponding to the properties of the dielectric shells inserted.

that results inj¢| < |¢.]/2 and |n| < |&.|7Y? <« 1. The
latter means that the resistivity approximatipe:= 0 is always Further, we assume nonperfectly conducting metal strips
(|ér] # oo) and use the direct method for solving (4) in

justified for a thin layer withlé,.| > 1.
In the case of a relatively thick layefk/| >> 1, one has 5 manner similar to [8]. Due to the axial symmetry of the

R~ 2/2 = (1-14)[206, & = —iZo/Z = (1 = i)Z06/2,  proplem, the fieldE. (7) is expanded in a series as
S = 1/2Z = (1+4)ob/4, andn =~ iZ/Zy = (1 +1)/Zpob

for metal strips (impenetrable screedsg h, 6 = \/2/cwpo o0 ‘

is the skin depth|Z| < Zy, the approximatiom; = 0 also  E.(7) = Z ey

valid), and the generic relations (10) and (11) for dielectric n=—oo

shells with real valueg, = ¢, > 1 being assumed. T dn(kr) + anr(Ll)(kr), Irs| <7 <a 15
Notice that, for the impenetrable screen, the resisti¥tis ) {thr(Ll)(kT), r>a (15)

0.5Z but notZ, the value ofR is determined by <« & instead

of 2, and Leontovich impedance boundary conditions [19] takgherer,, andt,, are the unknown coefficients to be determined
place. Notice also that neither ¢R| = Zo, [2R| = Zo, py the boundary conditions at= a. Whent,, found, we can

|S| = 1/Z, or |25| = 1/Z, represents a free-space layelcompute the far-field patterfy(¢) and the beam directivity
Instead, it ish = nA. = nA/Vé (A is the free-space p, as

wavelengthg,. is assumed reak = 0, 1,2, - - ) that simulates

a free-space interface providigg= n = 0 (the case ot,. = 1 oo ‘
ando = 0 is inappropriate because of assumptjr > 1). Ulp)= D tai "™ (16)
Of a special interest is a perfect dielectric of thickness n=—o00

h=(2n—1)A./2. In this case, botl¢| and|7 tend to infinity
(there is no resistivity approximation) providing the boundar§"
conditions

Dy =|UBNI [ D |tal”- (17)
E.o(p) = —E.a(p) and Hyua(p) = —Ha(e).  (13) n=—ee

To solve forr,, andt,,, we expand the function&(¢) and
The conditions mean the inversion of the field phase acrogse) in their Fourier series and substitute them in (7) and (8)
the boundary, with no change of the field amplitude. together with the expansions (15). In this way, the following
The similar effect, although related to the electric field onlygre obtained:
happens at the metal strips when— oo while & = const

(perfectly conducting screens). In this calg,— oo, n — 0, fH g - tH 7
and the boundary conditions are mHy = Tmdy — o Z Jm—n(tnHy + 70 Jp)

E.a(p) = —E.a(y) and Ea(p) = Ealy)  (14) = sl 480 D, Fmonsnln (18)
providing eventuallyE.»(¢) = E.1(¢) = 0 (notice that the tmH o — Tmdm — 10 Z Gm—n(tnHy, + 70 d})
apparent conflict of “impenetrability” and “transparency” of a ne—oo
thin screen is only an ostensible one since the electric field o0
is continuous across the screen not because of “transparency” = Sty +10 Z Gm—nSnH,, (19)
but due to high conductivity providing’., = 0 at the surface; n=—o0

see also [20] for a relevant discussion).

A remarkable similarity of the field behavior in the twowhere H,, = H,(Ll)(ka), H = H,(Ll)’(ka), Jn = Jn(ka),
cases arising due to similarity of the boundary condition§, = J/(ka), prime denotes the derivatives with respect
(13) and (14) is the physical basis for damping the anguler the argumentfy = &y — s, 10 = Ny — 1sy fa =
variations of the directivity of the radiated beam consideregl, = ¥ sin(nMy,,)/(nMa,) If n £ 0, fo = ¢ + &s/éo,
in Section IIl. go =Y +ns/nmo, ¥ = Mg, /7, andm,n = 0,£1,£2, - - -.
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Substitutingz,, = (t,, + s, )H,, andy,, = v, H,,, we reduce 9 . . . : . .
(18) and (19) to the form
o0 8 — -
50 Z frn—n[-/ran/HrlL'i_yn]n/Hn] T
n=—oo ‘? 7
— T+ Ymd oy [ H = =28, H,,, (20) =2
7o Z Im—n [-Tn + ynjrll/Hn] e 6
- anan/Hrln + yrnJrn/Hrn = _2SrnHrn- (21) > »_\,J’“‘n,_/f\\/~~\/—~—-—————”7_»_»__,,_“,‘,,”_,—
In this form, (20) and (21) were truncated assunling, |n| < a . ) . ! ! !
N and, upon the symmetry splitting, solved numerically by 30 40 50 60 70 80 90 100
LU decomposition method. N
In the resistivity approximation(y) = 0, (20) and (21) are (a)
reduced to
oo O T T T T T T
Zm + Z Amnin = brn (22) A
wherez, = ty, Hyn(|m|+1)Y2, i = o Ho frnul(lml+ 5 2 11 AS
D /(jn| + D23, a = inkalo, andb,, = s Hpy,(|m|+1)Y2. @ ’

For one metal strip, (22) is identical to (28)—(31) in [16]<
(with -, = 0) obtained by the integral equation method. Theg%
identity is verified by presenting (28)—(31) of [16] in terms ™
of the far-field coefficients,, = z,,J, + s, instead of the 5
current coefficients:,, defined in (24) of [16], that proves the
equivalence of the two approaches (note that functifps,, -6 . . L : . .
and g,,—, in (20), (21) are of the same kind as functions 30 40 50 60 70 80 %0 100
Smn defined in [16]). Equations (16)—(19) in [17] would also N
coincide with (22) if the parameter R/2 is used in those (b)
equations instead af, with the relevant plots being correctrig. 2. (a) Directivity Dz and (b) its computational error
for the values of resistivity twice less than specified in theDs = log,o(ID} — DF*'|/D}) as functions of the truncation
captions. Thus, the mode-matching technique mplement2fss’ & Ctulr g of S 4 Bberetanis mew s it
above is exactly equivalent to the method used in [16] aR0_ .41, (dashed curves), and by = 16 + 0.57, h = 0.5A/Re (V&)
[17] providing the same level of reliability of solutions. (dotted curves). Other relevant parameters afgZo = 0.1(1 — i),

The accuracy and convergence of numerical solutons wefe_ 17 2 %251, © 00 = U7 andly 5 et conesponce o
tested for various values df, 7, &s, andns, Fig. 2. AS in free spacen; = 7.82.
one can see, iV > kq, the relative accuracy abg estimated

from the convergence process for the given values of the | ] ] ) ] o
parameters is about 1%. However, since (20)—(22) are Batings and in metal-dielectric ones, the Fourier factorization

regularized (if R # 0, regularization of these equations ié)f the truncat.ed series is a tricky mathematical o!oeration in
not necessary [16], [17]), the accuracy Bf; does not seem VieW of the prs phenomepon, as clearly. shown in [21].
to improve whenN > ka (see Fig. 2) and decreases with The factorization we used is consistent with suggestions [21]
increasing) or with decreasingkR|. Still, the reciprocity and that partially overcome the problem if discontinuities of the
optical theorems for lossless structures under the plane waWNse, = E.2(p) + E.1(p) andhy, = Zo[Heo(9) +Hei(9)]
excitation are satisfied exactly, as in [17], with the accurady the right-hand parts of (7)—(8) are less significant than
1016 independent of the truncation number evenfok ka. discontinuities of the differences,, = E.2(¢) — E.1(y) and
Generally, the solutions obtained are rather stable, althoutsh = Zo[He2(9) — He1(9)] in the left-hand parts. Generally,
the convergence is worse for lossless structures as compdk€gpends on the values and jumpg@ndn and can be tested
to lossy ones of the same value|&|. Therefore, we believe, as in Fig. 3. The relations between the jumpsof,,, ¢,,,, and
the comparison of our results with regularized solutions woufd» depend mainly on the parameters of the dielectric shells.
be of interest, especially for structures of greater number lfthe case of Fig. 3(b), the jumps are minimal for begrand
strips and of greater conductivity of metal, which has to b, while in Fig. 3(c) the jump is negligible only fok,. The
done elsewhere. latter represents the electric current which is continuous at the
With respect to the approach we used, a comment concenmetal-dielectric junction in this particular case that decreases
ing the Fourier factorization of (7)—(8) yielding (18)—(19) ighe edge diffraction at the metal strips.
worthwhile. Since all the quantities in (7)—(8) are generally If the opposite relation happens in (7) or (8)—or in both
discontinuous functions ap at the strip edges, both in metalof them—and the relevant functiof() or n(y) is nonzero
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0.08 7] Fig. 4. Far-field patterd/(;p) of a circular reflector antenna in the resistivity
approximation(S—! = 0, solid curve) compared to the correct solution
(dashed curve) in the case of a perfect dielectric = 16) of different

o 15 30 a5 60 75 90 thickness. (ajy = 0.4\, providingR/Zy = i0.04 andS—lZ(j1 = —1i1.54.
Phi, deg. (b) h = 0.6X. providing R/Zy = —i0.04 and S~ Z;! = 41.54 (cf.
© Fig. 3(b) in [16], dashed curve, whefe/Z, = —i0.1 but.S—! = 0). Other
relevant parameters ater = 183.7, ¢qp = 20°, 1o = a/2, kb = 5, and
Fig. 3. Functionse, (), hp(), em (), andhn () (solid, long-dashed, B = 0°.
short-dashed, and dotted curves, respectively) for the gratings with (a) air slots
and (b) and (c) dielectric shells characterized by ¢b)= 16, h = 0.4\, . . . . . .
and (c)e, = 16 + 0.54, k. = 0.5A/Re (V&) in the case ofp,, = 15° the integral equation solutions (see [16, fig. 3]), and identical

and kb = 0. results were obtained with both (20)—(21) and (22).
The results obtained for various gratings are shown in

(that is possible only in a metal-dielectric grating), the relevafifdS- 5=8. Fig. 5 presents the variations of the overall direc-
equation should be factorized after dividing it &) or 1(¢) tivity Dg with angular width of metal strips for gratings of

to separate the most significant discontinuities of the unknoyfferent number of strips with air slots. As expected, increas-
functions and of the coefficienty), n(¢), or inverse ones ing the strip widthd decreases the directivity. For gratings of

in the opposite parts of the equation. In general, howev&,relatively good conductor, a sharp. drop in the directivity qt
both the sums and differences of the fields are discontinuctf§@ll values of the aperture angle is observed. The drop is,

functions ofe and the method [21] does not help to overcom@aowever, smoother when strips of greater resistivity are used.
the problem of this kind. This is advantageous in practice since a designer may not be

restricted to extremely narrow strips.

We would like to emphasize that the above results were
obtained within the resistivity approximation= 0 used for

In this section, we discuss the results for the radiatianthin dielectric layer or resistive sheet when the transparency
patterns and the directivity obtained for various gratings @oundary conditions are acceptable. These boundary condi-
different number of strips\/, aperture anglep,,, and beam tions follow from (5) and (6) by setting = co and R # 0.
orientation 3. The approximation looses the accuracy with decreasing mag-

For the validation of the method, we have compared thmetic conductivity S that happens with increasing dielectric
radiation patterns of a circular reflector antenna (Fig. 4) withicknessh as shown in Fig. 4. In this case, the boundary

I1l. NUMERICAL RESULTS
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Fig. 5. Directivity Dg versus aperture anglep,, for gratings of
M = 23,4, and 5 metal strips in the resistivity approximation:
R/Zy = 0.01 for the bottom group of curvesk/Z, = 0.1 for the upper
group. Other parameters ake = 62.8,rp = 0, kb = 5,, ands = 0°. The
angleyq, = 0.5° corresponds to the strip width = 0.175A.
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=
g
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h/ lambda_diel Fig. 7. Directivity D3 versus beam directions for the metal grating
ambaa_die (solid curve) and for the metal-dielectric onds, = 4 + 0.5 and
: i : : ’ . & = 4 +140.01, dashed and dotted curves, respectively):«a) = 0.5°
Fig. 6. Directivity D ver hicknesé of the cl ielectric radome: * ’ ! /
9. 6 ectivity Dg versus thicknes# of the closed dielectric radome and (b) pap = 2°. The parameteg, refers to the dielectric shells of

a solution of (20) and (21) (solid curve), resistivity approximatipr= 0
(dashed curve), and the accurate result following [5] (dotted curve that alm
coincides with the solid one). The parametersfare= 62.8,rqg = 0, kb =5,
B3 = 0°, andé, = 4 + i0.5. The accuracy of (20) and (21) is expecte
further increase if the curvature corrections [12] are accounted.

icknessh = 0.5A/Re (/Z-). Impenetrable metal stripgM = 4) are
characterized byZ/Z, = (1 — ¢)0.01 that meansR/Zy = (1 — )0.005
d t@ndS—1Zy ! = (1 —)0.02. Other parameters aden = 62.8 (a = 10A)
andkb = 5 (p, = 21.4°).

conditions of the general form are needed, with the coefficierffiscussed above. The effect is especially strong for narrow
R and S as defined in (10). metal strips. With the strip width and the dielectric loss
To check the validity of the general boundary condition€§icreasing, the directivity variations increase as well and tend
(5) and (6) for a curved sheet, the plot of the directivity for £ the ones for gratings in free-space as observed in Fig. 7(b).
circular dielectric shell versus shell thickness is obtained af®mping the variations is, however, possible even in this case
compared with the exact solution found by the method [5] &t extremely perfect dielectric of precisely half-wavelength
demonstrated in Fig. 6. As one can see, the two solutionstfiickness is needed. The latter is not feasible in practice.
pretty well. Therefore, the use of metal strips of relatively small width,
Fig. 7 presents the directivity variations with beam dired@s a guided < A/2, is required.
tion. The directivity shows wide variations as a function of The effect is illustrated by the far-field patterns shown
the beam orientation in the case of metal grating surroundédFig. 8. The patterns are plotted for the gratings with air
by vacuum. This behavior is not desired in practice. Whestots (short-dashed curves) and with dielectric shells of half-
dielectric shells are inserted between metal strips, these vavavelength thickness (long-dashed and solid curves for the
ations are reduced considerably as shown in Fig. 7(a). In tisisells of greater and smaller losses, respectively) when the
case, wave scattering due to metal strips is compensatedbleym is directed either toward the metal strip [Fig. 8(a)] or
the presence of dielectric shells. toward the center of the slot between two strips [Fig. 8(b)].
The directivity variations tend to disappear completely whe@ine can see the effect of multiple scattering due to the edge
perfect dielectric of half-wavelength thickness is used, idiffraction in the gratings with air slots and the reduction of
view of similarity of the boundary conditions (13) and (14}kcattering in the structures with dielectric shells.
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Fig. 8. Far-field patterns for the gratings with air slots (short-dashed curveg’]
and with dielectric shells of half-wavelength thickness (long-dashed and solid

curves for the shells of greater and smaller losées= 4 + 0.5 and

ér = 4 4 10.01, respectively). The beam is directed either (a) toward the
metal strip or (b) toward the center of the slot between two strips (the incident
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are filling the slots between metal strips. The effect arises

due to excitation of the displacement current in the dielectric

shells adjusted to the conductive current in metal elements that
decreases the edge diffraction at the metal strips.

The effect is expected to occur in three-dimensional struc-
tures as well, e.g., for radomes of spherical and more com-
plicated shape if only the effective boundary conditions of
the given kind remain applicable. Basically, it is the jump of
the phase of the electric field being the same at the opposite
sides of metal strips and of dielectric shells of half-wavelength
thickness that minimizes the edge diffraction at the metal-
dielectric junctions. For this reason, the effect is expected to
appear in other cases, e.g., at another thickness of a dielectric
layer if metal strips are coated by some dielectric of such
a thickness that the total jump of phase of the electric field
across the wall is the same both at the location of metal strips
and at the bare dielectric layer.
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