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Abstract—Hierarchical mixed-order tangential vector finite
elements (TVFE’s) for tetrahedral elements are attractive for
accurate and efficient finite-element method simulation of compli-
cated electromagnetic problems. They provide versatility in the
geometric modeling of physical structures, guarantee solutions
free of spurious modes, and allow local increase of resolution by
selective expansion of the unknown electromagnetic field, i.e., by
combination of mixed-order TVFE’s of different orders within
a computational domain. For a realistic antenna radiation prob-
lem, this paper demonstrates that field expansion using lowest
and higher order hierarchical mixed-order TVFE’s selectively is
vastly superior [in terms of accuracy, memory, as well as central
processing unit (CPU)-time] to field expansion using a lowest
order mixed-order TVFE only.

Index Terms—Finite-element method, hierarchical basis func-
tions, tangential vector finite elements.

I. INTRODUCTION

T HE finite-element method (FEM) has proven attractive
for simulation of complicated electromagnetic problems.

Use of tetrahedral meshes provides versatility in the geometric
modeling of physical structures and field expansions based
on mixed-order tangential vector finite elements (TVFE’s)
guarantee solutions free of spurious modes and provide for
easy enforcement of boundary conditions. Hierarchical mixed-
order TVFE’s (where the vector basis functions forming a
mixed-order TVFE of a given order are a subset of the vector
basis functions forming mixed-order TVFE’s of higher orders)
have the additional advantage of permitting selective field
expansion. That is, they allow for combination of mixed-
order TVFE’s of different orders within a computational
domain for efficient expansion of the unknown electromagnetic
field. This is relevant for simulating a large class of realistic
electromagnetic problems characterized by disjoint regions
with high and low field variation. Thus, FEM analysis with
fields expanded using hierarchical mixed-order TVFE’s for
tetrahedral elements is attractive for accurate and efficient
solution of certain classes of electromagnetic problems.

Hierarchical mixed-order TVFE’s for tetrahedral elements
have been proposed up to and including order 1.5 by Webb and
Forghani [1] and up to and including order 2.5 by Andersen
and Volakis [2], [3]. However, no test has yet been carried out
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that numerically demonstrates the potential of selective field
expansion for realistic electromagnetic problems. The purpose
of this paper is to do so using the hierarchical mixed-order
TVFE’s of order 0.5 and 1.5 for tetrahedral elements proposed
in [2] and [3]. For eigenvalue computation, the convergence
rate of the hierarchical mixed-order TVFE of order 1.5 is
shown to be comparable to that of a nonhierarchical mixed-
order TVFE of order 1.5 [4]. For a realistic antenna radiation
problem, field expansion using the hierarchical mixed-order
TVFE’s of order 0.5 and 1.5 selectively is shown to be vastly
superior [in terms of accuracy, memory as well as central
processing unit (CPU) time] to field expansion using the
mixed-order TVFE of order 0.5 only.

This paper is organized as follows. Section II presents the
hierarchical mixed-order TVFE’s of order 0.5 and 1.5 for
tetrahedral elements that will be used for field expansion.
Section III presents the numerical results. Section IV con-
cludes the paper.

II. PRESENTATION OF TVFE’S

We consider a tetrahedral element with nodes 1, 2, 3, and
4. The volume of the tetrahedron is denoted by. Simplex
(or volume) coordinates , , , and at a point are
defined in the usual manner, viz. where denotes
the volume of the tetrahedron formed by and the nodes
of the triangular face opposite to node. Below, we review
the hierarchical mixed-order TVFE’s of order 0.5 and 1.5 for
tetrahedral elements that will be used for field expansion.
For more details, see [2] and [3]. We note that the vector
basis functions presented in this paper are not normalized.
Furthermore, the indexes, , and in (1)–(3) are implicitly
assumed to belong to the set .

A mixed-order TVFE of order 0.5 providing constant tan-
gential/linear normal variation along element edges and linear
variation at element faces and inside the element is char-
acterized by six linearly independent vector basis functions.
Whitney [5] initially presented such a TVFE. It is characterized
by the six edge-based vector basis functions

(1)

A mixed-order TVFE of order 1.5 providing linear tan-
gential/quadratic normal variation along element edges and
quadratic variation at element faces and inside the element is
characterized by 20 linearly independent vector basis func-
tions. Andersen and Volakis [2], [3] presented a mixed-
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Fig. 1. Convergence rate for expansion of field within homogeneous andis-
otropic rectangular cavity using hierarchical mixed-order TVFE’s of order
0.5 and 1.5.

order TVFE of order 1.5 that compares hierarchically to the
mixed-order TVFE of order 0.5 presented by Whitney [5]. In
addition to the six edge-based vector basis functions (1), it is
characterized by the six edge-based vector basis functions

(2)

and the eight face-based vector basis functions

(3)

III. N UMERICAL RESULTS

The objective of this section is to numerically demonstrate
the potential of the hierarchical mixed-order TVFE’s of order
0.5 and 1.5 proposed in [2] and [3] and summarized above. The
eigenvalues of a homogeneous and isotropic rectangular cavity
are determined numerically for different uniform tetrahedral
meshes to show that the convergence rate of the hierarchical
mixed-order TVFE of order 1.5 is comparable to that of a
nonhierarchical mixed-order TVFE of order 1.5 [4]. The input
impedance (and hereby the resonant frequency) of a probe-fed
square metallic patch antenna backed by a dielectric-filled cav-
ity recessed in an infinite metallic ground plane is determined
numerically for different uniform tetrahedral meshes to show
that field expansion using the hierarchical mixed-order TVFE’s
of order 0.5 and 1.5 selectively is vastly superior (in terms of
accuracy, memory as well as CPU time) to field expansion
using the mixed-order TVFE of order 0.5 only.

Consider a homogeneous, isotropic rectangular cavity of
normalized dimensions 1 0.75 0.5. The exact eigenvalues
for this geometry are well known [6]. A FEM solution for the
eigenvalues of the cavity is carried out for various uniform
tetrahedral meshes of different average edge length with the
hierarchical mixed-order TVFE’s of order 0.5 and 1.5 used for
field expansion (for the formulation, see for instance [7]).

The convergence rate for the two cases is illustrated in
Fig. 1 where the average error of the first eight eigenvalues is
plotted in percent as a function of the average edge length in
the mesh (log–log plot). The approximate distribution around

Fig. 2. Side view of square metallic patch antenna backed by a dielec-
tric-filled rectangular cavity recessed in an infinite metallic ground plane.

Fig. 3. Top view of square metallic patch antenna backed by a dielec-
tric-filled rectangular cavity recessed in an infinite metallic ground plane.

a straight line suggests that the average error decreases as
for a decreasing average edge length. For the mixed-order

TVFE of order 0.5, the exponent is , which is slightly
larger than the expected value of two [4]. This is due to the
very low average error 0.56% for the average edge length
0.175. Similarly, for the hierarchical mixed-order TVFE of
order 1.5, the exponent is , which is again larger
than the expected value of four [4] and the exponent
found in [4] for a different and nonhierarchical mixed-order
TVFE of order 1.5. This demonstrates that the hierarchical
mixed-order TVFE of order 1.5 in [2] and [3] has slightly
better convergence properties than the nonhierarchical one in
[4] for this particular geometry and for the employed meshes.
However, a relatively large uncertainty range can be expected
for such numerically obtained exponents and, thus, no general
statement can be made regarding the rigor of results based on
the two different mixed-order TVFE’s of order 1.5.

Consider a square metallic patch antenna backed by a
rectangular cavity recessed in an infinite metallic ground plane,
as illustrated in Fig. 2 (side view) and Fig. 3 (top view). The
cavity-backed patch antenna is situated in free-space character-
ized by the permittivity and the permeability . The cavity
is of dimensions 1.85 cm 1.85 cm 0.15 cm and filled
with a dielectric material of permittivity and conductivity
0.0003 S/cm. The patch is of sidelength 0.925 cm and centered
in the cavity aperture. It is fed by a vertical coaxial line whose
outer conductor is attached to the ground plane and whose
inner conductor is attached to the patch at the mid point of an
edge, as illustrated in Figs. 2 and 3. The coaxial feed will be
modeled as a vertical probe of constant current.

An almost identical antenna was considered by Schuster and
Luebbers [8]. In [8], the cavity walls and the ground plane was
removed and a similar patch on a similar but finite grounded
dielectric substrate was analyzed using the finite-difference
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TABLE I
COMPUTATIONAL EFFORT FORCASE 1–6 FOR ANTENNA IN FIGS. 2 AND 3

time-domain (FDTD) method. In spite of these geometrical
differences, the two antennas are expected to have the same in-
put impedance and, consequently, the same resonant frequency
since the dominant fields are confined to a volume under and
in the near vicinity of the patch. The resonant frequency was
found in [8] to be 4.43 GHz. The resistance at resonance was
found to be 400 while the reactance was in the range of
230 to close to resonance. We note that the results
in [8] were found with an extremely fine discretization and
hence can be considered accurate.

The patch antenna is analyzed using the finite-element
boundary-integral (FE-BI) method (for the formulation, see,
for instance, [7]) in conjunction with an iterative quasi-
minimal residual solver [9]. We discretize the cavity into
tetrahedral elements and consequently discretize the surface
forming the boundary between the cavity and free-space into
triangular faces. Two different TVFE options are applied. The
first TVFE option is to use the mixed-order TVFE of order
0.5 throughout the mesh. For a mesh of average edge length
0.260 cm (Case 1), the input impedance is determined as a
function of frequency and the resonant frequency of the patch
is predicted. The coarse discretization of Case 1 means that this
resonant frequency is most likely not accurate. For meshes of
average edge lengths of 0.188 cm (Case 2), 0.153 cm (Case 3),
and 0.133 cm (Case 4), more accurate resonant frequencies but
also higher computational costs can be expected. The second
TVFE option is to use the mixed-order TVFE of order 1.5 close
to the radiating edges (where we expect high field variation)
and the mixed-order TVFE of order 0.5 elsewhere (where we
expect little field variation). For the meshes of average edge
length 0.260 cm (Case 5) and 0.188 cm (Case 6), the input
impedance is again determined and the resonant frequency
is again predicted. The effectiveness of this approach (Case
5–6) in terms of accuracy/CPU time/memory requirements is
compared to the previous one (Case 1–4). The six cases are
summarized in Table I.

Real and imaginary parts of the input impedance as a
function of frequency are given in Figs. 4 and 5 for Case
1–6 and corresponding resonant frequencies are provided in
Table I. For Case 1–4, a larger and larger resonant frequency

Fig. 4. Real part of the input impedance of the antenna in Figs. 2 and 3
for Case 1–6.

Fig. 5. Imaginary part of the input impedance of the antenna in Figs. 2 and
3 for Case 1–6.

is observed as the mesh becomes denser and denser. However,
even for Case 4, the error as compared to the result obtained
by Schuster and Luebbers is quite large (2.98%) for resonant
frequency computation. Use of selective field expansion (Case
5–6) leads to a significant accuracy improvement. Case 5
(error 2.42%) gives a more accurate result than Case 1–4
and Case 6 (error 0.16%) matches the result by Schuster
and Luebbers almost exactly. The computational cost (number
of unknowns, number of boundary integral (BI) unknowns,
number of nonzero matrix entries (memory usage) and CPU
time per frequency point) to obtain these results are also
given in Table I. It is evident that the second TVFE option
corresponding to Case 5–6 is significantly more attractive than
the first TVFE option corresponding to Case 1–4. Case 5 gives
a more accurate result than Case 4 but uses only 4.22% of the
memory and 2.15% of the CPU time that Case 4 does. The
accuracy of Case 6 is vastly superior to that of Case 4 and yet
Case 6 uses only 14.88% of the memory and 10.02% of the
CPU time that Case 4 does. We note that the savings in Case
5 and Case 6 are reached in part because coarse meshes with
higher order TVFE’s lead to significantly smaller BI portions
of the resulting matrix equation systems than fine meshes with
lowest order TVFE’s.

IV. CONCLUSION

The potential of the hierarchical mixed-order TVFE’s of
order 0.5 and 1.5 for tetrahedral elements proposed by An-
dersen and Volakis [2], [3] was demonstrated. For eigenvalue
computation, the convergence rate of the hierarchical mixed-
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order TVFE of order 1.5 was shown to be comparable to
that of a nonhierarchical mixed-order TVFE of order 1.5
[4]. For a realistic antenna radiation problem, field expansion
using the hierarchical mixed-order TVFE’s of order 0.5 and
1.5 selectively was shown to be vastly superior (in terms of
accuracy, memory, as well as CPU time) to field expansion
using the mixed-order TVFE of order 0.5 only.
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