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Using Hierarchical Mixed-Order Tangential Vector
Finite Elements for Tetrahedra
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Abstract—Hierarchical mixed-order tangential vector finite that numerically demonstrates the potential of selective field
elements (TVFE's) for tetrahedral elements are attractive for expansion for realistic electromagnetic problems. The purpose
accurate and efficient finite-element method simulation of compli- of this paper is to do so using the hierarchical mixed-order

cated electromagnetic problems. They provide versatility in the \
geometric modeling of physical structures, guarantee solutions TVFE's of order 0.5 and 1.5 for tetrahedral elements proposed

free of spurious modes, and allow local increase of resolution by N [2] and [3]. For eigenvalue computation, the convergence
selective expansion of the unknown electromagnetic field, i.e., by rate of the hierarchical mixed-order TVFE of order 1.5 is

combination of mixed-order TVFE'’s of different orders within shown to be Comparab|e to that of a nonhierarchical mixed-
a computational domain. For a realistic antenna radiation prob- order TVFE of order 1.5 [4]. For a realistic antenna radiation
lem, this paper demonstrates that field expansion using lowest . - . - . .

and higher order hierarchical mixed-order TVFE's selectively is problem, field expansion using th? h'e_rarCh'Cal mixed-order
vastly superior [in terms of accuracy, memory, as well as central TVFE’s of order 0.5 and 1.5 selectively is shown to be vastly

processing unit (CPU)-time] to field expansion using a lowest superior [in terms of accuracy, memory as well as central

order mixed-order TVFE only. processing unit (CPU) time] to field expansion using the
Index Terms—Finite-element method, hierarchical basis func- Mixed-order TVFE of order 0.5 only.
tions, tangential vector finite elements. This paper is organized as follows. Section Il presents the

hierarchical mixed-order TVFE’s of order 0.5 and 1.5 for
tetrahedral elements that will be used for field expansion.

Section Il presents the numerical results. Section IV con-
HE finite-element method (FEM) has proven attractivgludes the paper.
for simulation of complicated electromagnetic problems.
Use of tetrahedral meshes provides versatility in the geometric Il. PRESENTATION OF TVFE'S
modeling of physical structures and field expansions base . .
on mixegd—ordF:erytangentiaI vector finite elemr:ants (TVFE's O{Ne consider a tetrahedral elemgnt with nodes 1 2, 3, and
guarantee solutions free of spurious modes and provide rThe volume of .the tetrahedron is denoted Yby&mplex
easy enforcement of boundary conditions. Hierarchical mixe or volume) coordinatess, ¢z, (s, and¢s at a pointP are
order TVFE's (where the vector basis functions forming efined in the usual manner, vig, = V., /V whereV., denotes

mixed-order TVFE of a given order are a subset of the vecto}® volume of the tetrahedron formed By and the nodes

basis functions forming mixed-order TVFE's of higher orderS?H tr;? trlanl'?.ule?r fgcedop%osn?vtlgEr,}od? B(;lOWE) v5ve r((ajv:lleévf
have the additional advantage of permitting selective fie € hierarchical mixed-order s otorder .5 and 1.5 for

expansion. That is, they allow for combination of mixedtetrahedral elements that will be used for field expansion.
Er more details, see [2] and [3]. We note that the vector

I. INTRODUCTION

order TVFE's of different orders within a computational = . functi ed in thi ; lized
domain for efficient expansion of the unknown electromagne St'rS] unc |ont?] p_regeng . n dllf _parier gre not n(T_rrrJ[fuze '
field. This is relevant for simulating a large class of realisticU T erMore, the indexeas j, andi in (1)=(3) are implicitly

electromagnetic problems characterized by disjoint regioﬁgium.eddto t:jeloq_gi/t':oEth? s{a;,2,g,54}. idi tant t
with high and low field variation. Thus, FEM analysis with -\ Mix€d-order ot order 9.5 providing constant tan-

fields expanded using hierarchical mixed-order TVFE's f&entialllinear normal variation along element edges and linear

tetrahedral elements is attractive for accurate and ef‘ficievrﬁ?l”at'on at element faces and inside the element is char-

solution of certain classes of electromagnetic problems. acterized by six linearly independent vector basis functions.

Hierarchical mixed-order TVFE'’s for tetrahedral elemen \é\/hti';]ney.[S] igitiallljy pr%sente;d sgch_a IVFE' Itis characterized
have been proposed up to and including order 1.5 by Webb and € Six edge-based vector basis functions
Forghani [1] and up to and including order 2.5 by Andersen GV — ¢V, t < J. (1)

and Volakis [2], [3]. However, no test has yet been carried out i . )
A mixed-order TVFE of order 1.5 providing linear tan-
Manuscript received November 5, 1998; revised June 14, 1999. gential/quadratic normal variation along element edges and
The authors are with the Radiation Laboratory, Department of Electrlcqbadratlc variation at element faces and inside the element is
Engineering and Computer Science, University of Michigan, Ann Arbor, Ml . . . .
48109 USA. characterized by 20 linearly independent vector basis func-
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Fig. 1. Convergence rate for expansion of field within homogeneous andis-
otropic rectangular cavity using hierarchical mixed-order TVFE's of order
0.5 and 1.5.

order TVFE of order 1.5 that compares hierarchically to the

mixed-order TVFE of order 0.5 presented by Whitney [5]. Ir'l_ 5 Too . i A backed by 4 diel
H H _ H H H .. op view of square metallic patc antenna backe y a dielec-

igg:g?:?e:%égeb?)f{heedgs( t;?tlsgeed-bvaescetgrvbe?:?(l)s;’ g;;g%:ié;g’ngt#%-ﬁlled rectangular cavity recessed in an infinite metallic ground plane.

(G = GUGVG —GVEG), i<y (2)  a straight line suggests that the average error decreases as
xP for a decreasing average edge length. For the mixed-order
TVFE of order 0.5, the exponent js= 2.37, which is slightly
G(GVG =G VG) }7 i<j<k. (3) larger than the expected value of two [4]. This is due to the
GG VG — GV EG) very low average error 0.56% for the average edge length
0.175. Similarly, for the hierarchical mixed-order TVFE of
order 1.5, the exponent i8 = 4.66, which is again larger

The objective of this section is to numerically demonstratban the expected value of four [4] and the exponest 3.86
the potential of the hierarchical mixed-order TVFE'’s of ordefiound in [4] for a different and nonhierarchical mixed-order
0.5 and 1.5 proposed in [2] and [3] and summarized above. TREFE of order 1.5. This demonstrates that the hierarchical
eigenvalues of a homogeneous and isotropic rectangular cawitixed-order TVFE of order 1.5 in [2] and [3] has slightly
are determined numerically for different uniform tetrahedrdietter convergence properties than the nonhierarchical one in
meshes to show that the convergence rate of the hierarchi@dlfor this particular geometry and for the employed meshes.
mixed-order TVFE of order 1.5 is comparable to that of Blowever, a relatively large uncertainty range can be expected
nonhierarchical mixed-order TVFE of order 1.5 [4]. The inpufor such numerically obtained exponents and, thus, no general
impedance (and hereby the resonant frequency) of a probe-&atement can be made regarding the rigor of results based on
square metallic patch antenna backed by a dielectric-filled cdkie two different mixed-order TVFE's of order 1.5.
ity recessed in an infinite metallic ground plane is determinedConsider a square metallic patch antenna backed by a
numerically for different uniform tetrahedral meshes to shovectangular cavity recessed in an infinite metallic ground plane,
that field expansion using the hierarchical mixed-order TVFE&s illustrated in Fig. 2 (side view) and Fig. 3 (top view). The
of order 0.5 and 1.5 selectively is vastly superior (in terms chvity-backed patch antenna is situated in free-space character-
accuracy, memory as well as CPU time) to field expansigred by the permittivitys, and the permeability,g. The cavity
using the mixed-order TVFE of order 0.5 only. is of dimensions 1.85 cnx 1.85 cmx 0.15 cm and filled

Consider a homogeneous, isotropic rectangular cavity with a dielectric material of permittivity 0co and conductivity
normalized dimensions & 0.75 x 0.5. The exact eigenvalues0.0003 S/cm. The patch is of sidelength 0.925 cm and centered
for this geometry are well known [6]. A FEM solution for thein the cavity aperture. It is fed by a vertical coaxial line whose
eigenvalues of the cavity is carried out for various uniformuter conductor is attached to the ground plane and whose
tetrahedral meshes of different average edge length with theer conductor is attached to the patch at the mid point of an
hierarchical mixed-order TVFE's of order 0.5 and 1.5 used f&dge, as illustrated in Figs. 2 and 3. The coaxial feed will be
field expansion (for the formulation, see for instance [7]). modeled as a vertical probe of constant current.

The convergence rate for the two cases is illustrated inAn almost identical antenna was considered by Schuster and
Fig. 1 where the average error of the first eight eigenvalueslLigebbers [8]. In [8], the cavity walls and the ground plane was
plotted in percent as a function of the average edge lengthreamoved and a similar patch on a similar but finite grounded
the mesh (log—log plot). The approximate distribution arourdielectric substrate was analyzed using the finite-difference

and the eight face-based vector basis functions

I1l. NUMERICAL RESULTS
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TABLE | 500 T T T T T T T Y T
COMPUTATIONAL EFFORT FORCASE 1-6 FOR ANTENNA IN FIGS. 2 AND 3 Case 4
Case 1 Case 5
400} Case 3
Average Time per o \ / Case 6
i =] Case 2
=
cdge Resonant # of | frequency <
TVFE | length | frequency # of # of BI | matrix point ?;
~
Case | order(s) [cm] [GHz] | unknowns | unknowns | entries [sec]
1 0.5 0.260 3.974 345 120 17119 7.52
2 0.5 0.188 4.147 817 288 89695 44.78 37 38 39 4 4.1 42 43 44 45 46 47
Frequency [GHz]

3 0.5 0.153 4.258 1489 528 291359 222.92

Fig. 4. Real part of the input impedance of the antenna in Figs. 2 and 3
4 0.5 0.133 4.302 2361 840 725791 771.59 for Case 1-6.
5 0.5/1.5 0.260 4.323 827 120 30675 17.33

300 T T T T T T T

6 0.5/1.5 0.188 4.437 1467 288 107963 77.28 Case 4 Case 5

200l Case 1 Case

—
)

time-domain (FDTD) method. In spite of these geometricaé 100}
differences, the two antennas are expected to have the samei{a-
put impedance and, consequently, the same resonant frequergy or
since the dominant fields are confined to a volume under and_mo
in the near vicinity of the patch. The resonant frequency was
found in [8] to be 4.43 GHz. The resistance at resonance was_sqg . s s s - - . . s
found to be 40082 while the reactance was in the range of 57 38 39 4 ]‘;}tl:quer?é?' [Gﬁf] 4445 46 4T
23042 to —170 €2 close to resonance. We note that the results , S o

in [8] were found with an extremely fine discretization ang'J; > \magnary par of the input impedance of the antenna in Figs. 2 and
hence can be considered accurate.

The patch antenna is analyzed using the finite-element
boundary-integral (FE-BI) method (for the formulation, sedS observed as the mesh becomes denser and denser. However,

for instance, [7]) in conjunction with an iterative quasi€Vven for Case 4, the error as compared to the result obtained
minimal residual solver [9]. We discretize the cavity int@Y Schuster and Luebbers is quite large (2.98%) for resonant

tetrahedral elements and consequently discretize the surfd€guency computation. Use of selective field expansion (Case
forming the boundary between the cavity and free-space into®) 1€ads to a significant accuracy improvement. Case 5
triangular faces. Two different TVFE options are applied. THETOr 2.42%) gives a more accurate result than Case 1-4
first TVFE option is to use the mixed-order TVFE of ordefnd Case 6 (error 0.16%) matches the result by Schuster
0.5 throughout the mesh. For a mesh of average edge Ien@'ﬂq Luebbers almost exactly. The cqmputauonal cost (number
0.260 cm (Case 1), the input impedance is determined a8faunknowns, number of boundary integral (BI) unknowns,

function of frequency and the resonant frequency of the pat@HmPer of nonzero matrix entries (memory usage) and CPU
is predicted. The coarse discretization of Case 1 means that i€ Per frequency point) to obtain these results are also
resonant frequency is most likely not accurate. For meshes3fen in Table 1. It is evident that the second TVFE option

average edge lengths of 0.188 cm (Case 2), 0.153 cm (Casé:gﬂgsponding to Qase 5-6is significantly more attractive t_han
tagfirst TVFE option corresponding to Case 1-4. Case 5 gives

and 0.133 cm (Case 4), more accurate resonant frequencies 0
also higher computational costs can be expected. The sec8rgOre accurate result than Case 4 but uses only 4.22% of the

TVFE option is to use the mixed-order TVFE of order 1.5 clos®€mory and 2.15% of the CPU time that Case 4 does. The
to the radiating edges (where we expect high field variatiofFcuracy of Case 6 is vastly superior to that of Case 4 and yet
and the mixed-order TVFE of order 0.5 elsewhere (where We#S€ 6 uses only 14.88% of the memory and 10.02% of the
expect little field variation). For the meshes of average edg& Y time that Case 4 does. We note that the savings in Case
length 0.260 cm (Case 5) and 0.188 cm (Case 6), the in t’;\nd Case 6 are reached in .par.t.because coarse meshes with
impedance is again determined and the resonant frequeﬁer order TVFE's lead to significantly smaller Bl portions

is again predicted. The effectiveness of this approach (C he resulting matrix equation systems than fine meshes with

5-6) in terms of accuracy/CPU time/memory requirements west order TVFE's.
compared to the previous one (Case 1-4). The six cases are
summarized in Table I.

Real and imaginary parts of the input impedance as aThe potential of the hierarchical mixed-order TVFE's of
function of frequency are given in Figs. 4 and 5 for Caserder 0.5 and 1.5 for tetrahedral elements proposed by An-
1-6 and corresponding resonant frequencies are providedd@rsen and Volakis [2], [3] was demonstrated. For eigenvalue
Table I. For Case 1-4, a larger and larger resonant frequemoynputation, the convergence rate of the hierarchical mixed-

IV. CONCLUSION
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order TVFE of order 1.5 was shown to be comparable
that of a nonhierarchical mixed-order TVFE of order 1.
[4]. For a realistic antenna radiation problem, field expansi
using the hierarchical mixed-order TVFE'’s of order 0.5 an
1.5 selectively was shown to be vastly superior (in terms
accuracy, memory, as well as CPU time) to field expansic
using the mixed-order TVFE of order 0.5 only.
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