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Abstract—The time-domain image reconstruction problem can
be formulated as a sinogram recovery problem. The sinogram
recovery problem is to find a complete sinogram based on
the measured incomplete sinogram. In this paper, we solve the
sinogram recovery problem by using linear prediction techniques.
Since the scattered field of a target can be written as a superposi-
tion of distinct specular reflections arising from scattering centers
on the target, the trace of the scattering centers can be predicted
using linear prediction with the change of the observation angle.
Thus, the missing data may be predicted before reconstructing the
image. Some useful results obtained using the proposed method
are presented.

Index Terms—Radar imaging.

I. INTRODUCTION

T HE development of viable short-pulse radar systems has
sparked interest in target imaging performed directly in

the time domain with temporally measured signals. The short-
pulse response of a target provides significant information
about the positions and strengths of scattering centers. If
observations are made over a wide range of aspect angles,
sufficient information is gained to obtain an image of the
target. The authors have recently proposed a rigorous imaging
identity based on a signal with spectral content limited to a
portion of the electromagnetic (EM) spectrum. This makes it
ideal for use with an ultrawide-band stepped frequency radar.
However, as shown in [1] and [2], good images of radar targets
may be obtained only when enough high quality data over a
180 angular range is available. When some data is missing,
the reconstructed image suffers and may be unsatisfactory. In
practice, information is usually available only for limited-view
angles; thus, it is necessary to analyze the effect of incomplete
information which may cause the inverse problem to be ill
posed. The limited-view problem occurs when the data is
available over an angular range less than 180and the sparse-
angle problem occurs when only a small number of angles
evenly spaced over 180are available.

The limited-view problems has attracted considerable atten-
tion in computed tomography imaging research and techniques
for dealing with it have been proposed. These techniques
can be put into two categories [12]: transform techniques
that incorporate noa priori information and finite series
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expansion methods that may incorporatea priori information
as constraints. The transform techniques are usually single-
pass, direct reconstructions [3]–[5], while the finite series
expansion methods are usually iterative [6]–[12].

Image reconstruction from incomplete projections can be
formulated as a sinogram-recovery problem. The sinogram-
recovery problem is to find a complete sinogram
based on the measured incomplete sinogram and a
priori knowledge about the sinogram. Once an estimation of
the complete sinogram is obtained, image reconstruction by
ordinary convolution backprojection is possible.

In this paper, we will demonstrate a new reconstruction
algorithm for radar imaging in the limited-angle case. The goal
of this approach is to recover the sinogram from available
measured data using linear prediction. Since the scattered
field of a target can be written as a superposition of distinct
specular reflections arising from scattering centers on the
target, the trace of the scattering centers can be predicted using
linear prediction with the change of the observation angle.
Thus, the missing data may be predicted before reconstructing
the image. Section II gives a brief review of the inverse
scattering identity; more details can be found in [2]. In
Section III, we define the sinogram. The sinogram recovery
algorithm is described in Section IV. In Section V, we present
experimental results that demonstrate the performance of the
proposed method.

II. REVIEW OF THE PHYSICAL-OPTICS

INVERSE SCATTERING IDENTITY

A rigorous time-domain inverse scattering identity has been
derived in [2]. This uses both the physical optics (PO) induced
currents and the “correction currents,” which must be included
to describe the non-PO effects. Since the correction terms are
difficult to obtain under practical conditions, we will only
consider the PO contributions in this paper.

Consider a perfectly conducting object illuminated by a
transient plane wave. According to the PO approximation, the
current induced on the object in the illuminated region will
be simply

(1)

where is the incident magnetic field, is the unit
vector normal to the scatterer surface,is the position vector
to the observation point, and denotes normalized time in
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meters . The far-zone field at a point produced
by this induced current is given by

(2)

where is the position vector to the integration point,
, and . Substitution of (1) into (2) leads

to the following relationship between incident and scattered
fields:

(3)

Here, , ,
where is the position vector of the transmitter,

, and where is the
bistatic angle between the transmitter and the receiver. The
total magnetic field is ,
which is the sum of the scattered field and the scattered field
under complimentary (shadow zone) illumination.

Now, consider the case of a band-limited incident field
waveform. If has a time dependence given by the
sine-modulated exponential pulse (SMEP) waveform

(4)

then (3) can be written as

(5)

where and is the
characteristic function of the scatterer defined over the volume

of the scatterer as

(6)

It is seen that the left-hand side of (6) is the cross-
sectional area of the scatterer along thedirection. This is
the Radon transform of and, thus, the characteristic
function can be found by taking the three-dimensional inverse
Radon transform. If the two-dimensional (2-D) inverse Radon
transform is taken instead, the thickness function for
the target is obtained. Computing the transform in the-
plane gives (7), as shown at the bottom of the page, where

and .
This 2-D, bistatic PO identity will be used to construct the
images described in this paper.

Fig. 1. The geometry of the 2-D Radon transform.

III. SINOGRAMS

Projection data (cross-sectional area functions) used for
image reconstruction can be arranged in a 2-D map in which
one of the coordinates is the distance of the wave along which
the line integral is taken from the center of the rotation of the
projection system and the other coordinate is the angle of the
wave. In this map, waves through a fixed point in the object
correspond to a sinusoidal curve, which is why a display of
this map is called a sinogram [13].

Referring to the geometry of Fig. 1, we define the 2-D
Radon transform by

(8)

where is the 2-D “thickness function” of the object
in the direction, and is the projected area onto
for the particular aspect angle. In this paper, we assume

to be a real function defined on the disk of radius
centered at the origin. A sinogram is an image of the 2-D
Radon transform, where and form the horizontal and
vertical axes, respectively, of a Cartesian coordinate system.
Because of the periodicity of the 2-D Radon transform and
because of the assumed domain of the sinogram can
be defined over the complete domain

(9)

For the limited-view problem, the sinogram is measurable
over a domain , where is assumed to be a subset of, i.e.,

. Then can be written as

(10)

where is a constant that represents the data’s missing an-
gular range. In Fig. 2, we illustrate the measurement domains

given by (10).

(7)
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Fig. 2. Domain� over which the sinogram is measurable in the limited-view
problem.

Fig. 3. A 1 : 48 scale model TR-1 aircraft.

Figs. 3 and 4 show a 1 : 48 scale model TR-1 aircraft and
its sinogram measured in the Electromagnetics Laboratory,
Michigan State University. Note that the sinogram is formed
not from the cross-sectional function, but from the SMEP
responses of the target. We can see from the sinogram that
most of the “lines” look sinusoidal. These lines are actually
the traces of the scattering centers on the target. This motivates
the idea of predicting the traces of the scattering centers
using linear prediction. Linear prediction has been widely
used in speech signal processing, image processing, and noise
suppression in communication [14]. Here we use it in sinogram
reconstruction in radar imaging for the limited-view problem.
The following sections give a more detailed presentation of
the approach.

IV. THE ALGORITHM

Fig. 5 shows the block diagram of the complete reconstruc-
tion algorithm used in this study. The projection data are ex-
pressed as where and are the usual coordinates for
the sinogram representation, i.e.,is the angle of a projection
line and is the coordinate perpendicular to the projection line.
The algorithm starts from the original incomplete projection
data 0 1, 2,

where is the number of views
and is the number of samples in each view. The first step
is to isolate the largest specular reflections at each angleby
isolating the major peaks embedded in each SMEP response.
This can be difficult because of the temporal sidelobes of the
SMEP waveform, but a smoothing window consisting of a

Fig. 4. Measured sinogram of TR-1 aircraft.

Fig. 5. Block diagram of the procedure needed to realize the reconstruction
algorithm.

Gaussian function of width slightly smaller than the SMEP
duration can be used to smooth the responses. Then, the peak
waveform values correspond to the positions of the scattering
centers of the target. These peak values form a new sinogram
from which the traces of the scattering centers can be found.

For each of the major scattering center traces, the temporal
position and reflected amplitude are represented as a function
of angle through the sampled pairs and

. The values over the missing angles
are provided using a linear prediction algorithm. Letting
represent either the sampled temporal position or reflected
amplitude, the values of can be represented as a linear
combination of its previous values and some inputas

(11)

where is a user-chosen parameter. Sincerepresents the
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discrepancy of the prediction at point, we can determine the
predictor coefficients through a least-squares minimization
of the squared error

(12)

Setting the derivatives of the error with respect to the co-
efficients equal to zero gives the normal equations for the
coefficients of the linear predictor

(13)

where . Noting that the minimum mean-
square prediction error is simply

(14)

an augmented set of normal equations can be obtained and
written in matrix form as

...
...

...
...

...
(15)

This matrix is of the symmetric Toeplitz type and many
efficient algorithms are available for solving this set of linear
equations [14]. In this work, we used the Levinson–Durbin
algorithm.

To ensure stability of the linear prediction of the coefficients
, the roots of the characteristic polynomial

(16)

are computed. If any roots are outside the unit circle, they are
moved to an appropriate point inside or on the unit circle and
the coefficients are recalculated. In addition, the value of

should be chosen as small as practicable; we used between
5 and 15, depending on the data length.

Once the coefficients are determined, the scattering center
traces are reconstructed over the domain. Then, for each view
angle over the missing region, the scattering center positions
are predicted. A narrow window of rectangular shape is placed
around each scattering point and the window is multiplied by
a SMEP defined in (5) and, thus, the predicted SMEP response
is found for this view. After predicting all the SMEP responses

Fig. 6. Measurable part of the sinogram of TR-1 aircraft.

over the missing data region in domainwe can restore the
complete sinogram over the domain. Finally, the image is
constructed by using the convolution backprojection method
with the restored sinogram [2].

We can see that accurate reconstruction of the sinogram
depends on several variables. A wider range of views will
obviously allow a more accurate prediction of the missing
data, but it is very difficult to quantify the relationship between
available range and quality of reconstructed image. If the
available range includes regions where the scattering center
responses are strong, and sufficient variation in the magnitude
and position is included, then the reconstruction will be
correspondingly accurate. If, on the other hand, a scattering
center is shadowed throughout the available range, then there
will be no way that the scattering center trace can be predicted
in the missing data region. In the simulation to follow, we use
a range of 90and are able to very accurately predict the traces
of the five most significant scattering centers. The number of
scattering centers traced also influences the quality of the final
image. Using more scattering centers allows the reconstruction
of smaller target structures, but the traces of weaker scattering
centers are hard to discern and confusion between scattering
centers leads to anomalous image features.

V. IMAGING SIMULATION

The proposed algorithm in Section IV can be used in
the time domain to construct an image from limited-view
ultrawide-band radar measurements. Consider the sinogram of
the TR-1 aircraft model shown in Fig. 4. When only part of
the sinogram (domain as shown in Fig. 6 is measurable,
then the reconstructed image may be seriously distorted if we
simply let the missing data be zero. To restore the complete
sinogram (domain ) using linear prediction techniques before
reconstructing the image by the convolution backprojection
algorithm, we first find the largest points (the darkest points
in Fig. 6) in each SMEP response by comparing the values of
the data in each view. Those points with large amplitude form
a new sinogram. Fig. 7 shows the measurable sinogram of the
TR-1 formed by these points, while Fig. 8 gives the complete
sinogram of the TR-1 formed by these points assuming all
views are measurable. From the new sinogram of Fig. 7, we
can find the traces of the scattering centers and obtain a
set of functions, each function designating the movement of
a scattering center with the change of view. In Fig. 8, for
example, numbers 3 and 4 denote the movements of the tail
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Fig. 7. Measurable part of the sinogram of TR-1 formed by the positions
of the scattering centers.

Fig. 8. Sinogram of TR-1 formed by the positions of the scattering centers.

Fig. 9. Sinogram of TR-1 formed by the predicted positions of the scattering
centers.

and the head of the aircraft model, respectively; numbers 1 and
2 denote the movements of two wings; and number 5 denotes
the movement of the engines. Next, the movement and strength
of the scattering centers is predicted over the whole sinogram
region using linear prediction techniques. Fig. 9 shows the
predicted traces of the scattering centers. Fig. 10 gives the
trace of the tail with measured and predicted data and Fig. 11
gives the measured and predicted amplitudes of the scattered
field at the positions of the tail.

We are now ready to reconstruct the sinogram of the target
over the domain by finding those predicted scattering centers
for each view over the missing region, placing a small rectan-
gular window around each scattering point and multiplying the

Fig. 10. Measured and predicted positions of the tail of the TR-1 aircraft.

Fig. 11. Measured and predicted amplitude of the scattered field in the
positions of the tail of the TR-1.

window by a SMEP defined in (4). Then the predicted SMEP
responses are found for this view. Fig. 12 shows the measured
data and the predicted data for observation angle
The restored complete sinogram is shown in Fig. 13 after
predicting all the SMEP responses over the missing data region
in the domain . Finally, we can reconstruct the image using
the convolution backprojection method [2] with the restored
sinogram. Fig. 14 gives the image of the TR-1 aircraft model
using the restored sinogram and Fig. 15 gives the image of
the TR-1 using the original incomplete sinogram shown in
Fig. 6. We can see significant improvement in the quality of
the reconstructed images from using the sinogram restoration
techniques.
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Fig. 12. Measured and predicted data of the TR-1 for� = 40:5�.

Fig. 13. Restored sinogram of the TR-1 by linear prediction method.

Fig. 14. Image of the TR-1 using restored sinogram.

VI. CONCLUSIONS

We have proposed a technique to handle the time-domain
limited-view imaging problem. The key point of this technique
is to process the available measured projections in order to
generate an estimate of the full set of projections, an image

Fig. 15. Image of the TR-1 from 45� to 135� data using convolution
backprojection algorithm.

of which is called a sinogram. The goal of this approach
is to recover the sinogram from the available measured data
using linear prediction. Since the scattered field of a target can
be written as a superposition of distinct specular reflections
arising from scattering centers on the target, the position and
strength of the scattering centers can be predicted using linear
prediction with the change of the observation angle. Thus, the
missing data can be predicted before reconstructing the image.
A significant improvement in image reconstruction has been
achieved using this technique, and some useful results have
been provided.
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