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On the Resonances of a Dielectric BOR
Buried in a Dispersive Layered Medium
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Abstract—A method-of-moments (MoM) analysis is applied
to the problem of determining late-time resonances of dielectric
bodies of revolution buried in a lossy layered medium, with
application to plastic-land-mine identification. To make such an
analysis tractable, we have employed the method of complex
images to evaluate the layered-medium Green’s function. The
application of this method to resonant structures characterized
by complex resonant frequencies, introduces numerical issues not
manifested at real frequencies (i.e., for driven problems) with
such discussed here in detail. Numerical results are presented
for several buried targets in which we demonstrate, for example,
the spiraling character of the resonant frequencies of particular
targets as a function of target depth.

Index Terms—Buried object detection, natural resonances, in-
homogeneous media.

I. INTRODUCTION

I F a target is excited by a short pulse of electromagnetic
energy, fields are diffracted initially at localized scattering

centers in and on the target. Subsequently, after the incident
wave has departed (at what is termed “late time”), multi-
ple diffractions occurbetweenscattering centers and, for a
penetrable target, energy reverberates inside as well. Each
such multiple diffraction or reverberation is accompanied by
energy that radiates away from the scatterer. Consequently,
the late-time energy in and on the target decays, as do the
associated late-time radiated fields. This late-time phenomenon
has been parametrized rigorously in terms of the well-known
singularity expansion method (SEM) developed by Baum [1],
in which each resonant mode is associated with a pole in the
complex frequency plane. Additionally, Felsenet al. [2], [3]
have rigorously connected the SEM resonances to multiple
late-time diffractions and reverberations.

The SEM resonant frequencies, representative of the natural
target response, are independent of excitation (i.e., are aspect
independent [1]–[5]), although the strength of excitation of a
given mode is excitation dependent. Aspect independence of
such resonant frequencies has precipitated significant interest
in resonant-frequency-based targetidentification. Resonance-
based discrimination has been investigated for airborne [6], [7]
as well as subsurface [8], [9] targets, using such techniques
as Prony’s method [10], [11] and the matrix-pencil method
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[12]. In the work presented here, we are interested in dielectric
targets (e.g., plastic land mines) buried in a lossy, dispersive
layered medium (simulating soil). There have been previous
experimental studies on resonance-based identification of plas-
tic targets, with some results being particularly promising
[8], [9]. However, it is well known that the strength of
excitation of such modes is strongly dependent on the electrical
contrast between the dielectric target and the background
soil. Moreover, a recent study [13] on the SEM resonances
of buried conducting targets has revealed an often strong
dependence of the resonant frequencies on the target depth.
This is because, for subsurface targets, the resonant frequencies
are not dictated by the buried target alone, but by thetotal
scattering environment (i.e., the target in the presence of the
soil). In particular, if there are strong reverberations between
the target and air–ground interface, the target depth plays
an important role in the total-target resonant frequencies.
This is a very important issue, for the target depth is often
not known exactly (e.g., for buried mines), complicating
resonance-based identification of such targets. Since it is
difficult to comprehensively study this issue experimentally,
for a wide range of targets, soil types, and target depths, an
accurate theoretical model is required, motivating the work
presented here.

Modeling of a target’s natural modes requires solution of
the source-free target response. Therefore, algorithms which
require an excitation such as the finite-difference time-domain
(FDTD) [14], are inappropriate. While the target resonant
frequencies can in principle be extracted from the late-time
fields computed via such a time-domain model (via, for
example, the Prony [10], [11] or matrix-pencil [12] algorithms
discussed above), modal excitation is dictated by the driving
function and, therefore, a range of incident fields would be
required to catalogue all the modes of a given structure.
Consequently, the natural target response is best analyzed
with a frequency-domain algorithm. The finite-element method
(FEM) [15] constitutes a frequency domain scheme that can be
adapted for such purposes. However, while FEM algorithms
are quite general and accurate, they require discretization
of the fields throughout the computational domain. For the
three-dimensional problems of interest here, in complicated
layered environments, the generality of FEM is obviated by
the attendant numerical complexity [15]. Therefore, here we
utilize the method of moments (MoM), with restriction to
targets that can be simulated as a body of revolution (BOR);
for the layered-medium problem of interest here, the BOR axis
is required to be normal to the layer surfaces (Fig. 1), thereby
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Fig. 1. Schematic of a dielectric body of revolution buried in a layered
medium.

preserving rotational symmetry throughout the BOR (layered-
medium) composite. While the restriction to BOR targets is
clearly a simplification, most land mines are accurately so
modeled [16].

The MoM analysis of targets buried in a lossy layered
medium requires accurate computation of the layered-medium
Green’s function with such necessitating the efficient anal-
ysis of Sommerfeld spectral integrals [17]–[21]. Numerous
techniques have been developed for the analysis of these
ubiquitous integrals [17]–[21], with the recently developed
method of complex images constituting a particularly attrac-
tive option [22]–[25]. This algorithm represents the spectral-
domain reflection coefficient inherent to the spectral Green’s
function in terms of a sum of exponentials, determined via
parametric estimation (again, via either of the aforementioned
parametric algorithms [10]–[12]). Subsequently, each spectral-
domain term in this summation is converted to the space
domain analytically, via the Sommerfeld or Weyl identity
[26]. The parametric estimation is performed along a proper
path in the complex spectral plane with careful consideration
of branch cuts and possible surface-wave and leaky-wave
poles [27]. While such matters have been addressed in detail
for the driven problem, characterized byreal frequencies,
special consideration is required for resonant-frequency com-
putation. In particular, target resonances are characterized
by complex frequencies, introducing complications with re-
gard to branch-cut and pole locations, with such impacting
the path of integration for the Sommerfeld integrals. We
address these issues in detail and demonstrate how such
are handled within the context of the method of complex
images.

The remainder of the text is organized as follows. In
Section II we summarize the general features of MoM-based
analysis of SEM resonances for dielectric BOR’s buried in a
lossy, layered medium (e.g., soil). For details on the layered-
medium Green’s function, recent work on such is cited.
However, the application of the method of complex images
at resonant (complex) frequencies is new, and is therefore
discussed in detail. In Section III, several numerical results are
presented as a function of the properties of the target, target
depth, and background environment. Finally, conclusions are
addressed in Section IV.

II. NUMERICAL ALGORITHM

A. Method of Moments Formulation

We are interested in the natural (resonant) modes of a dielec-
tric BOR embedded in a lossy, dispersive layered medium (see
Fig. 1). By enforcing boundary conditions for the tangential
electric and magnetic field components on the BOR surface,
one obtains coupled integral equations for the resonant electric
and magnetic surface currentsand , respectively. We em-
ploy a mixed-potential integral equation (MPIE) formulation
from which we have (forcomplex

(1a)

(1b)

where represents the unit dyad. The layered-medium per-
mittivity, permeability, and conductivity are represented by

and respectively, and and repre-
sent these same parameters for the homogeneous, lossy BOR
target. Electric and magnetic charge densities on the surface
have been replaced by derivatives of the electric and magnetic
surface current densities, respectively, using the continuity
relation. Explicit expressions for the spectral-domain layered-
medium dyadic kernel , the dyadic Green’s function
(representing the magnetic vector potential produced by an
infinitesimal electric dipole), and the electric scalar potential

of a point charge associated with a horizontal electric
dipole have been given by Michalski and Zheng [21], where
we use their “Formulation C.” The additional terms
and are necessitated by the equivalent magnetic currents
(not present for perfectly conducting targets [21]) and can
be determined via duality. Finally, for calculating the field
inside the homogeneous BOR, produced by currents on its
surface, we utilize the homogeneous-medium Green’s function

where represents the distance
between source and observation points anddenotes the
wavenumber inside the BOR.

The integral equations in (1) are applicable to any dielectric
target embedded in a layered medium, but here we restrict
ourselves to the case of a BOR to make the numerical analysis
tractable. However, as stated in the Introduction, most plastic
land mines, the interest of this work, closely approximate
BOR’s [16]. The MoM analysis of BOR’s in free-space is well
known [28], [29], with the integral equations in (1) similar
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to such, with substitution of the layered-medium Green’s
function. Therefore, the principal challenge here involves
the efficient analysis of the Green’s function components

and necessitating the eval-
uation of several Sommerfeld-type integrals [17]–[25]. In
the subsequent two sections, we address the proper path of
integration in the complex spectral plane for the evaluation of
such integrals, with application to resonant-frequency calcula-
tions. Moreover, we discuss how such integrals are computed
efficiently, via a modified form of the method of complex
images [22]–[25].

After representation of the surface currentsand along
the BOR generating arc [29], we generate homogeneous matrix
equations (one for each azimuthal mode [28]–[30]) of the form

(2)

where is an MoM impedance matrix and is
an vector representing the basis-function coefficients
for the expansion functions. The impedance matrix is
a function of frequency and nontrivial solutions for
occur at frequencies for which the determinant of
vanishes, providing a numerical scheme for computation of
the complex resonant frequencies. The relative modal currents
are computed subsequently [29], [30]. Details on the efficient
computation of for dielectric BOR’s embedded in a
layered medium can be found in [31].

B. Path of Spectral Integration: Loss-Free Case

The layered-medium Green’s function is of interest in a
wide range of problems [21], [31] and, therefore, the evalu-
ation of such has constituted an important area of research.
As is well known, layered-medium Green’s functions can
only be evaluated in closed form in the spectral domain with
Sommerfeld-type integrals required for determination of their
space-domain counterparts. Numerous numerical and analytic
techniques [17]–[25] have been devised for the evaluation of
such integrals. Here we exploit the method of complex images
[22]–[25]. Previous use of the method of complex images
has focused primarily on driven problems atreal frequencies
[22]–[25]. For the evaluation of target resonances, of interest
here, we seek the natural (nondriven) modes of the structure,
which are characterized bycomplexresonant frequencies [30].
We therefore address the evaluation of Sommerfeld integrals
at complex frequencies, with subsequent application to the
method of complex images. Moreover, to simplify the pre-
sentation, the discussion is restricted initially to the case of
losslessmedia with a subsequent generalization for inclusion
of loss.

We are interested in evaluating integrals of the form

(3)

where . Because our problem
is open above and below, branch points exist at
and [32], where and are the wavenumbers
for the top (first) and bottom ( th) layers, respectively. For an

Fig. 2. Four Riemann sheets defined by the choice of branch cuts in (4).
The path of integration exists on portions of three sheets, and the crosses
denote possible surface- and leaky-wave pole positions. For wavenumbers
kz1 = k0

z1
+ jk00

z1
and kzN = k0

zN
+ jk00

zN
(for the first andN th layer

in Fig. 1, respectively), the Riemann sheets are characterized byk00

z1
< 0 and

k00

zN
< 0 on sheet A,k00

z1
> 0 andk00

zN
< 0 on sheet B,k00

z1
< 0 andk00

zN
> 0

on sheet C, andk00

z1
> 0 andk00

zN
> 0 on sheet D.

assumed time dependence, a given complex resonant
frequency is of the form , where and

(characteristic of a damped oscillation). Therefore,
the branch points reside in the first and third quadrants of
the complex plane (assuming that the wave velocities in
regions 1 and are real atcomplex, resonant frequencies;
the restriction to lossless media implies these velocities are
real atreal frequencies). It is convenient to define branch cuts
such that the various surface- and leaky-wave poles are clearly
partitioned to particular Riemann sheets [32]. In particular,
we utilize the well-known branch cuts [32] defined as (for
complex and )

(4a)

(4b)

The branch cuts in (4a) and (4b) are necessitated by
and , respectively, both

of which appear in the spectral Green’s function (we define
and ). These branch

cuts result in the four Riemann sheets shown in Fig. 2,
where sheets A through D are characterized, respectively,
by and and and

and and Recognizing that the
fields radiated away in regions 1 and are characterized by

and , respectively, we can attribute
physical meaning to the modes (poles) that may exist on
each of the four Riemann sheets. (It should be noted that
such modes, characterized by poles in theplane, are the
waveguide modes supported by the layered medium [32], at
a given complex resonant frequency, not the modes of the
resonant structure itself; the poles of the resonant structure
occur in the complexfrequencyplane [1]). On Riemann sheet
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the fields decay exponentially with increasingin region 1
and with decreasing in region and, therefore, this surface
is characterized by a finite number of poles, representative of
surface waves. At the complex frequency characteristic of a
resonant mode, the fieldsgrow exponentially with transverse
distance away from the source [30] and, therefore, (for
an dependence for large the surface-wave
poles reside in the first and third quadrants of Riemann
sheet

On Riemann sheet and and, therefore,
the layered-medium modes represented by poles on this sheet
are characterized by exponential growth within region 1,
while decaying exponentially in region . This phenomenon
is characteristic of a leaky (improper) mode [27], [32], with
leakage into region 1. One must be careful to assess the
position of these leaky-wave poles in the complexplane.
We begin by considering resonant frequencies for
which , characteristic of a very high- resonator.
This represents the limiting case of nondamped time-harmonic
excitation, for which the leaky-wave pole positions are well
known [27], [32]. In particular, for the time-harmonic case
such modes are characterized by exponential growth in region
1 and exponential decay with distanceaway from
the source [27], [32], the decay in manifested by
energy lost to leakage. Therefore, under such circumstances,
the leaky-wave poles reside in the forth quadrant of this
Riemann sheet (the negatives of these leaky-wave poles also
exist, in the second quadrant) [27], [32]. There are an infinite
number of such leaky-wave poles [27], [32], with the rate of
leakage increasing with increasing . We now consider what
happens as increases, reflecting a lowering of the resonator

. The energy emitted from the resonant source decays with
time, with a corresponding growth in energy with distance
from the source [30]. If the rate of leakage is sufficiently small,
the spatial growth associated with the radiated resonant energy
will overcome the exponential decay inattributed to leakage
and, therefore, such weakly leaky modes are characterized
by (i.e., they grow with Therefore, it is possible
that on sheet B, afinite number of leaky-wave poles may
exist in the first (and third) quadrant. However, as mentioned
above, for the harmonic case the rate of leakage increases
with increasing and, therefore, there will be an infinite
number of leaky-wave poles for which the rate of leakage
overcomes the spatial growth associated with the resonator,
leading to leaky-wave fields that decay with(i.e., );
the associated poles of such modes are situated in the forth
(and second) quadrant of the complex plane (as for the
case of harmonic excitation).

This phenomenon can be understood by making an analogy
to a source in the presence of an active medium that supports
leaky waves (e.g., a leaky transmission line [33]–[35] loaded
with active elements [36]). In the absence of leakage, the fields
on the transmission line grow with distance from the source
due to the active elements (corresponding to the resonant
fields in the layered media, which grow with distance from
the resonator). However, due to leakage, the transmission line
mode loses energy with distance. If the rate of leakage exceeds
the rate of active-element-induced gain, the fields will decay

with distance from the source, with the opposite true in the
case of weak leakage. If, as for the layered medium, there
are an infinite number of leaky waves, with increasing rates
of leakage, there will only be a finite number of such modes
with small enough leakage for the fields to grow with distance
from the source, while there are an infinite number of leaky
waves for which the rate of leakage exceeds the rate of gain,
causing energy decay with distance.

Returning to the layered medium of interest here, we address
the other types of leaky waves that can be supported in such a
medium [27], [32]. In particular, the poles on Riemann sheet
are characterized by leakage (exponential growth) into layer
and exponential decay in region 1, while the poles of Riemann
sheet are characterized by leakage (exponential growth) into
both regions 1 and . The leaky-wave pole positions for sheets

and are as discussed above for Riemann sheet.
Having detailed the four Riemann sheets of the complex

plane, we now address the path of integration for the integral
in (3). Recall that on sheet the fields are radiated (and
grow exponentially) out of regions 1 and, on sheet the
fields decay in region 1 but are radiated into region, and
finally on sheet the fields decay in both regions 1 and.
Assuming that medium is denser than medium 1 (e.g., if
region 1 is air and region soil), the path of integration is
as shown in Fig. 2 on sheets, , and The portion of the
integral on sheet represents the radiation spectrum of the
source, at wavenumbers for which radiation emanates into
layers 1 and ; after crossing the branch cut from sheetto

the source is still in its radiation regime, but total internal
reflection occurs at the interface of layers 1 and 2, such that
the fields emanating into region 1 decay exponentially; finally,
after crossing the branch cut to sheet, the fields decay
exponentially in both layers 1 and , characteristic of total
internal reflection at the top and bottom layers. The selected
branch cuts and path of integration are similar to those in [37]
for which there were only two Riemann sheets (two branch
cuts) because the microwave structure of interest there was
bound below by a conducting plane. However, in [37] the
possibility of leaky-wave poles in quadrant one (and three) of
the complex was not mentioned. We have chosen a path of
integration that resides above the finite number of surface-
and leaky-wave poles in quadrant one (on the appropriate
Riemann sheets), motivated by the pole positions in the
limit .

C. Method of Complex Images at Complex Frequencies

To effect the method of complex images, we utilize the
identity

(5a)

with

(5b)

Therefore, to efficiently evaluate the integral in (3), for a
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source in layer , we form the approximation

(6)

where the coefficients and are estimated along an ap-
propriate line in the complex plane [22]–[25]. To this end,
we change from integration in the variable to integration
in The path of integration in the plane of Fig. 2 is
converted to a linear path in the complex plane (Fig. 3),
along which parametric estimation of and can be readily
effected. For simplicity, in Fig. 3 we only show the branch cuts
in quadrants 1 and 4, in which the integration path resides;
similar branch cuts exist for the negatives of the branch points
shown. We have branch points at due to

at due to
and at due to
The branch cut emanating from has been selected
such that over the entire linear path of integration
(as it was over the entire path of integration in Fig. 2). The
branch cuts emanating from and
are selected as follows. In Fig. 3, along the solid path of
integration starting at we have and

as for the initial path of integration on sheet in
Fig. 2. After this solid path of integration crosses the branch
cut emanating from and
and the dashed portion of integration represents the integration
on sheet of Fig. 2. Finally, after crossing the branch cut
emanating from and
and the dashed-dot path of integration in Fig. 3 represents
integration on sheet of Fig. 2. We perform the parametric
fit in (6), using Prony’s method [10], along the composite
path in Fig. 3, which actually represents integration along
three different -plane Riemann sheets. After so effecting
the approximate representation on the right side of (6), the
identity in (5a) is used to evaluate the space-domain Green’s
function analytically. We note that depending on the relative
densities of layers 1, , and , the branch points may change
their relative location and/or move into the forth quadrant of
the -plane, and similar branch cuts are realized (in Fig. 3
we assume layer is denser than layer 1 (air) and layer
with layer also denser than layer 1).

D. Modifications Due to Lossy Media

The previous discussion was restricted to the case of lossless
media (real-wave velocities), for the purpose of simplifying the
analysis. However, for the case of targets buried in soil, losses
must be accounted for. If the loss in layer is sufficiently
large, the spatial growth with of the resonant fields in that
layer will be overcome by the loss due to material dissipation
and will move into the forth quadrant of the plane (cf.
Fig. 2). To achieve the same four Riemann surfaces as in Fig. 2
(dictated by the properties of and ), the branch cut
associated with is also in quadrant four (with the branch cut
associated with its negative residing in quadrant two). Under

Fig. 3. Path of integration in thekzi plane for source and observer in
layer i (see Fig. 1). Along the solid path of integrationk00

z1
> 0 andk00

zN
> 0

(characteristic of sheet D in Fig. 2), along the dashed path of integration
k00

z1
< 0 and k00

zN
> 0 (characteristic of sheet C in Fig. 2), and along the

dashed-dot path of integrationk00

z1
< 0 andk00

zN
< 0 (characteristic of sheet

A in Fig. 2).

this circumstance, we take the same general integration path
as in Fig. 2, but only cross one branch cut (associated with

). In this manner, we account for exponential growth of
resonant fields into layer 1 (air) while realizing exponential
decay in layer (we only integrate on two Riemann sheets, as
in [37], rather than integration on the three sheets considered in
Fig. 2). Such modifications have straightforward implications
with regard to integration in the plane (Fig. 3).

Therefore, when accounting for loss associated with real
soils, care must be taken to track the location of the branch
cuts (and poles) in the complex and planes, but the
general framework introduced in Sections II-B and C remains
principally unchanged.

III. EXAMPLE RESONANT-FREQUENCY COMPUTATIONS

Below we address the resonant behavior of several buried
plastic targets, as computed by the algorithm outlined in
Section II. Unfortunately, to our knowledge, there are no
previous such computations existing in the literature (measured
data have been presented [9], although these examples did not
present sufficient details, e.g., soil properties, for numerical
comparison). However, we have performed exhaustive tests
on the accuracy of the results presented here, by carefully
verifying, for example, the accuracy of the complex-image
technique for Green’s function evaluation at the complex
(resonant) frequencies of interest.

In the first two examples, we consider a lossless cylindrical
target of 8-cm diameter and 5-cm height, with dielectric
constant . This target is situated in a halfspace
of clay, with electrical parameters of soil B described in
Fig. 4 (representative of Puerto Rico clay with 10% water
content, as reported in [38]). From Fig. 4, we see that the
dielectric contrast between the target and soil background
is significant, leading one to anticipate support of relatively
high- resonances. We consider this example first because
the high- resonance case is beset by less ambiguity in
the soil electrical parameters. In particular, the frequency-
dependent soil parameters in Fig. 4 are only valid on thereal
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(a)

(b)

Fig. 4. Complex dielectric constant of three types of soil [38], [42] used in
resonant-frequency computations. (a)�

0

r. (b) �00r .

frequency axis. One requires an analytic expression for the
complex dielectric constant, valid atall frequencies to perform
analytic continuation into the complex frequency plane [39].
Unfortunately, soil measurements are only performed over a
very limited frequency band, undermining derivation of such
an analytic function. Therefore, in the work presented here,
the complex dielectric constant of the soil [needed in (1)] is
set to the dielectric constant at (i.e., the real part of the
complex resonant frequency). This approximation should be
most appropriate for resonant frequencies near the realaxis
( small relative to ), representative of the high-resonant
target we consider first.

In Fig. 5 we plot the resonant frequency of the fundamental
mode as a function of depth from the top of the target, from 0.5
to 45 cm. In this plot, we also identify the resonant frequency
of the same target situated in a homogeneous medium charac-
terized by the same properties as the soil. As the target depth
increases, one would anticipate that the resonant frequency
would approach that of the same target in the homogeneous
environment (i.e., that the air–soil interface will be of less

Fig. 5. Resonant frequency of a dielectric cylinder(�rB = 20) of 8-cm
diameter and 5-cm height buried in a half-space with electrical parameters
described by soil B in Fig. 4. The resonant frequency is plotted as a function
of depthd from the top of the target. Also plotted is the resonant frequency
of the target situated in a homogeneous medium with the same electrical
parameters.

importance with increasing target depth). We see in Fig. 5
that the buried-target resonant frequency does indeed approach
that of the target in a homogeneous environment. However, an
interesting spiraling effect is manifested with increasing target
depth. A similar phenomenon has been witnessed for a wire
above a lossy plane [40], a ring above a lossy halfspace [41],
and for a wire buried in a lossy half-space [42]. All these
examples, as well as the results in Fig. 5, can be explained
in the same manner. In particular, assume that the target has
(complex) resonant frequency at depth . If the target is
lowered to a depth where is the approximate
resonant wavelength at and is an integer, the impedance
seen by the target looking toward the air–ground interface
is approximately unchanged (at frequency). Therefore, if
the target resonates at frequency for depth , then it
should also resonant at for depths . Note
that the resonant frequencies initially spiral inward (toward
the homogeneous-medium resonance) with increasing depth,
followed by a subsequent outward spiral. Similar effects were
seen in [40]–[42] for perfectly conducting targets, with such
attributed to mode coupling between the self modes of the
target itself and “image” modes produced by reverberations
between the target and the air–ground interface. We believe
the results presented here are the first to show this effect also
occurs for dielectric targets.

The algorithm in Section II allows computation of the
resonant fields, in addition to the resonant frequencies of
Fig. 5. As an example, in Fig. 6 we plot the resonant surface
currents and of (1), representative of the tangential
magnetic and electric fields, respectively, on the surface of the
BOR target. For a set of depths considered in Fig. 5, we see
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(a)

(b)

Fig. 6. Resonant currentsJJJ and MMM for the resonances in Fig. 5. (a)
magnitude ofJ�. (b) magnitude ofMt.

that there is minimal change in the resonant surface currents
and for the mode considered here) with increasing

target depth. In Figs. 5 and 6 we have considered the properties
of a single (lowest-order) resonant mode; an infinite set of
higher-order modes exist [6].

To demonstrate an example of greater complexity than the
half-space problem of Figs. 5 and 6, we consider the same
targetcenteredin a layer of thickness cm (i.e., there is
a distance from the 5-cm-thick target to the top and bottom
of the layer). Moreover, this layer of soil is characterized
by the same electrical parameters as considered in Figs. 5
and 6 (soil type B in Fig. 4). Beneath this layer is a half-
space characterized by soil type C in Fig. 4 (taken from [42],
for 5% water content). This example may simulate a buried
target, for which the disturbed soil has electrical parameters
different than those of the background (undisturbed) soil. The
resonant frequencies of this target are demonstrated in Fig. 7
for ranging from 0.5 to 10 cm. For direct comparison, the
corresponding results of the target in a half-space (Fig. 5) are
also plotted. A spiraling behavior similar to that in Fig. 5 is

Fig. 7. Resonant frequency of the target considered in Fig. 5, centered in
a layer of soil of thickness2d + 5 cm, with the electrical properties of the
layer described by soil B in Fig. 4. Beneath this layer of soil is a half-space
with electrical properties described by soil C in Fig. 4. The target resonant
frequency is plotted as a function ofd. Also plotted is the resonant frequency
of the target situated in a half-space environment (from Fig. 5) and in a
homogeneous medium of soil B in Fig. 4.

manifested with increasing with an analogous explanation.
We see that the resonant frequencies are quantitatively very
similar for these examples (for the same distance from the
target to the air–soil interface). Moreover, note that the dif-
ferences between the resonant frequencies diminishes as the
distance from the target to both interfaces increases.

The examples in Figs. 5–7 considered a target of dielectric
constant such that relatively high- resonances
could be supported. As discussed, the approximations with
regard to soil properties at complex frequencies are more
appropriate under such circumstances. Nevertheless, most
buried plastic targets of interest are composed of dielectric
constants much smaller than considered above. We therefore
consider an example using parameters that may be expected
of practical radar problems. In particular, we consider a
“PMN2” plastic antipersonnel mine, with dimensions shown
in the inset of Fig. 8. This mine is principally plastic, with
dielectric constant . We consider this target buried
in a half-space, using soil type A in Fig. 4. Because the
electrical contrast between the target and background is
now smaller than that considered in Figs. 5–7, one would
anticipate this to be a lower target. The results in Fig. 8
are characterized by a spiraling behavior similar to that in
Figs. 5 and 7. It is interesting to note that, for the depths
considered here, the resonant frequencies of this target
continually spiral outward with increasing depth (cf. Fig. 5).

IV. CONCLUSIONS

A rigorous method-of-moments (MoM) algorithm has been
devised for modeling the resonances of targets buried in a
lossy, layered medium, representative of soil. This research
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Fig. 8. Resonant frequency of a “PMN2” plastic land mine (�rB = 2:9;

with geometry shown inset) buried in a halfspace with electrical parameters
described by soil type A in Fig. 4. Results are plotted as a function of depthd

from the top of the target. For comparison, the resonant frequency of the target
situated in a homogeneous medium of the same parameters is also plotted.

has been motivated by the use of resonances as discriminants
for identifying buried plastic land mines. We have therefore
restricted our analysis to the case of targets that can be
simulated as a dielectric body of revolution since most plastic
mines can be so approximated. Even with this simplification,
such a MoM analysis is computationally challenging. In
particular, one must evaluate the layered-medium Green’s
function at complex (resonant) frequencies. The layered-
medium Green’s function can only be expressed analytically
in the spectral domain, with Sommerfeld-type integrals
required for conversion to the space domain. Such integrals
are computationally expensive if traditional integration
techniques are employed and, therefore, here we have utilized
the recently developed method of complex images [22]–[25].

The method of complex images is based on performing
a parametric fit to the spectral Green’s function along an
appropriate path in the spectral domain, after which each
term in the expansion can be converted to the space domain
analytically via the Sommerfeld or Weyl identity [26]. While
the method of complex images has been in use for several
years, it is believed that this work is its first application
to dielectric targets. We therefore required use of additional
Green’s function components than those used previously for
purely perfectly conducting targets [21]–[25]. Moreover, the
complex frequencies of interest required careful attention to
the spectral-domain path of integration.

Several numerical examples have been presented. We ini-
tially considered relatively high-dielectric targets, for which
high- resonances are supported. Additionally, we also exam-
ined the lowest-order resonant frequency of an actual plastic
land mine. It was demonstrated that the low electrical contrast
between the soil and mine results in low-resonances which
undermine the utility of resonance-based discrimination.

REFERENCES

[1] C. E. Baum, “On the singularity expansion method for the solution
of electromagnetic interaction problems,” Air Force Weapons Lab.
Interaction Notes, Note 88, 1971.

[2] E. Heyman and L.B. Felsen, “A wavefront interpretation of the singu-
larity expansion method,”IEEE Trans. Antennas Propagat., vol. AP-33,
pp. 706–718, July 1985.

[3] H. Shirai and L. B. Felsen, “Modified GTD for generating complex
resonances for flat strips and disks,”IEEE Trans. Antennas Propagat.,
vol. AP-34, pp. 779–790, June 1986.

[4] L. Marin, “Natural mode representation of transient scattered fields,”
IEEE Trans. Antennas Propagat., vol. AP-21, pp. 809–818, Nov.
1973.

[5] F. M. Tesche, “On the analysis of scattering and antenna problems using
the singularity expansion technique,”IEEE Trans. Antennas Propagat.,
vol. AP-21, pp. 53–62, Jan. 1973.

[6] B. L. Merchant, P. L. Moser, A. Nagl, and̈Uberall, “Complex pole
patterns of the scattering amplitude for conducting spheroids and
finite-length cylinders,”IEEE Trans. Antennas Propagat., vol. 36, pp.
1769–1777, Dec. 1988.

[7] E. J. Rothwell, J. Baker, K.-M. Chen, and D. P. Nyquist, “Approximate
natural response of an arbitrary shaped thin wire scatterer,”IEEE Trans.
Antennas Propagat., vol. 39, pp. 1457–1462, Oct. 1991.

[8] L. Peters, Jr. and J. D. Young, “Applications of subsurface transient
radars,” in Time-Domain Measurements in Electromagnetics, E. K.
Miller, Ed. New York: Van Nostrand Reinhold, 1986.

[9] L. Peters, Jr., J. J. Daniels, and J. D. Young, “Ground penetrating radar
as an environmental sensing tool,”Proc. IEEE, vol. 82, pp. 1802–1822,
Dec. 1994.

[10] M. L. Van Blaricum and R. Mittra, “A technique for extracting the
poles and residues of a system directly from its transient response,”
IEEE Trans. Antennas Propagat., vol. AP-23, pp. 777–781, Nov.
1975.

[11] D. G. Dudley, “Parametric modeling of transient electromagnetic sys-
tems,” Radio Sci., vol. 14, pp. 387–396, 1979.

[12] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating pa-
rameters of exponentially damped/undamped sinusoids in noise,”IEEE
Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 814–824, May
1990.

[13] S. Vitebskiy and L. Carin, “Resonances of perfectly conducting wires
and bodies of revolution buried in a lossy, dispersive half space,”IEEE
Trans. Antennas Propagat., vol. 28, pp. 1575–1583, Dec. 1996.

[14] J. M. Bourgeois and G. S. Smith, “A fully three-dimensional simulation
of ground penetrating radar: FDTD theory compared with experiment,”
IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 36–28, Jan. 1996.

[15] H. S. Chang and K. K. Mei, “Scattering of electromagnetic waves by
buried and partly buried bodies of revolution,”IEEE Trans. Geosci.
Remote Sensing, vol. GRS-23, pp. 596–592, July 1985.

[16] A. C. Dubey and R. L. Barnard, Eds., “Detection and remediation
technologies for mines and minelike targets,”Proc. SPIE, vol. 3079,
1997.

[17] J. R. Wait, “Image theory of a quasistatic magnetic dipole over a
dissipative half-space,”Electron. Lett., vol. 5, no. 13, pp. 281–282,
June 1969.

[18] Y. Rahmat-Samii, R. Mittra, and P. Parhami, “Evaluation of Sommerfeld
integrals for lossy half-space problems,”Electromagn., vol. 1, no. 1, pp.
1–28, 1981.

[19] S. F. Mahmoud and A. D. Metwally, “New image representations for
dipoles near a dissipative earth,”Radio Sci., vol. 21, pp. 605–616, Nov.
1981.

[20] I. V. Lindell and E. Alanen, “Exact image theory for the Sommer-
feld half-space problem, Part III: General formulation,”IEEE Trans.
Antennas Propagat., vol. AP-32, pp. 1027–1032, Oct. 1984.

[21] K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation
by surfaces of arbitrary shape in Layered media, Parts I and II,”IEEE
Trans. Antennas Propagat., vol. 38, pp. 335–352, Mar. 1990.

[22] J. J. Yang, Y. L. Chow, D. G. Fang, “Discrete complex images of a
three-dimensional dipole above and within a lossy ground,”Proc. Inst.
Elect. Eng., vol. 138, pt. H, no. 4, pp. 319–326, Aug. 1991.

[23] R. M. Shubair and Y. L. Chow, “A simple and accurate complex image
interpretation of vertical antennas present in contiguous dielectric half-
spaces,”IEEE Trans. Antennas Propagat., vol. 41, pp. 806–812, June
1993.

[24] Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, “A closed-form
spatial Green’s function for the thick microstrip substrate,”IEEE Trans.
Microwave Theory Tech., vol. 39, pp. 588–562, Mar. 1991.



GENG et al.: RESONANCES OF DIELECTRIC BOR BURIED IN DISPERSIVE LAYERED MEDIUM 1313

[25] S. Vitebskiy, K. Sturgess, and L. Carin, “Short-pulse scattering from
buried perfectly conducting bodies of revolution,”IEEE Trans. Antennas
Propagat., vol. 28, pp. 143–151, Feb. 1996.

[26] W.C. Chew,Waves and Fields in Inhomogeneous Media. Piscataway,
NJ: IEEE Press, 1995.

[27] T. Tamir and A. A. Oliner, “Guided complex waves—Fields at an
interface: Part I; Relation to radiation patterns: Part II,”Proc. Inst. Elect.
Eng., vol. 110, pp. 310–334, 1963.

[28] S. R. Vechinski and T. H. Shumpert, “Natural resonances of conducting
bodies of revolution,”IEEE Trans. Antennas Propagat., vol. 38, pp.
1133–1136, July 1990.

[29] A. W. Glisson, D. Kajfez, and J. James, “Evaluation of the modes
in dielectric resonators using a surface integral equation formulation,”
IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 1023–1029,
Dec. 1983.

[30] S. Vitebskiy and L. Carin, “Resonances of perfectly conducting wires
and bodies of revolution buried in a lossy dispersive halfspace,”IEEE
Trans. Antennas Propagat., vol. 28, pp. 1575–1583, Dec. 1996.

[31] N. Geng and L. Carin, “Wideband electromagnetic scattering from a
dielectric BOR buried in a layered lossy, dispersive medium,”IEEE
Trans. Antennas Propagat., vol. 47, pp. 610–619, Apr. 1999.

[32] L. B. Felsen and N. Marcuvitz,Radiation and Scattering of Waves.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[33] N. K. Das and D. M. Pozar, “Full-wave spectral-domain computation
of material, radiation and guided-wave losses in infinite multilayered
printed transmission lines,”IEEE Trans. Microwave Theory Tech., vol.
39, pp. 54–63, Jan. 1991.

[34] L. Carin and N. K. Das, “Leaky waves on broadside-coupled mi-
crostrip,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 58–66,
Jan. 1992.

[35] M. Tsuji and H. Shigesawa, “Packaging of printed circuit lines: A
dangerous cause of narrow pulse distortion,”IEEE Trans. Microwave
Theory Tech., vol. 42, pp. 1784–1790, Sept. 1994.

[36] C. J. Madden, M. J. W. Rodwell, R. A. Marsland, Y. C. Pao, and D.
M. Bloom, “Generation of 3.5 ps fall-time shock waves on a monolithic
GaAs nonlinear transmission line,”IEEE Electron. Device Lett., vol. 9,
p. 303, 1988.

[37] K. A. Michalski and D. Zheng, “Analysis of microstrip resonators of
arbitrary shape,”IEEE Trans. Microwave Theory Tech., vol. 40, pp.
112–119. Jan. 1992.

[38] J. E. Hipp, “Soil electromagnetic parameters as functions of frequency,
soil density, and soil moisture,”Proc. IEEE, vol. 62, pp. 98–103, Jan.
1974.

[39] K. E. Oughstun and G. C. Sherman,Electromagnetic Pulse Propagation
in Causal Dielectrics. New York: Springer-Verlag, 1994, vol. 16.

[40] L. S. Riggs and T. H. Shumpert, “Trajectories of singularities of a thin
wire scatterer parallel to lossy ground,”IEEE Trans. Antennas Propagat.,
vol. AP-27, pp. 864–868, Nov. 1979.

[41] E. J. Rothwell and M. J. Cloud, “On the natural frequencies of an annular
ring above a conducting half space,”J. Electron. Waves Appl., vol. 10,
pp. 155–179, Feb. 1996.

[42] S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, “Ultra-wideband,
short-pulse ground-penetrating radar: Simulation and measurement,”
IEEE Trans. Geosci. Remote Sensing, vol. 35, pp. 762–772, May 1997.

Norbert Geng (S’91–M’96) was born May 14, 1965 in Lauchringen, Ger-
many. He received the Dipl.Ing. and Dr.Ing. degrees in electrical engineering
from the University of Karlsruhe, Germany, in 1991 and 1996, respectively.

From 1991 to 1996, he was with the Institute for Microwaves and
Electronics at the University of Karlsruhe, working on full-wave propagation
modeling for radio communication systems. In January 1997 he joined the
Department of Electrical and Computer Engineering at Duke University,
Durham, NC, for 18 months, in a Visiting Postdoctoral capacity. Since
July 1998 he has been back with the University of Karlsruhe. His current
research interests include computational methods in electromagnetics and
wave propagation modeling.

Dr. Geng received the Mannesmann Innovation Award in 1997 for his
Ph.D. dissertation on full-wave propagation modeling for radio communication
systems.

David R. Jackson (S’83–M’85–SM’95–F’99) was born in St. Louis, MO,
on March 28, 1957. He received the B.S.E.E. and M.S.E.E. degrees from the
University of Missouri, Columbia, in 1979 and 1981, respectively, and the
Ph.D. degree in electrical engineering from the University of California, Los
Angeles, in 1985.

From 1985 to 1991, he was an Assistant Professor in the Department of
Electrical and Computer Engineering at the University of Houston, TX. From
1991 to 1998 he was an Associate Professor in the same department and
since 1998 has been a Professor there. He is on the editorial board of the
International Journal of RF and Microwave Computer-Aided Engineering. His
current research interests include computer-aided design of microstrip anten-
nas and circuits, microstrip antenna analysis and design, periodic structures,
leaky-wave antennas, leakage effects in microwave integrated circuits, and
bioelectromagnetics.

Dr. Jackson currently serves as the secretary for URSI United States
Commission B and is a member of ADCOM for the IEEE Antenna and
Propagation Society. He is on the editorial board of IEEE TRANSACTIONS

ON MICROWAVE THEORY AND TECHNIQUES, is an Associate Editor for the IEEE
Press Series on Electromagnetic Waves, and is a past Associate Editor for the
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.

Lawrence Carin (SM’96) was born March 25, 1963 in Washington, DC.
He received the B.S., M.S., and Ph.D. degrees, all in electrical engineering,
from the University of Maryland, College Park, in 1985, 1986, and 1989,
respectively.

In 1989, he joined the Electrical Engineering Department at Polytechnic
University, Brooklyn, NY, as an Assistant Professor, and became an Asso-
ciate Professor there in 1994. In September 1995 he joined the Electrical
Engineering Department at Duke University, Durham, NC, where he is
an Associate Professor. His current research interests include short-pulse
scattering, propagation, and signal processing. He is the principal investigator
on an Army Research Office funded Multidisciplinary University Research
Initiative (MURI) on demining.

Dr. Carin is a member of the Tau Beta Pi and Eta Kappa Nu honor societies.


