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On the Resonances of a Dielectric BOR
Buried in a Dispersive Layered Medium

Norbert GengMember, IEEE David R. Jacksoniellow, IEEE and Lawrence Carirenior Member, IEEE

Abstract—A method-of-moments (MoM) analysis is applied [12]. In the work presented here, we are interested in dielectric
to the problem of determining late-time resonances of dielectric targets (e.g., plastic land mines) buried in a lossy, dispersive
bodies of revolution buried in a lossy layered medium, with layered medium (simulating soil). There have been previous

application to plastic-land-mine identification. To make such an . ) . .
analysis tractable, we have employed the method of complex experimental studies on resonance-based identification of plas-

images to evaluate the layered-medium Green’s function. The tic targets, with some results being particularly promising
application of this method to resonant structures characterized [8], [9]. However, it is well known that the strength of
by complex resonant frequencies, introduces numerical issues not excitation of such modes is strongly dependent on the electrical
manifested at real frequencies (i.e., for driven problems) with oqqiaqt petween the dielectric target and the background

such discussed here in detail. Numerical results are presented i M dv 113 he SEM
for several buried targets in which we demonstrate, for example, soil. Moreover, a recent study [13] on the resonances

the spiraling character of the resonant frequencies of particular Of buried conductingtargets has revealed an often strong

targets as a function of target depth. dependence of the resonant frequencies on the target depth.
Index Terms—Buried object detection, natural resonances, in- 1 iS is because, for subsurface targets, the resonant frequencies
homogeneous media. are not dictated by the buried target alone, but by tital

scattering environment (i.e., the target in the presence of the

soil). In particular, if there are strong reverberations between

|. INTRODUCTION the target and air-ground interface, the target depth plays
important role in the total-target resonant frequencies.
is is a very important issue, for the target depth is often

centers in and on the target. Subsequently, after the incid qt known exactl)_/ (e.g:, fpr buried mines), comphcatl_ng_
wave has departed (at what is termed “late time”) mult[_esonance-based identification of such targets. Since it is

ple diffractions occurbetweenscattering centers and, for adlfncult to comprehensively study this issue experimentally,

penetrable target, energy reverberates inside as well. Egl%'ha wide range of targets, soll types, and target depths, an

such multiple diffraction or reverberation is accompanied Ha/:curate theoretical model is required, motivating the work

energy that radiates away from the scatterer. Consequen SPse“ted here.

the late-time energy in and on the target decays, as do tBé\/lodeling of a target's natural modes requires _solution Qf

associated late-time radiated fields. This late-time phenomerl8fi SOUrce-free target response. Therefore, algorithms which
has been parametrized rigorously in terms of the well-knowfauire an excitation such as the finite-difference time-domain
r&FDTD) [14], are inappropriate. While the target resonant

F a target is excited by a short pulse of electromagne
energy, fields are diffracted initially at localized scatterin

singularity expansion method (SEM) developed by Baum [1Y, , . T .
in which each resonant mode is associated with a pole in thgduéncies can in principle be extracted from the late-time
complex frequency plane. Additionally, Felsebal. [2], [3] fields computed via such a tlme-qlomaln'model (Vlf’;l, for
have rigorously connected the SEM resonances to multifigamPle. the Prony [10], [11] or matrix-pencil [12] algorithms
late-time diffractions and reverberations. discussed above), modal excitation is dictated by the driving
The SEM resonant frequencies, representative of the natJi‘HlCt_'on and, therefore, a range of incident f|§lds would be
target response, are independent of excitation (i.e., are aspgatired to catalogue all the modes of a given structure.
independent [1]-[5]), although the strength of excitation of goNsequently, the natural target response is best analyzed
given mode is excitation dependent. Aspect independence’ifi @ frequency-domain algorithm. The finite-element method
such resonant frequencies has precipitated significant inteftM) [15] constitutes a frequency domain scheme that can be
in resonant-frequency-based targg¢ntification Resonance- @dapted for such purposes. However, while FEM algorithms
based discrimination has been investigated for airborne [6], e quite general and accurate, they require discretization

as well as subsurface [8], [9] targets, using such techniq sthe fields _throughout the cor_nputational dolmain. qu the
tree-dimensional problems of interest here, in complicated

as Prony’s method [10], [11] and the matrix-pencil metho ; X ! )
layered environments, the generality of FEM is obviated by
Manuscript received February 10, 1998; revised June 16, 1999. th.e_ attendant numerical complexity [15]. Therefore., here we
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II. NUMERICAL ALGORITHM
e A
layer 1 ‘\,i?i,/ &1, Wi, Oy

R ‘ ; A. Method of Moments Formulation
7 layer 2 €, M2, 02,
o’ PPN AN NN We are interested in the natural (resonant) modes of a dielec-

&t tric BOR embedded in a lossy, dispersive layered medium (see

Fig. 1). By enforcing boundary conditions for the tangential
electric and magnetic field components on the BOR surface,
one obtains coupled integral equations for the resonant electric
and magnetic surface currenfsand M, respectively. We em-
ploy a mixed-potential integral equation (MPIE) formulation
from which we have (foromplexw = ' + jw')

0=nx [ loutr)Katrr')

Fig. 1. Schematic of a dielectric body of revolution buried in a layered

medium. + jwpupGp(r, 7 |- J(@') dS' —n x V /
S

. . [ Koe(r,r') Gg(r,r)
preserving rotational symmetry throughout the BOR (layered- . k k
medium) composite. While the restriction to BOR targets is o(r) +W6.(T) oB tjwep
clearly a simplification, most land mines are accurately so +n XV ></ [Gr(r, 7))+ Gp(r, 7 )] - M(+') dS'
modeled [16]. s

The MoM analysis of targets buried in a lossy layered (1a)
medium requires accurate computation of the layered- med| /
Green’s fu?wctlon with such neréessnatlng the Zﬁlment an / )+ jwe(r) Kr(r,7’)
ysis of Sommerfeld spectral integrals [17]-[21]. Numerous + (0B + jwep)Ggp(r, r)I] M(r') ds’
techniques have been developed for the analysis of these Kym(r,r)  Gplr,r)
ubiquitous integrals [17]-[21], with the recently developed —n XV / { +— :
method of complex images constituting a particularly attrac- Joonlr JWHB
tive option [22]-[25]. This algorithm represents the spectral- —n x V x / [GA(r,r’) + Gp(r, )] J(r') dS’ (1b)
domain reflection coefficient inherent to the spectral Green’s s
function in terms of a sum of exponentials, determined viaghere I represents the unit dyad. The layered-medium per-
parametric estimation (again, via either of the aforementionedttivity, permeability, and conductivity are represented by
parametric algorithms [10]-[12]). Subsequently, each spectralr), ;(r), ando(r), respectively, andp, 15, andop repre-
domain term in this summation is converted to the spasent these same parameters for the homogeneous, lossy BOR
domain analytically, via the Sommerfeld or Weyl identitytarget. Electric and magnetic charge densities on the surface
[26]. The parametric estimation is performed along a propbave been replaced by derivatives of the electric and magnetic
path in the complex spectral plane with careful considerati@urface current densities, respectively, using the continuity
of branch cuts and possible surface-wave and leaky-wanaation. Explicit expressions for the spectral-domain layered-
poles [27]. While such matters have been addressed in detaddium dyadic kerneK 4, the dyadic Green'’s functiof 4
for the driven problem, characterized bgal frequencies, (representing the magnetic vector potential produced by an
special consideration is required for resonant-frequency comfinitesimal electric dipole), and the electric scalar potential
putation. In particular, target resonances are characteriz€g. of a point charge associated with a horizontal electric
by complexfrequencies, introducing complications with redipole have been given by Michalski and Zheng [21], where
gard to branch-cut and pole locations, with such impactinge use their “Formulation C.” The additional termbSy, G,
the path of integration for the Sommerfeld integrals. WendK,, are necessitated by the equivalent magnetic currents
address these issues in detail and demonstrate how s(rabt present for perfectly conducting targets [21]) and can
are handled within the context of the method of complese determined via duality. Finally, for calculating the field
images. inside the homogeneous BOR, produced by currents on its

The remainder of the text is organized as follows. Isurface, we utilize the homogeneous-medium Green’s function
Section Il we summarize the general features of MoM-basétl; = exp(—jkpR)/4n R, where R represents the distance
analysis of SEM resonances for dielectric BOR’s buried in lzetween source and observation points @npddenotes the
lossy, layered medium (e.g., soil). For details on the layeredtavenumber inside the BOR.
medium Green’s function, recent work on such is cited. The integral equations in (1) are applicable to any dielectric
However, the application of the method of complex imagdarget embedded in a layered medium, but here we restrict
at resonant (complex) frequencies is new, and is therefarerselves to the case of a BOR to make the numerical analysis
discussed in detail. In Section Ill, several numerical results aractable. However, as stated in the Introduction, most plastic
presented as a function of the properties of the target, tartgid mines, the interest of this work, closely approximate
depth, and background environment. Finally, conclusions @8®R’s [16]. The MoM analysis of BOR's in free-space is well
addressed in Section IV. known [28], [29], with the integral equations in (1) similar

}v’ J(r') ds’

V' M(r') dS’
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to such, with substitution of the layered-medium Green’s k" o Kk

function. Therefore, the principal challenge here involves \\

the efficient analysis of the Green’s function components w X K‘ kn
K., Gs, Kye, Kp,Gp, and K,,, necessitating the eval- k wx X |k :
uation of several Sommerfeld-type integrals [17]-[25]. In -~ ** & | ky oo kX x g

integration in the complex spectral plane for the evaluation of
such integrals, with application to resonant-frequency calculgs. mann sheet A: "<, k 5'<0
tions. Moreover, we discuss how such integrals are computed ‘

the subsequent two sections, we address the proper path of -k w

-kN\h -

Riemann sheet B: k. ">0, k"<0

efficiently, via a modified form of the method of complex x Kt " ko't
images [22]-[25]. ky y ey
After representation of the surface curredtand M along x e s h
the BOR generating arc [29], we generate homogeneous matrix T X : i &% XL g
P P

equations (one for each azimuthal mode [28]-[30]) of the form | '_kN x

: _mw )
Zi=0 ) | x \\ X

Riemann sheet C: &, "<0, k,,,/">0 Riemann sheet D: &,;">0, k,,">0

where Z is an N x N MoM impedance matrix and is

an N x 1 vector representing the basis-function coefficien%?' 2. Four Riemann sheets defined by the choice of branch cuts in (4).
e path of integration exists on portions of three sheets, and the crosses

for the IV expansion functions. The impedance matrix igenote possible surface- and leaky-wave pole positions. For wavenumbers
a function of frequencyw and nontrivial solutions fori k.1 = kL, + jk); andk.n = K. + jk!y (for the first ag%z\’th layer

; ; ; in Fig. 1, respectively), the Riemann sheets are characterizéd by 0 and
occur at frequ_e_nmes for Whlch the determinant Z(w_) K\, < 0'on sheet Ak >0 andk”,, <0 on sheet BK”, < 0 andk”, >0
vanishes, providing a numerical scheme for computation gf sheet c, and”’, >0 and k", >0 on sheet D.
the complex resonant frequencies. The relative modal currents

are computed subsequently [29], [30]. Details on the efficient ) ) .
computation of Z(w) for dielectric BOR's embedded in a@SSumedxp(jw?) time dependence, a given complex resonant
layered medium can be found in [31]. frequency is of the_formu = W + ju, V\_/her_ew’ >0 and
w” >0 (characteristic of a damped oscillation). Therefore,
the branch points reside in the first and third quadrants of
B. Path of Spectral Integration: Loss-Free Case the complexk, plane (assuming that the wave velocities in

The layered-medium Green’s function is of interest in Egions 1 andv are real atcomplex resonant frequencies;
wide range of problems [21], [31] and, therefore, the evalibe restriction to lossless media implies these velocities are
ation of such has constituted an important area of researt®al atreal frequencies). It is convenient to define branch cuts
As is well known, layered-medium Green’s functions cafuch that the various surface- and leaky-wave poles are clearly
only be evaluated in closed form in the spectral domain wif@rtitioned to particular Riemann sheets [32]. In particular,
Sommerfeld-type integrals required for determination of theive utilize the well-known branch cuts [32] defined as (for
space-domain counterparts. Numerous numerical and analg@nplexk, = &/, + &k and k,, = k;, + jk;)
techniques [17]-[25] have been devised for the evaluation of ) , ) ,
such integrals. Here we exploit the method of complex images Rk =Kk, k2 =k, <k®—k? (4a)
[22]-[25]. Previous use of the method of complex images N A Y VRN S N RN B N (4b)
has focused primarily on driven problemsraal frequencies NN T RpTpr e T NN
[22]-[25]. For the evaluation of ta}rget resonances, of mtereﬁe branch cuts in (4a) and (4b) are necessitated:ky—=
here, we seek the natural (nondriven) modes of the structhkez 2112 and kon = (2 1211/2 tively. both
which are characterized mpmplexresonant frequencies [30]. 5} . /] and foy = by — kgl 7™, respectively, both

) . 'of which appear in the spectral Green’s function (we define
We therefore address the evaluation of Sommerfeld integrals” % Y din = & ) Th b h
at complex frequencies, with subsequent application to thet ~— "=t +kzy and by = ky + jkZy). These branc
' clits result in the four Riemann sheets shown in Fig. 2,

metho_d of complex IMages. Mor_eover_, .t(.) simplify the pre\fvpere sheets A through D are characterized, respectively,
sentation, the discussion is restricted initially to the case

o o . : k7 <0 and kY, <0,k7, >0 and £/, <0,k <0 and
losslessmedia with a subsequent generalization for mclusmﬁf " # # K
of loss. v >0, and £/, >0 and k”, >0. Recognizing that the

: . L fields radiated away in regions 1 atd are characterized by
We are interested in evaluating integrals of the form . : . .
exp(—jk.12) andexp(jk.nz), respectively, we can attribute
, 1 oo , physical meaning to the modes (poles) that may exist on
f(&2,7) = o /0 J(kp, 2,2 )Jo(kp€)kp dk, - (3)  each of the four Riemann sheets. (It should be noted that
such modes, characterized by poles in fjeplane, are the
where¢ = [(z — 2/)? + (y — &/)?]*/2. Because our problem waveguide modes supported by the layered medium [32], at
is open above and below, branch points exiskat= £k, a given complex resonant frequency, not the modes of the
andk, = +ky [32], wherek; and kx are the wavenumbersresonant structure itself;, the poles of the resonant structure
for the top (first) and bottom/(th) layers, respectively. For anoccur in the complefrequencyplane [1]). On Riemann sheet
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A, the fields decay exponentially with increasingn region 1 with distance from the source, with the opposite true in the
and with decreasing in region N and, therefore, this surfacecase of weak leakage. If, as for the layered medium, there
is characterized by a finite number of poles, representativea® an infinite number of leaky waves, with increasing rates
surface waves. At the complex frequency characteristic ofoh leakage, there will only be a finite number of such modes
resonant mode, the fieldgow exponentially with transverse with small enough leakage for the fields to grow with distance
distance¢ away from the source [30] and, therefore, (fofrom the source, while there are an infinite number of leaky
an exp(—jk,€) dependence for larg€) the surface-wave waves for which the rate of leakage exceeds the rate of gain,
poles reside in the first and third quadrants of Riemarmausing energy decay with distance.
sheet A. Returning to the layered medium of interest here, we address
On Riemann sheeB, k7, >0 andk”,, < 0, and, therefore, the other types of leaky waves that can be supported in such a
the layered-medium modes represented by poles on this shieetlium [27], [32]. In particular, the poles on Riemann sh@et
are characterized by exponential growth withn region 1, are characterized by leakage (exponential growth) into |Ayer
while decaying exponentially in regiolN. This phenomenon and exponential decay in region 1, while the poles of Riemann
is characteristic of a leaky (improper) mode [27], [32], witlsheetD are characterized by leakage (exponential growth) into
leakage into region 1. One must be careful to assess thh regions 1 and/. The leaky-wave pole positions for sheets
position of these leaky-wave poles in the complexplane. C andD are as discussed above for Riemann shget
We begin by considering resonant frequenciést jw” for Having detailed the four Riemann sheets of the complex
which «” — 0, characteristic of a very higtp resonator. plane, we now address the path of integration for the integral
This represents the limiting case of nondamped time-harmoiiic (3). Recall that on sheeb the fields are radiated (and
excitation, for which the leaky-wave pole positions are wetirow exponentially) out of regions 1 amdl, on sheetC' the
known [27], [32]. In particular, for the time-harmonic casdields decay in region 1 but are radiated into regi¥n and
such modes are characterized by exponential growth in regiomally on sheetA the fields decay in both regions 1 afd
1 (k”, > 0), and exponential decay with distan¢@way from Assuming that mediumV is denser than medium 1 (e.g., if
the source(k), < 0) [27], [32], the decay it manifested by region 1 is air and regionV soil), the path of integration is
energy lost to leakage. Therefore, under such circumstanagsshown in Fig. 2 on sheet3, C, andA. The portion of the
the leaky-wave poles reside in the forth quadrant of thigtegral on sheel represents the radiation spectrum of the
Riemann sheet (the negatives of these leaky-wave poles aegrce, at wavenumbefs for which radiation emanates into
exist, in the second quadrant) [27], [32]. There are an infinitayers 1 andV; after crossing the branch cut from shdeto
number of such leaky-wave poles [27], [32], with the rate df the source is still in its radiation regime, but total internal
leakage increasing with increasitig|. We now consider what reflection occurs at the interface of layers 1 and 2, such that
happens as’’ increases, reflecting a lowering of the resonatdhe fields emanating into region 1 decay exponentially; finally,
Q. The energy emitted from the resonant source decays wétfier crossing the branch cut to shegf the fields decay
time, with a corresponding growth in energy with distagce exponentially in both layers 1 ant¥, characteristic of total
from the source [30]. If the rate of leakage is sufficiently smalinternal reflection at the top and bottom layers. The selected
the spatial growth associated with the radiated resonant eneigignch cuts and path of integration are similar to those in [37]
will overcome the exponential decay §nattributed to leakage for which there were only two Riemann sheets (two branch
and, therefore, such weakly leaky modes are characterizits) because the microwave structure of interest there was
by k7 >0 (i.e., they grow with¢). Therefore, it is possible bound below by a conducting plane. However, in [37] the
that on sheet B, dinite number of leaky-wave poles maypossibility of leaky-wave poles in quadrant one (and three) of
exist in the first (and third) quadrant. However, as mentionéde complexk, was not mentioned. We have chosen a path of
above, for the harmonic case the rate of leakage increa#fg€gration that resides above the finite number of surface-
with increasing|k//| and, therefore, there will be an infiniteand leaky-wave poles in quadrant one (on the appropriate
number of leaky-wave poles for which the rate of leakag@diemann sheets), motivated by the pole positions in the
overcomes the spatial growth associated with the resonaitpit w”’ — 0.
leading to leaky-wave fields that decay wigh(i.e., &, <0);
the associated poles of such modes are situated in the forth
(and second) quadrant of the compléx plane (as for the
case of harmonic excitation). C. Method of Complex Images at Complex Frequencies
This phenomenon can be understood by making an analogyro effect the method of complex images, we utilize the
to a source in the presence of an active medium that suppadientity
leaky waves (e.g., a leaky transmission line [33]-[35] loaded o—ikR 1 oo 1
with active elements [36]). In the absence of leakage, the fields = b—c_jk'/z_zl/‘]o(kpg)kp dk, (5a)
on the transmission line grow with distance from the source drR 2w Jo o g2k
due to the active elements (corresponding to the reson#ih
fields in the layered media, which grow with distan.ce_from k2 — ki 1k, R=\Vi—-2P+y—y)P+|z—2]
the resonator). However, due to leakage, the transmission line (5b)
mode loses energy with distance. If the rate of leakage exceeds
the rate of active-element-induced gain, the fields will deca&herefore, to efficiently evaluate the integral in (3), for a
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source in layer, we form the approximation

. e—ikzig(,2") e—ik=i(2,2")

N ~
T2 2) = g k) ™ 5

M
| im Ak + Y ame | (6)

k,— 00 el
where the coefficients,, andb,, are estimated along an ap-
propriate line in the complek_; plane [22]-[25]. To this end,
we change from integration in the variablg to integration
in k.;. The path of integration in thé&, plane of Fig. 2 is ’
converted to a linear path in the compléy; plane (Fig. 3), !
along which parametric estimation @f, andb,,, can be readily 3 Path of intearation in thé. plane 4 ob _

. s . . 1g. o. al ol Integration In '2; plane Tor source ana observer In
_effeCted' For simplicity, I.n Flg'_ 3we Or.”y ShOV\_/ the branch (_:uq%yeri (see Fig. 1). Along the solid path of integratibfi, >0 andk”,, >0
in quadrants 1 and 4, in which the integration path residgsharacteristic of sheet D in Fig. 2), along the dashed path of integration
similar branch cuts exist for the negatives of the branch poir@l’éﬁg gmtd ’f’;ﬁ >fQ t(Char?dCftie/ristig of dszlelet Coi? Eig- 2t), _a?d 6}'019 tthe

. ashed-dot path of Integratiofl; <0 ana k., < characteristic of shee

shown. We have branch pointsiaf; = -£; due tok, = (k2 — A in Fig. 2)'p 9 =1 =N
k22, atk.; = £[k? —k?]/? due tok.; = [k} —k?+K2,]Y2,
and atk,; = +[k? — k%]Y/? due tok, y = [k — k7 + k2,42
The branch cut emanating frof.; = k; has been selectedthis circumstance, we take the same general integration path
such thafim(k,) > 0 over the entire linear path of integrations in Fig. 2, but only cross one branch cut (associated with
(as it was over the entire path of integration in Fig. 2). Thkd). In this manner, we account for exponential growth of
branch cuts emanating froft? — £2]1/2 and [k2 — k2,]1/2 resonant fields into layer 1 (air) while realizing exponential

are selected as follows. In Fig. 3, along the solid path €cay inlayetV (we only integrate on two Riemann sheets, as
integration starting ak.; = k;, we havek” > 0,%”, >0, and In [37], rather than integration on the three sheets considered in
Ky >0, as for the initial path of integr/:;\tion on sheBtin Fig. 2). Such modifications have straightforward implications

Fig. 2. After this solid path of integration crosses the brandMith regard to integration in thé.; plane (Fig. 3).
cut emanating froryﬁkg_k%]l/Q’kg >0,k <0, andk”y >0, Therefore, when accounting for loss associated with real

izl zN

and the dashed portion of integration represents the integratf$Hls, care must be taken to track the location of the branch

on sheetC of Fig. 2. Finally, after crossing the branch cu€uts (and poles) in the comple, and &.; planes, but the
emanating fromk? — k%]'/2, k!> 0,k <0, and k25 <0, general framework introduced in Sections II-B and C remains

z

and the dashed-dot path of integration in Fig. 3 represemdncipally unchanged.

integration on sheetl of Fig. 2. We perform the parametric

fit in (6), using Prony’s method [10], along the composite |ll. EXAMPLE RESONANT-FREQUENCY COMPUTATIONS

path in_ Fig. 3, which act_ually represents integration al_ong Below we address the resonant behavior of several buried
three d|ﬁer§ntkzi-plane R'e”".'a”” sheets._ After_ S0 eﬁec“”%%stic targets, as computed by the algorithm outlined in
'the gpproxmatg representation on the right side C.)f 6). t ction Il. Unfortunately, to our knowledge, there are no
identity in (5a) is used to evaluate the space-domain Gree

functi tically. Wi te that d di h | t.\}h%vious such computations existing in the literatuneésured
unction analytically. Vve nq € that depending on he relalivig,ia have been presented [9], although these examples did not
densities of layers 1V, andi, the branch points may chang

their relative locati d/ into the forth drant resent sufficient details, e.g., soil properties, for numerical
er relative focation andjor move Into the forth quadran omparison). However, we have performed exhaustive tests
the k_;-plane, and similar branch cuts are realized (in Fig.

. ) the accuracy of the results presented here, by carefull
we assume layer is denser than layer 1 (air) and layaf, y P y y

ith | N also d than | 1 verifying, for example, the accuracy of the complex-image
with layer N also denser than layer 1). technique for Green’s function evaluation at the complex

o ) (resonant) frequencies of interest.

D. Modifications Due to Lossy Media In the first two examples, we consider a lossless cylindrical

The previous discussion was restricted to the case of losslemget of 8-cm diameter and 5-cm height, with dielectric
media (real-wave velocities), for the purpose of simplifying theonstante,.5 = 20. This target is situated in a halfspace
analysis. However, for the case of targets buried in soil, lossafs clay, with electrical parameters of soil B described in
must be accounted for. If the loss in layaft is sufficiently Fig. 4 (representative of Puerto Rico clay with 10% water
large, the spatial growth withz| of the resonant fields in that content, as reported in [38]). From Fig. 4, we see that the
layer will be overcome by the loss due to material dissipatiatielectric contrast between the target and soil background
andkx will move into the forth quadrant of the, plane (cf. is significant, leading one to anticipate support of relatively
Fig. 2). To achieve the same four Riemann surfaces as in Fighigh-Q resonances. We consider this example first because
(dictated by the properties df/, and £”,;), the branch cut the high¢) resonance case is beset by less ambiguity in
associated witlk - is also in quadrant four (with the branch cuthe soil electrical parameters. In particular, the frequency-
associated with its negative residing in quadrant two). Unddependent soil parameters in Fig. 4 are only valid onréaé

kyy"<0, k<0
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Fig. 5. Resonant frequency of a dielectric cylinderp = 20) of 8-cm
diameter and 5-cm height buried in a half-space with electrical parameters
described by soil B in Fig. 4. The resonant frequency is plotted as a function
of depthd from the top of the target. Also plotted is the resonant frequency
of the target situated in a homogeneous medium with the same electrical
parameters.

importance with increasing target depth). We see in Fig. 5
S that the buried-target resonant frequency does indeed approach

——

ol T that of the target in a homogeneous environment. However, an
interesting spiraling effect is manifested with increasing target
‘ t S O B L ‘ ‘ depth. A similar phenomenon has been witnessed for a wire

(negative) imag. part -Im(epsr) of relative permittivity

-2
O 10030 A0S0 60 0 800 1 ahove a lossy plane [40], a ring above a lossy halfspace [41],
real frequency f [MHz] and for a wire buried in a lossy half-space [42]. All these
(b) examples, as well as the results in Fig. 5, can be explained
Fig. 4. Complex dielectric constant of three types of soil [38], [42] used in the same manner. In particular, assume that the target has
resonant-frequency computations. ) (b) €;'. (complex) resonant frequeney, at depthd;. If the target is

lowered to a depthl; + nA;/2, where X, is the approximate

frequency axis. One requires an analytic expression for thesonant wavelength at; andr is an integer, the impedance
complex dielectric constant, valid all frequencies to perform seen by the target looking toward the air—ground interface
analytic continuation into the complex frequency plane [39ls approximately unchanged (at frequengy). Therefore, if
Unfortunately, soil measurements are only performed overttze target resonates at frequency for depth d;, then it
very limited frequency band, undermining derivation of suckhould also resonant at; for depthsd; + nA;/2. Note
an analytic function. Therefore, in the work presented herdat the resonant frequencies initially spiral inward (toward
the complex dielectric constant of the soil [needed in (1)] the homogeneous-medium resonance) with increasing depth,
set to the dielectric constant af (i.e., the real part of the followed by a subsequent outward spiral. Similar effects were
complex resonant frequency). This approximation should keen in [40]-[42] for perfectly conducting targets, with such
most appropriate for resonant frequencies near thewreadis attributed to mode coupling between the self modes of the
(w” small relative tav’), representative of the hig@-resonant target itself and “image” modes produced by reverberations
target we consider first. between the target and the air—-ground interface. We believe

In Fig. 5 we plot the resonant frequency of the fundamenttile results presented here are the first to show this effect also
mode as a function of depth from the top of the target, from Odecurs for dielectric targets.
to 45 cm. In this plot, we also identify the resonant frequency The algorithm in Section Il allows computation of the
of the same target situated in a homogeneous medium charasonant fields, in addition to the resonant frequencies of
terized by the same properties as the soil. As the target depth. 5. As an example, in Fig. 6 we plot the resonant surface
increases, one would anticipate that the resonant frequemecyrents J and M of (1), representative of the tangential
would approach that of the same target in the homogeneanagnetic and electric fields, respectively, on the surface of the
environment (i.e., that the air-soil interface will be of lesBOR target. For a set of depths considered in Fig. 5, we see
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Fig. 7. Resonant frequency of the target considered in Fig. 5, centered in
a layer of soil of thicknes2d + 5 cm, with the electrical properties of the
layer described by soil B in Fig. 4. Beneath this layer of sail is a half-space
with electrical properties described by soil C in Fig. 4. The target resonant
frequency is plotted as a function aéf Also plotted is the resonant frequency

of the target situated in a half-space environment (from Fig. 5) and in a
homogeneous medium of soil B in Fig. 4.

08 [

07 |

0.6 -

05
remmmnanesses - HOTMOGENEOUS

d=lcm

e Y manifested with increasing with an analogous explanation.

_________ We see that the resonant frequencies are quantitatively very

similar for these examples (for the same distance from the

target to the air—soil interface). Moreover, note that the dif-

ol L ferences between the resonant frequencies diminishes as the
0 001 002 003 004 005 006 007 008 009 0.1 011 012 013 distance from the target to both interfaces increases.

03

0.2 i~

magnitude of norm. magnetic resonant current [V/m]

coordinate t along generating arc [m] The examples in Figs. 5—7 considered a target of dielectric

(b) constante,.p = 20 such that relatively higli resonances
Fig. 6. Resonant currentd and M for the resonances in Fig. 5. (a) could be supported. A_S dlscussed' the approx.|mat|ons with
magnitude of 4. (b) magnitude ofM/;. regard to soil properties at complex frequencies are more

appropriate under such circumstances. Nevertheless, most

that there is minimal change in the resonant surface curreft§ied plastic targets of interest are composed of dielectric
(J, and M, for the mode considered here) with increasinﬁonStamS much smaller than considered above. We therefore
target depth. In Figs. 5 and 6 we have considered the properfi@gSider an example using parameters that may be expected
of a single (lowest-order) resonant mode; an infinite set 8f Practical radar problems. In particular, we consider a
higher-order modes exist [6]. PMN2” plastic antipersonnel mine, with dimensions shown
To demonstrate an example of greater complexity than tH}:the |_nset of Fig. 8. This mine is prlnmpglly plastic, W'th
half-space problem of Figs. 5 and 6, we consider the Sal_qlglectnc constant,,B_ = 29 We cons_|der_th|s target buried
targetcenteredn a layer of thicknes&d + 5 cm (i.e., there is 1N @ half-space, using soil type A in Fig. 4. Because the
a distanced from the 5-cm-thick target to the top and botton®l€ctrical contrast between the target and background is
of the layer). Moreover, this layer of soil is characterizeB0W Smaller than that considered in Figs. 5-7, one would
by the same electrical parameters as considered in Fig@icipate this to be a lowe@ target. The results in Fig. 8
and 6 (soil type B in Fig. 4). Beneath this layer is a half2® characterized by a spiraling behavior similar to that in
space characterized by soil type C in Fig. 4 (taken from [42T|gs. 5 and 7. It is interesting to note that, for the depths

for 5% water content). This example may simulate a buri@nsidered here, the resonant frequencies of this target

target, for which the disturbed soil has electrical paramete@ntinually spiral outward with increasing depth (cf. Fig. 5).
different than those of the background (undisturbed) soil. The
resonant frequencies of this target are demonstrated in Fig. 7
for d ranging from 0.5 to 10 cm. For direct comparison, the A rigorous method-of-moments (MoM) algorithm has been

corresponding results of the target in a half-space (Fig. 5) atevised for modeling the resonances of targets buried in a
also plotted. A spiraling behavior similar to that in Fig. 5 idossy, layered medium, representative of soil. This research

V. CONCLUSIONS
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Fig. 8. Resonant frequency of a “PMN2” plastic land mired = 2.9, 9]
with geometry shown inset) buried in a halfspace with electrical parameter[s
described by soil type A in Fig. 4. Results are plotted as a function of dépth
from the top of the target. For comparison, the resonant frequency of the tar, ]
situated in a homogeneous medium of the same parameters is also plotted.

has been motivated by the use of resonances as discrimineglltf
for identifying buried plastic land mines. We have therefor
restricted our analysis to the case of targets that can hée]
simulated as a dielectric body of revolution since most plastic
mines can be so approximated. Even with this simplification,
such a MoM analysis is computationally challenging. 1f3]
particular, one must evaluate the layered-medium Green’s
function at complex (resonant) frequencies. The layerefly
medium Green’s function can only be expressed analytically
in the spectral domain, with Sommerfeld-type integralﬁ[s]
required for conversion to the space domain. Such integrals
are computationally expensive if traditional integration
techniques are employed and, therefore, here we have utiliZ&g
the recently developed method of complex images [22]-[25].
The method of complex images is based on performingr]
a parametric fit to the spectral Green’s function along an
appropriate path in the spectral domain, after which eagfy
term in the expansion can be converted to the space domain
analytically via the Sommerfeld or Weyl identity [26]. While
the method of complex images has been in use for seve[rla
years, it is believed that this work is its first application
to dielectric targets. We therefore required use of addition&P!
Green'’s function components than those used previously for
purely perfectly conducting targets [21]-[25]. Moreover, the1]
complex frequencies of interest required careful attention to
the spectral-domain path of integration. [22]
Several numerical examples have been presented. We ini-
tially considered relatively high-dielectric targets, for which
high-@ resonances are supported. Additionally, we also exar[r%?’]
ined the lowest-order resonant frequency of an actual plastic
land mine. It was demonstrated that the low electrical contrast
between the soil and mine results in l@dWwfesonances which (241
undermine the utility of resonance-based discrimination.
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