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Electromagnetic Scattering from a
Dielectric-Coated Sphere with an
Embedded Impedance Film

Richard S. Grannemann and Mike I. Jones

Abstract—The electromagnetic scattering from a multilayered
sphere modal solution of Wait [1] is modified to allow the inclu-
sion of infinitesimally thin impedance films at layer boundaries.
The modified solution is implemented in a computer algorithm
and the scattering from an aluminum sphere coated with a
dielectric Delrin™ layer containing an embedded impedance
film is computed. This target was fabricated and laboratory
measurements performed in the 2-18 GHz region are in good
agreement with computations.

Index Terms—Electromagnetic scattering, impedance sheets,
spherical scatterers.

I. INTRODUCTION Region
M

HERE is a scarcity of experimentally validated scatter-
ing computations for canonical configurations in which
impedance films are employed as principal scattering compo-
nents. In this paper, we formulate, numerically compute, apg}. 1. section of a multilayered sphere with impedance films at layer
validate with experimental measurements the scattering framerfaces.
a metallic sphere with a resistive film embedded in a low
dielectric coating.
In the results shown below, adjustments were made to tHe7 GapFilled  Delrin Infinitesimally ~ Delrin
classical eigenfunction solution of Wait [1] so that infinites-‘é"::i;s:“ S Thin Resistive
imally thin impedance films could be placed at the layefkim
interfaces of a multilayered sphere. Various implementations
of thin film impedance boundary conditions are found in the
literature [2]-[6]. In our approach, it was sufficient to use the
boundary conditions for an impedance film as found in [2]

Increasing Subscripts

; o _ - Fabricated Sphere Analytical Sphere
and derive modified expressions for the formulation of [1] Model Model
by considering resistive films offset from a spherical layer
interface an infinitesimal distance. Fig. 2. The fabricated model and the corresponding analytical model used

for predictions.

Il. APPROACH

Wait's solution applies to the case of plane wave scatterirl}?gyinﬁnimSima”y thin (possibly complex) impedance films
from a sphere coated with homogeneous, isotropic materfa: _Placed at layer boundaries as shown schematically
layers. Modified expressions for impedance and admittancdatFi9- 1. The new expressions are given in (1) and (2),
each layer, used recursively in the solution, are given belof}oWn at the bottom of the next page, wherg, =
They replace similar expressions in Wait's multilayered sphet W i (€m = (100 /W), Thm = ’Ym/(ff_m + iwen), and
solution [1]—the other expressions in Wait's developmefit:: #m, and o, are the material electrical constants of the

remain unchanged. The modified expressions add the effdtf laver. The modified Bessel functiots, K., I;,, K, are
defined as in [1].

For a perfectly conducting spherical core the initial
Impedance and admittance at the core surface are given by
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Fig. 3. Prediction versus measurement of the three-layer sphere of Fig. 2. Logarithmic frequency scale.

For cores made of penetrable materials the initial impedaniaigh precision by breaking up the complex arithmetic into

values and admittance values are found by letting, — 0 real quad precision parts (quad precision not being available

in (1) and (2). In this case, we obtain for complex arithmetic). Bessel functions computed in this
manner were used in the modal expansion for the numerical

Zy = - ! : results shown below.
1 ) Ln(ymanm) 1
| 1 (yman) Ry IV. THE FABRICATED MODEL
Vi — 1 A;L(fyMaM) 1 4 Radar cross-section measurements were made of a fabri-
M L.(varanr) Ry ) cated conducting sphere with a dielectric coating containing a

strictly resistive impedance film. The inner conducting sphere
was machined aluminum measured to have a radial tolerance
of within 0.002' of specifications. Two pairs of Dupont
Ill. NUMERICAL CONSIDERATIONS Delrin™ [¢ = (3.0, 0.04), 1 = (1.0, 0.0)] hemispherical
The generation of convergent numerical results requirekells were fabricated to within 0.004 in radial tolerance of
taking numerous terms in the modal expansion with each teapecifications. The specifications, as shown in Fig. 2, were an
computed to high accuracy. Our procedure was to compui@er Delrin shell with inner and outer diameters of 8.000 in
low-order complex spherical Bessel functions from their conand 8.287 in, respectively, and an outer Delrin shell with inner
plex finite series using quad precision real arithmetic and mahd outer diameters of 8.294 in and 8.616 in, respectively.
functions from the REAL*16 facility of Digital Equipment This left a 0.007 in gap between the shells into which a
CorporationV AXTM Fortran. This gave us low-order com-185 ohms/square resistive film was placed. The resistive film
plex spherical Bessel functions with up to 33 decimal digits afas a flexible carbon impregnated fiberglass fabric, 0.005 in
precision. We then used forward recursion in a straightforwatiick, which was cut into 36 pole to pole sectors? Hach at
manner to compute higher order Bessel functions maintainitite equator, to achieve an essentially wrinkle-free surface.

1

L = ’ r P f f’ R \ (1)
fn (’anarn) + rn-|—} n(’anarn—l—l) + nnlA 7(7771@771—1—1) f(n(’%nanl)
1 _Zm+1Kn(’7mam+l) - 77mI(n (’Vmam+l)_ n 1
Tm 7 [ —4Lm f n U YmOm + rnf ;L mm ] > an
1 (ot + | ZZztidnOmtms) 4 o Omtonsn) | o (o, g,
\ _Zrn—l—lKn(’Vrnarn-l—l) - nrnKn (’anarn-l—l)_ )
4 B = ey T 3
7 - rn,an, In 'mAm, + Irl, 'm Om, -
I;I,(’Ymam) + Y +} (’7 +1) n ,(’V +1) K;,,(’Ymam)
Y. — 1 _nrnan—I—lKn(,anarn—l—l) - K;L(,anarn—l—l)_ + 1 (2)
" Tim 2 [ —fIm an, lj n{YmAm+1 + j 7/, 'm Am+1 ] > an
In(’)/rnarn) + L +A (,y a ) A//(,y + ) Kn(vnlanl)
\ _nrn,an,—I—lKn(,anarn—l—l) - Kn(,}/rnarn—l—l)_ )
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Fig. 4. Prediction versus measurement of the two-layer sphere (the sphere of Fig. 2 with the outer Delrin layer removed). Logarithmic frequency scale

V. COMPUTATIONAL AND EXPERIMENTAL RESULTS without the outer dielectric layer, were in good agreement with

In Fig. 2, schematics for both the experimental and anam[edictions. The corroborative numerical and experimental
ical modelé are shown. data provides a useful validation point for the checking of

In Fig. 3 the experimental and predicted radar cross-sectigifier numerical software and methods.
(RCS) response of the model of Fig. 2 is shown over a
2-18-GHz frequency range. Also shown is the computed ACKNOWLEDGMENT
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(PEC) sphere and the computed response of a PEC infimigpful comments.
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