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Finite-Element Analysis of Complex
Axisymmetric Radiating Structures

Andrew D. GreenwoodMember, IEEEand Jian-Ming JinSenior Member, IEEE

Abstract—A finite-element method (FEM) is developed for (CAP) formulation [10], which describes the problem in
the analysis of complex axisymmetric radiating structures. The terms of E, and Hy. Both field components are everywhere

method is based on the electric field formulation with the trans- .4 ntinyous due to the rotational symmetry and the formulation
verse field expanded in terms of edge-based vector basis functions.

and the azimuth component expanded using nodal-based scalar'S free of spurious modes. However, when the other field
basis functions. This mixed representation of the electric field components are computed frofd, and H,, the CAP for-
eliminates spurious solutions and permits an easy treatment of mulation can suffer from an imperfect cancellation problem,
boundary conditions on conducting surfaces as well as acrossyhich limits the accuracy of the results [11], [12]. The FEM
material interfaces. The FEM mesh is truncated using a re- \qqp in the unimoment method is truncated with a spherical
cently developed cylindrical perfectly matched layer (PML). The . . . . . .

method has been successfully applied to three radiating struc- N&rmonic expansion. While exact, it requires a spherical mesh
tures: a corrugated horn antenna, a spherical Luneburg lens, boundary, which is computationally inefficient for elongated
and a half Maxwell fish eye. Numerical results are presented to geometries. The FEM with the CAP formulation is also

show the validity, accuracy, and efficiency of the method. employed to investigate the effect of a radome on the radiation
Index Terms—Antennas, bodies of revolution, finite-element Of an antenna [7]. However, the FEM mesh here is truncated
methods. using an approximate boundary condition derived from the
Wilcox expansion theorem. In addition to the inaccuracy of the

l. INTRODUCTION approximate boundary condition, the method also suffers from

o . i the inherited drawback of the CAP formulation. This drawback
XISYMMETRIC radiating structures with a nonaxisym-can by avoided by formulating the antenna problem in terms
metric source are an important class of antennas. Oftef, the electric field, which is expanded using edge-based
these radiating structures are electrically large, necessitatipgor basis functions for the field component transverse to
efficient.and accurate computational techni_que.s. A commg)nand nodal-based scalar basis functions forgr@mponent
method is the method of moments (MoM) using integral equgg; (9], [13]-[16]. This mixed representation automatically
tion formulations [1]-[5]. However, these techniques have linksisfies the boundary conditions at material discontinuities

ited material handling capabilities since they are not efficiegt,q sharp conductor edges. In addition, the use of edge-based
when inhomogeneous materials are present. The finite-

for problems involving complex structures and inhomogeneogau‘,ﬂion

materials [6]_|[:9_]' The_ main issues with the FE';:' aé'éf/l frore mputationally difficult to handle. In [9], the FEM mesh is
m.’% SOUrces. |rs_t, It |sbnec§ssarg to ;runcate td_e_ Aénceﬁ ncated with a spherical harmonic expansion, as done in
with an appropriate absorbing boundary condition ( }he unimoment method. As indicated earlier, this truncation

and second, the FEM formulation must be free of Spurioys computationally inefficient for elongated geometries.

solutions. The use of a perfectly matched layer (PML) for mesh trun-

. A varflety gf. a‘;ﬁ rolichets to IRIE; afx;ﬁymmetrlc ar:ntenng anall ation presents convenient computational advantages. For ex-
SIS are found In the hiterature. All of the approaches reduce ple, PML is available in cylindrical coordinates [17]—[19],

three-d|m_en5|onal (STD) probl_em to a two-dimensional (2Dr sulting in a computationally efficient domain for almost
computational domain by taking advantage of the rotation y geometry. Further, PML can be used without altering
symmetry. Mei pioneered the finite-element analysis of axs !

isymmetric antennas using the so-called unimoment meth rg sparsity of the FEM matrix, and although PML is an

[6]. This method is based on the coupled azimuth potent proximate mesh truncation, it can be made very accurate,
' &) owing it to be placed near the radiating geometry. Finally,

when using PML, reflection errors can be systematically
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N

condition can be applied at the outer edge of the domain,

\‘/l which is lined with PML. Usually, (4) is used because this
choice reduces the number of unknowns in the FEM system.
PML The wave equation in (3) is self adjoint and from the gener-
alized variational principle [20], the corresponding functional
is
1T 1 =,
F(E):§ —(VxE)-A— - (VXE)
S L
- kge,,E-j_X-E} dv
© 1
p ~ ~
! o +y [[ BB G B)GB) as
T >
Sy or S, 7
S .
y To take advantage of the rotational symmetry of the problem,
ML E andJ are expanded into Fourier components as
I\
Fig. 1. Diagram of a typical computational domain. E = Z [Et,m(p, z) + (/A)E¢7m(p’ Z)]ejmnz5 (7)
of the method. In Section Ill, modeling of source currents - 2 jme
N . L ) J= Jim(p, 2 Jom(p, 2)]e’ 8
is discussed. Section IV gives some numerical results and m;m[ Ly 2) & $dom(p: 2)le ®

concluding remarks are given in Section V. _ _ _ _ _
and these are substituted into (6). This allowsdglietegrations

to be explicitly performed and reduces the 3-D problem to a
. ) o 2-D computational domain.
An example of a typical computational domain is shown in 14 4y0id nonintegrable singularities in the functional, the

Fig. 1. The domainis truncated with cylindrical PML, which i\ expansions must satisfy the appropriate field conditions
conveniently interpreted as an anisotropic medium [19]. Thus, p = 0. The FEM expansions that satisfy this criteria are
the permittivity and permeability in the domain are given by[13] [21]

Il. FORMULATION

€= eoe,,j_X Ny,
= (1) E¢70 = Z qu‘Ni
= poprd =1 )
- N,
in which A is a diagonal tensor given by E.o= ZCt,iNi
= PN =1
A=ppA Ay + 22A.. 2
PPl + 9PRs + 22N @) for m = 0,
The properties of the PML are contained/rand a discussion N,
of appropriate functions foA,, A, andA. is found in [13]. Esyz1 =Y eyl
The formulation begins with the vector wave equation i=1 (10)
N, N,
1 = _ n .
V x N_A_l -VxE- I%'gGTA -E = —jkoT]oJ (3) Et,:l:l = :F‘jﬁz ngﬂjNi + ZempNi
” i=1 i=1

where kg = w./no€g is the free-space wavenumbep =
Vio/€o is the impedance of free-space, afids a source
current density. The boundary conditions are

for m = +1, and

Ny,
Eym = Z eg,iN;
i=1

AnxE=0 onsS; (4)
N, (11)
where S, is the surface of a perfect electric conductor (PEC) E,,, = Z er.ipN;
and ’ =

ifz XAt (VXE)+yaxaxE=0 onS, (5) for|m|> 1.Inthe above expansions/, and N, represent

Hor the number of nodes and the number of segments (or edges),
where S, is the surface of an impenetrable material withespectively, in the FEM mesk,, ; ande, ; are the unknown
an impedance boundary condition. Any convenient boundagypansion coefficients, andl; andN; represent the standard
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linear (first-order) nodal and edge-element basis functions.
Within a given triangular element of the FEM mesh, there

are three nodal and three edge-element basis functions. The 1o
three nodal basis functions are given By = A where A§
denote the area coordinates for elemefi20]. Further, if the [
edge from node 1 to node 2 is numbered 1, the edge from node —_ “
2 to node 3 is numbered 2, and the edge from node 3 to node 1 (Ei, HY)
is numbered 3, the edge element basis functions are given by ) -
z
N = £ (A VA = Af Vi) (12) @
where ¢ denotes the edge numbdr,denotes one plus the
remainder of the integer divisiofy3, ¢¢ denotes the length i)
of edgei, and v, = p + 2.
The expansions in (9)—(11) are substituted into (6) and the
functional is extremized by differentiating with respect to the ‘
unknown coefficients and then setting the result to zero. This PML - a
process yields a sparse, symmetric matrix equation, which is
solved according the techniques described in [13]. The far-field T . -
radiation pattern of the system is computed by integrating the Jo =22 H ?
near-field result over a contour in the FEM domain similar to ()
the computation of the radar cross section in [13]. rﬁ:gdgl Model of a waveguide excitation. (a) Original problem. (b) Finite
Ill. M ODELING OF SOURCE CURRENTS
TABLE |
The geometry of a radiation problem may be rotationally MEMORY AND CPU REQUIREMENTS FOR A
symmetric, but the source current often exists at a specific 122 MRop DEC ArPHA WORKSTATION
location in¢. If a source current at a speciffclocation has a Number of | Matrix Half- | Number of | Memory | CPU Time
finite thickness inp, it can be modeled as a Fourier series for.__Lmeblem Unknowns | Bandwidth | modes | (Mbytes) | (min)
. . . . Corrugated Horn 78,235 435 61 83 64.0
the rotationally symmetric FEM solution. Consider the volume; Tuncburg Lens | 32,085 314 3 35 s
source current density given by 7X Luneburg Lens | 56,954 550 8 93 14.2
10X Luneburg Lens | 108,090 771 8 234 58.0
e e G EL M CIEIE | | L e e i
0, else 10X Half Fish-Eye 58, 662 730 8 118 26.6

where A is a complex vector specifying the magnitude,
direction, and phase of the current. This current can be writt@here a known mode distribution is incident from the

in Fourier series form as direction. This is modeled as shown in Fig. 2(b) where the
AA sin(maA/2) (o) _sur_face currenﬂls = 27 x H* is computed from the known
= or Z T/QG : (14) incident mode distribution. The surface current launches both a
m==—oe positive traveling wave, which is equivalent to the original in-

The Fourier series is truncated after a finite number of ternfddent wave and a negative traveling wave, which is attenuated
The number of terms (or modes) that must be computétthe PML. The PML also attenuates any waves which travel
depends on the maximum error tolerable in the Fourier seri@sthe —2 direction after being reflected by discontinuities in
approximation to the current. The current can be furthéte waveguide. Thus, when looking in thez direction, the

decomposed as waveguide appears infinitely long although the computational
model is short and efficient. Similar to the volume source
Jim = Jf,rn + Jf,m (15) current model, the surface curreht can be written in terms of
Jom = IG5 m + I3 m an even function ofr. and an odd function ofz, eliminating

) the need to compute negative numbered modes in the FEM
whereJ; ,,, and.J§ , are even functions of» andJ?,,, and system.

J3 ., are odd functions ofn. This allows the FEM solution
for negative numbered modes to be deduced by symmetry
properties. The elimination of the negative numbered modes
is a significant computational savings. To show the validity and capability of the method, radiation

In addition to modeling source currents, it is also usefgatterns from three different radiating systems are presented,
to consider fields incident in waveguides as excitations &md information about the resources to compute the results is
radiating systems. This eliminates the need to model loggven in Table I. The first radiating system is a corrugated horn
waveguide feeds, which is computationally expensive. Coantenna. Corrugated horn antennas are extensively investigated
sider the infinitely long waveguide feed shown in Fig. 2(aj [22] as antennas which can radiate a circularly polarized

IV. NUMERICAL RESULTS
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Fig. 3. Diagram of the corrugated horn antenna (reproduced from [22]).

where ¢ denotes the radius of the lens anddenotes the
distance from the center of the lens. The flexibility of the
FEM in modeling inhomogeneous materials makes it ideal for
the analysis of this system. The Luneburg lens is commonly
described by a geometrical optics ray picture, which indicates
that spherical waves emitted by a point source placed in the
rim of the lens are converted to local plane waves by the
lens making the radiation of the system highly directive. The
transmitting beam can be steered by moving the antenna feed.
The transmitting beam radiation patterns computed by the
FEM for Luneburg lenses of\, 7\, and 10\ diameters
is the free-space electromagnetic wavelength) excited by a
Hertzian dipole are shown in Fig. 8. As expected, the radiation
is directive, and it becomes more directive as the size of the
lens increases. In Fig. 8, note that theand H-plane patterns
are symmetric, so one half of each pattern is shown on the
same polar plot. The sidelobe level is atl5 dB. Similar
Fig. 4. Photo of the corrugated horn antenna (reproduced from [22]).  rgdiation patterns for Luneburg lenses are given in [24], but
these patterns are not identical to those given here because a
wave over a wide beamwidth and a wide bandwidth. As pditfferent source on the surface of the lens is used. The field
of the investigation, measurements on several corrugated héigiribution in thel0A-diameter lens is displayed in Fig. 9,
antennas are presented. A diagram showing one such antéﬁhgre the absolute value of the real part of the electric field is
is shown in Fig. 3. The antenna is constructed by boltifgiown. The figure shows how a spherical wave emitted by the
together metal washers with thicknesses alternating betwéhbpole is converted into a wave with a locally planar phase
0.07938 cm and 0.3175 cm. In the section of the waveguidefrant.
front of the 20 flare, the washers have inner radii of 3 cm and The final radiating system presented is a Hertzian dipole on
4.8 cm, respectively. A photograph of the antenna is showntite surface of a half Maxwell fish eye [25]. The permittivity
Fig. 4. Measurements of the radiation pattern of this antenptithe Maxwell fish eye is given by
at several frequencies are given in [22]. The radiation pattern 4
is computed by the FEM at three frequencies and the FEM &(r) = ——F—33
and measured results are shown in Figs. 5—7. The agreement [1+(r/a)?]

between the FEM results and the measured results is excellgply 5 geometrical optics ray picture shows that the spherical
At power levels above-30 dB, note the agreement betweelyayes from a point source are converted to a local plane wave
the FEM and measurement in predicting slight offsets in thg the center of the lens and then focused to a point on the other
E- and H-plane patterns with respect to each other. side of the lens. Thus, if only one half of the lens is present,
The next rad|at|rjg sy_stem IS a spherical Luneburg lens [2gl 1giation is directive. Radiation patterns computed by the
excited by a I—_|e_rt2|a_n dipole at its surface. The Luneburg Ie'&%M for half Maxwell fish eyes o), 7, and10) diameters
has a permittivity given by excited by a Hertzian dipole are shown in Fig. 10. The sidelobe
level is at—20 dB, which is about 5 dB lower than in the case
en(r) =2 — (f)Q 0<r<a) (16) of the Luneburg lens. However, compared to the Luneburg
- = lens, the half Maxwell fish eye has two disadvantages. First, it

(0<r<a) (17)
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Fig. 5. Radiation pattern of the corrugated horn antenna at 5.2 GHz (measured results reproduced from [22]). (a) FEM. (b) Measured.
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Fig. 6. Radiation pattern of the corrugated horn antenna at 5.5 GHz (measured results reproduced from [22]). (a) FEM. (b) Measured.
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Fig. 7. Radiation pattern of the corrugated horn antenna at 6.0 GHz (measured results reproduced from [22]). (a) FEM

. (b) Measured.
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Fig. 8. Radiation from a spherical Luneburg lens excited by a Hertzidrig. 10. Radiation from a half Maxwell fish eye excited by a Hertzian dipole.
dipole. (a) A diameter. (b) X diameter. (c) 1@ diameter.
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Fig. 11. Snapshot of the electric field nearl@\-diameter half Maxwell
fish eye excited by a Hertzian dipole.

cannot steer the radiating beam by moving the antenna feed.
Second, there is some reflection when the wave leaves the
lens because of the abrupt change in permittivity, resulting in

Fig. 9. Snapshot of the electric field neat(®-diameter spherical Luneburg lower efﬁCienCy- The field distribution in a half Maxwell fish
lens excited by a Hertzian dipole. (&)-plane. (b)E-plane.

eye is shown in Fig. 11.
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V. CONCLUSION [11]

The FEM using mixed edge-nodal basis functions and
cylindrical PML is an efficient and accurate method for thé2]
analysis of radiation problems. The use of edge elements to

expand the transverse field components avoids the problenyiaf

spurious modes in the FEM formulation. The use of cylindrical
PML for mesh truncation allows an efficient computationg}
domain for almost any problem geometry and it can be
made very accurate, allowing the PML to be placed near the
problem geometry. Numerical examples show that the methgg,
is accurate and highly efficient and it is capable of handling

realistic sized radiating systems.
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