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Finite-Element Analysis of Complex
Axisymmetric Radiating Structures

Andrew D. Greenwood,Member, IEEEand Jian-Ming Jin,Senior Member, IEEE

Abstract—A finite-element method (FEM) is developed for
the analysis of complex axisymmetric radiating structures. The
method is based on the electric field formulation with the trans-
verse field expanded in terms of edge-based vector basis functions
and the azimuth component expanded using nodal-based scalar
basis functions. This mixed representation of the electric field
eliminates spurious solutions and permits an easy treatment of
boundary conditions on conducting surfaces as well as across
material interfaces. The FEM mesh is truncated using a re-
cently developed cylindrical perfectly matched layer (PML). The
method has been successfully applied to three radiating struc-
tures: a corrugated horn antenna, a spherical Luneburg lens,
and a half Maxwell fish eye. Numerical results are presented to
show the validity, accuracy, and efficiency of the method.

Index Terms—Antennas, bodies of revolution, finite-element
methods.

I. INTRODUCTION

A XISYMMETRIC radiating structures with a nonaxisym-
metric source are an important class of antennas. Often,

these radiating structures are electrically large, necessitating
efficient and accurate computational techniques. A common
method is the method of moments (MoM) using integral equa-
tion formulations [1]–[5]. However, these techniques have lim-
ited material handling capabilities since they are not efficient
when inhomogeneous materials are present. The finite-element
method (FEM) is characterized by very flexible material
handling capabilities and is often preferred over the MoM
for problems involving complex structures and inhomogeneous
materials [6]–[9]. The main issues with the FEM arise from
two sources. First, it is necessary to truncate the FEM mesh
with an appropriate absorbing boundary condition (ABC),
and second, the FEM formulation must be free of spurious
solutions.

A variety of approaches to the axisymmetric antenna analy-
sis are found in the literature. All of the approaches reduce the
three-dimensional (3-D) problem to a two-dimensional (2-D)
computational domain by taking advantage of the rotational
symmetry. Mei pioneered the finite-element analysis of ax-
isymmetric antennas using the so-called unimoment method
[6]. This method is based on the coupled azimuth potential
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(CAP) formulation [10], which describes the problem in
terms of and . Both field components are everywhere
continuous due to the rotational symmetry and the formulation
is free of spurious modes. However, when the other field
components are computed from and , the CAP for-
mulation can suffer from an imperfect cancellation problem,
which limits the accuracy of the results [11], [12]. The FEM
mesh in the unimoment method is truncated with a spherical
harmonic expansion. While exact, it requires a spherical mesh
boundary, which is computationally inefficient for elongated
geometries. The FEM with the CAP formulation is also
employed to investigate the effect of a radome on the radiation
of an antenna [7]. However, the FEM mesh here is truncated
using an approximate boundary condition derived from the
Wilcox expansion theorem. In addition to the inaccuracy of the
approximate boundary condition, the method also suffers from
the inherited drawback of the CAP formulation. This drawback
can by avoided by formulating the antenna problem in terms
of the electric field, which is expanded using edge-based
vector basis functions for the field component transverse to

and nodal-based scalar basis functions for thecomponent
[8], [9], [13]–[16]. This mixed representation automatically
satisfies the boundary conditions at material discontinuities
and sharp conductor edges. In addition, the use of edge-based
vector basis functions to expand the transverse field eliminates
spurious modes. In [8], the FEM is hybridized with the MoM
to create an exact ABC. This hybrid method results in a matrix
equation, which is partially sparse and partially full and, thus,
computationally difficult to handle. In [9], the FEM mesh is
truncated with a spherical harmonic expansion, as done in
the unimoment method. As indicated earlier, this truncation
is computationally inefficient for elongated geometries.

The use of a perfectly matched layer (PML) for mesh trun-
cation presents convenient computational advantages. For ex-
ample, PML is available in cylindrical coordinates [17]–[19],
resulting in a computationally efficient domain for almost
any geometry. Further, PML can be used without altering
the sparsity of the FEM matrix, and although PML is an
approximate mesh truncation, it can be made very accurate,
allowing it to be placed near the radiating geometry. Finally,
when using PML, reflection errors can be systematically
controlled. For a more accurate mesh truncation, one needs
only to increase the thickness of the PML region.

Because of the potential computational advantages, this
paper investigates the use of a mixed edge-nodal FEM basis
scheme with a PML mesh truncation for the solution of an-
tenna radiation problems. Section II discusses the formulation
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Fig. 1. Diagram of a typical computational domain.

of the method. In Section III, modeling of source currents
is discussed. Section IV gives some numerical results and
concluding remarks are given in Section V.

II. FORMULATION

An example of a typical computational domain is shown in
Fig. 1. The domain is truncated with cylindrical PML, which is
conveniently interpreted as an anisotropic medium [19]. Thus,
the permittivity and permeability in the domain are given by

(1)

in which is a diagonal tensor given by

(2)

The properties of the PML are contained inand a discussion
of appropriate functions for , , and is found in [13].

The formulation begins with the vector wave equation

(3)

where is the free-space wavenumber,
is the impedance of free-space, andis a source

current density. The boundary conditions are

on (4)

where is the surface of a perfect electric conductor (PEC)
and

on (5)

where is the surface of an impenetrable material with
an impedance boundary condition. Any convenient boundary

condition can be applied at the outer edge of the domain,
which is lined with PML. Usually, (4) is used because this
choice reduces the number of unknowns in the FEM system.

The wave equation in (3) is self adjoint and from the gener-
alized variational principle [20], the corresponding functional
is

(6)

To take advantage of the rotational symmetry of the problem,
and are expanded into Fourier components as

(7)

(8)

and these are substituted into (6). This allows theintegrations
to be explicitly performed and reduces the 3-D problem to a
2-D computational domain.

To avoid nonintegrable singularities in the functional, the
FEM expansions must satisfy the appropriate field conditions
at . The FEM expansions that satisfy this criteria are
[13], [21]

(9)

for

(10)

for , and

(11)

for . In the above expansions, and represent
the number of nodes and the number of segments (or edges),
respectively, in the FEM mesh, and are the unknown
expansion coefficients, and and represent the standard
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linear (first-order) nodal and edge-element basis functions.
Within a given triangular element of the FEM mesh, there
are three nodal and three edge-element basis functions. The
three nodal basis functions are given by where
denote the area coordinates for element[20]. Further, if the
edge from node 1 to node 2 is numbered 1, the edge from node
2 to node 3 is numbered 2, and the edge from node 3 to node 1
is numbered 3, the edge element basis functions are given by

(12)

where denotes the edge number,denotes one plus the
remainder of the integer division , denotes the length
of edge , and .

The expansions in (9)–(11) are substituted into (6) and the
functional is extremized by differentiating with respect to the
unknown coefficients and then setting the result to zero. This
process yields a sparse, symmetric matrix equation, which is
solved according the techniques described in [13]. The far-field
radiation pattern of the system is computed by integrating the
near-field result over a contour in the FEM domain similar to
the computation of the radar cross section in [13].

III. M ODELING OF SOURCE CURRENTS

The geometry of a radiation problem may be rotationally
symmetric, but the source current often exists at a specific
location in . If a source current at a specificlocation has a
finite thickness in , it can be modeled as a Fourier series for
the rotationally symmetric FEM solution. Consider the volume
source current density given by

else
(13)

where is a complex vector specifying the magnitude,
direction, and phase of the current. This current can be written
in Fourier series form as

(14)

The Fourier series is truncated after a finite number of terms.
The number of terms (or modes) that must be computed
depends on the maximum error tolerable in the Fourier series
approximation to the current. The current can be further
decomposed as

(15)

where and are even functions of and and
are odd functions of . This allows the FEM solution

for negative numbered modes to be deduced by symmetry
properties. The elimination of the negative numbered modes
is a significant computational savings.

In addition to modeling source currents, it is also useful
to consider fields incident in waveguides as excitations to
radiating systems. This eliminates the need to model long
waveguide feeds, which is computationally expensive. Con-
sider the infinitely long waveguide feed shown in Fig. 2(a)

(a)

(b)

Fig. 2. Model of a waveguide excitation. (a) Original problem. (b) Finite
model.

TABLE I
MEMORY AND CPU REQUIREMENTS FOR A

122 MFLOP DEC ALPHA WORKSTATION

where a known mode distribution is incident from the
direction. This is modeled as shown in Fig. 2(b) where the
surface current is computed from the known
incident mode distribution. The surface current launches both a
positive traveling wave, which is equivalent to the original in-
cident wave and a negative traveling wave, which is attenuated
in the PML. The PML also attenuates any waves which travel
in the direction after being reflected by discontinuities in
the waveguide. Thus, when looking in the direction, the
waveguide appears infinitely long although the computational
model is short and efficient. Similar to the volume source
current model, the surface current can be written in terms of
an even function of and an odd function of , eliminating
the need to compute negative numbered modes in the FEM
system.

IV. NUMERICAL RESULTS

To show the validity and capability of the method, radiation
patterns from three different radiating systems are presented,
and information about the resources to compute the results is
given in Table I. The first radiating system is a corrugated horn
antenna. Corrugated horn antennas are extensively investigated
in [22] as antennas which can radiate a circularly polarized
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Fig. 3. Diagram of the corrugated horn antenna (reproduced from [22]).

Fig. 4. Photo of the corrugated horn antenna (reproduced from [22]).

wave over a wide beamwidth and a wide bandwidth. As part
of the investigation, measurements on several corrugated horn
antennas are presented. A diagram showing one such antenna
is shown in Fig. 3. The antenna is constructed by bolting
together metal washers with thicknesses alternating between
0.079 38 cm and 0.3175 cm. In the section of the waveguide in
front of the 20 flare, the washers have inner radii of 3 cm and
4.8 cm, respectively. A photograph of the antenna is shown in
Fig. 4. Measurements of the radiation pattern of this antenna
at several frequencies are given in [22]. The radiation pattern
is computed by the FEM at three frequencies and the FEM
and measured results are shown in Figs. 5–7. The agreement
between the FEM results and the measured results is excellent.
At power levels above 30 dB, note the agreement between
the FEM and measurement in predicting slight offsets in the

- and -plane patterns with respect to each other.
The next radiating system is a spherical Luneburg lens [23]

excited by a Hertzian dipole at its surface. The Luneburg lens
has a permittivity given by

(16)

where denotes the radius of the lens anddenotes the
distance from the center of the lens. The flexibility of the
FEM in modeling inhomogeneous materials makes it ideal for
the analysis of this system. The Luneburg lens is commonly
described by a geometrical optics ray picture, which indicates
that spherical waves emitted by a point source placed in the
rim of the lens are converted to local plane waves by the
lens making the radiation of the system highly directive. The
transmitting beam can be steered by moving the antenna feed.
The transmitting beam radiation patterns computed by the
FEM for Luneburg lenses of , , and diameters (
is the free-space electromagnetic wavelength) excited by a
Hertzian dipole are shown in Fig. 8. As expected, the radiation
is directive, and it becomes more directive as the size of the
lens increases. In Fig. 8, note that the- and -plane patterns
are symmetric, so one half of each pattern is shown on the
same polar plot. The sidelobe level is at15 dB. Similar
radiation patterns for Luneburg lenses are given in [24], but
these patterns are not identical to those given here because a
different source on the surface of the lens is used. The field
distribution in the -diameter lens is displayed in Fig. 9,
where the absolute value of the real part of the electric field is
shown. The figure shows how a spherical wave emitted by the
dipole is converted into a wave with a locally planar phase
front.

The final radiating system presented is a Hertzian dipole on
the surface of a half Maxwell fish eye [25]. The permittivity
of the Maxwell fish eye is given by

(17)

and a geometrical optics ray picture shows that the spherical
waves from a point source are converted to a local plane wave
at the center of the lens and then focused to a point on the other
side of the lens. Thus, if only one half of the lens is present,
the radiation is directive. Radiation patterns computed by the
FEM for half Maxwell fish eyes of , , and diameters
excited by a Hertzian dipole are shown in Fig. 10. The sidelobe
level is at 20 dB, which is about 5 dB lower than in the case
of the Luneburg lens. However, compared to the Luneburg
lens, the half Maxwell fish eye has two disadvantages. First, it
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(a) (b)

Fig. 5. Radiation pattern of the corrugated horn antenna at 5.2 GHz (measured results reproduced from [22]). (a) FEM. (b) Measured.

(a) (b)

Fig. 6. Radiation pattern of the corrugated horn antenna at 5.5 GHz (measured results reproduced from [22]). (a) FEM. (b) Measured.

(a) (b)

Fig. 7. Radiation pattern of the corrugated horn antenna at 6.0 GHz (measured results reproduced from [22]). (a) FEM. (b) Measured.
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(a)

(b)

(c)

Fig. 8. Radiation from a spherical Luneburg lens excited by a Hertzian
dipole. (a) 4� diameter. (b) 7� diameter. (c) 10� diameter.

(a) (b)

Fig. 9. Snapshot of the electric field near a10�-diameter spherical Luneburg
lens excited by a Hertzian dipole. (a)H-plane. (b)E-plane.

(a)

(b)

(c)

Fig. 10. Radiation from a half Maxwell fish eye excited by a Hertzian dipole.
(a) 4� diameter. (b) 7� diameter. (c) 10� diameter.

(a) (b)

Fig. 11. Snapshot of the electric field near a10�-diameter half Maxwell
fish eye excited by a Hertzian dipole.

cannot steer the radiating beam by moving the antenna feed.
Second, there is some reflection when the wave leaves the
lens because of the abrupt change in permittivity, resulting in
lower efficiency. The field distribution in a half Maxwell fish
eye is shown in Fig. 11.
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V. CONCLUSION

The FEM using mixed edge-nodal basis functions and
cylindrical PML is an efficient and accurate method for the
analysis of radiation problems. The use of edge elements to
expand the transverse field components avoids the problem of
spurious modes in the FEM formulation. The use of cylindrical
PML for mesh truncation allows an efficient computational
domain for almost any problem geometry and it can be
made very accurate, allowing the PML to be placed near the
problem geometry. Numerical examples show that the method
is accurate and highly efficient and it is capable of handling
realistic sized radiating systems.

REFERENCES

[1] D. E. Baker, “Pattern prediction of broadband monopole antennas on
finite groundplanes using the BOR moment method,”Microwave J.,
vol. 31, pp. 153–164, 1988.

[2] A. Berthon and R. P. Bills, “Integral equation analysis of radiating
structures of revolution,”IEEE Trans. Antennas Propagat., vol. 37, pp.
159–170, Feb. 1989.

[3] P. Steyn and D. B. Davidson, “A moment method formulation for
electromagnetic radiation and scattering from composite bodies of
revolution,” in 9th Annu. Rev. Progress Appl. Computat. Electromagn.,
Monterey, CA, Mar. 1993, vol. I, pp. 64–71.

[4] J. Liu, J. Wang, and Y. Gao, “Computation ofE-field distribution of
low gain antenna on conducting body of revolution,” in11th Annu. Rev.
Progress Appl. Computat. Electromagn., Monterey, CA, Mar. 1995, vol.
II, pp. 687–694.

[5] F. L. Teixeira and J. R. Bergman, “B-spline basis functions for moment-
method analysis of axisymmetric reflector antennas,”Microwave Opt.
Tech. Lett., vol. 14, pp. 188–191, 1997.

[6] K. K. Mei, “Unimoment method for solving antenna and scattering
problems,”IEEE Trans. Antennas Propagat., vol. AP-22, pp. 760–766,
Nov. 1974.

[7] R. K. Gordon and R. Mittra, “Finite element analysis of axisymmetric
radomes,”IEEE Trans. Antennas Propagat., vol. 41, pp. 975–981, July
1993.

[8] G. C. Chinn, L. W. Epp, and D. J. Hoppe, “A hybrid finite-element
method for axisymmetric waveguide feed horns,”IEEE Trans. Antennas
Propagat., vol. 44, pp. 280–285, Mar. 1996.

[9] E. Richalot, M. F. Wong, V. Fouad-Hanna, and H. Baudrand, “Analysis
of radiating axisymmetric structures using a 2-D finite element and
spherical mode expansion,”Microwave Opt. Tech. Lett., vol. 20, pp.
8–13, 1999.

[10] M. A. Morgan, S. K. Chang, and K. K. Mei, “Coupled azimuth potentials
for electromagnetic field problems in inhomogeneous axially symmetric
media,” IEEE Trans. Antennas Propagat., vol. 25, pp. 413–417, May
1977.

[11] M. A. Morgan, C. H. Chen, S. C. Hill, and P. W. Barber, “Finite-
element-boundary integral formulation for electromagnetic scattering,”
Wave Motion, vol. 6, pp. 91–103, 1984.

[12] A. D. Greenwood and J. M. Jin, “Computation of the RCS of a
complex BOR using FEM with coupled azimuth potentials and PML,”
Electromagn., vol. 19, pp. 147–170, 1999.

[13] , “A novel, efficient algorithm for scattering from a complex BOR
using mixed finite elements and cylindrical PML,”IEEE Trans. Antennas
Propagat., vol. 47, pp. 620–629, Apr. 1999.

[14] J. F. Lee, G. M. Wilkins, and R. Mittra, “Finite-element analysis of an
axisymmetric cavity resonator using a hybrid edge element technique,”
IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1981–1987, Nov.
1993.

[15] G. M. Wilkins, M. Swaminathan, and J. F. Lee, “Waveguide mode
solution using a hybrid edge-element approach,”Int. J. Microwave
Millimeter-Wave Comput. Aided Eng., vol. 2, pp. 122–130, 1995.

[16] G. C. Chinn, L. W. Epp, and G. M. Wilkins, “Determination of the
eigenfrequencies of a ferrite-filled cylindrical cavity resonator using the
finite element method,”IEEE Trans. Microwave Theory Tech., vol. 43,
pp. 1207–1209, Nov. 1995.

[17] W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate
stretching as a generalized absorbing boundary condition,”Microwave
Opt. Tech. Lett., vol. 15, pp. 363–369, 1997.

[18] J. Maloney, M. Kesler, and G. Smith, “Generalization of PML to
cylindrical geometries,” in13th Annu. Rev. Progress Appl. Computat.
Electromagn., Monterey, CA, vol. II, pp. 900–908, Mar. 1997.

[19] F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic
PML absorbing media in cylindrical and spherical coordinates,”IEEE
Microwave Guided Wave Lett., vol. 7, pp. 371–373, 1997.

[20] J. M. Jin,The Finite Element Method in Electromagnetics. New York:
Wiley, 1993.

[21] M. F. Wong, M. Prak, and V. Fouad-Hanna, “Axisymmetric edge-
based finite element formulation for bodies of revolution: Application
to dielectric resonators,” inIEEE MTT-S Dig., May 1995, pp. 285–288.

[22] M. J. Al-Hakkak and Y. T. Lo, “Circular waveguides and horns with
anisotropic and corrugated boundaries,” Tech. Rep. 73-3, Antenna Lab.,
Dept. Elect. Eng., Univ. Illinois, Urbana, IL, 1973.

[23] R. K. Luneburg,The Mathematical Theory of Optics. Providence, RI:
Brown Univ. Press, 1944.

[24] P. Rozenfeld, “The electromagnetic theory of three-dimensional inho-
mogeneous lenses,”IEEE Trans. Antennas Propagat., vol. AP-24, pp.
365–370, May 1976.

[25] J. C. Maxwell,Scientific Papers—I. New York: Dover, 1860.

Andrew D. Greenwood (S’90–M’98), for a photograph and biography, see
p. 629 of the April 1999 issue of this TRANSACTIONS.

Jian-Ming Jin (S’87–M’89–SM’94), for a photograph and biography, see
p. 629 of the April 1999 issue of this TRANSACTIONS.


