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Application of On-Surface MEI Method
on Wire Antennas
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Abstract—In this paper, the formulas of on-surface measured
equation of invariance (OSMEI) for wire antennas are derived.
The unknowns of each node on the antenna surface are expressed
by the vector potential function and surface current density.
The unknowns in the vicinity of each node are coupled in
a linear equation and the coefficients of the linear equation
are determined by the measured equation of invariance (MEI)
method. The final impedance matrix obtained by the OSMEI is
a highly sparse matrix. It demonstrates that the currents on thin
wire antennas may also be solved by a differential equation-based
formulation in addition to the conventional integral equations.

Index Terms—Absorbing boundary conditions, wire antennas.

I. INTRODUCTION

A S a fast algorithm, the measured equation of invariance
(MEI) method has been successfully used in electro-

magnetic computational problems [1]–[7]. The development
of the MEI method makes it possible to solve very large-
scale scattering problems [8] that are not so practical for
method of moment (MoM). However, there is difficult to
apply MEI with the frequency-domain (FD) mesh in the
thin wire antenna problems. The reason is that the thin
wire structures cannot be accurately simulated by the FD
mesh in their radial directions. In order to overcome this
difficulty, one of the possible methods is to use the recently
developed on-surface MEI method (OSMEI) [9]–[10] where
the FD mesh is no longer required so that the thin wire
antennas can be accurately modeled by the nodes sampled
on the wire surface. However, it is found that the OSMEI
formulas for the two-dimensional (2-D) scattering problems
[9], [10], which describe the relationship of electric field
and magnetic field , are not numerically suitable for the
thin wire antennas, hence, the relationship of vector potential
function and its normal derivative is formulated to
meet our need in this paper. Following the procedure used
for deriving the OSMEI formulas for the scattering problems
in [10], the novel formulas for the thin wire antennas are
deduced. These formulas describe such a fact that there exists a
linear relationship of the vector potential functions and surface
current densities between each node and its neighboring nodes,
and the MEI method can be used to numerically determine
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such a relationship. Since the real current at the feed-region
and the ends-region has a very rapid variation [12], [13],
a set of metrons satisfying the end conditions of the zero
currents should include high-order sinusoidal functions. Since
the unknown at each node is only linked with those of its
neighbors, a highly sparse matrix are generated. Furthermore,
if we let the vector potentials in the MEI equations satisfy the
real boundary conditions produced by a real excitation source,
the current distributions of the wire antennas can be directly
obtained by solving the sparse matrix.

The MoM is the most efficient numerical methods to solve
wire antenna problems. This paper shows that the OSMEI
method can also work well in this region with a highly sparse
matrix rather than a dense matrix in the MoM. Although
time-saving of the OSMEI approach compared with the MoM
is not obvious in a single linear antenna problem in this
paper, it is expected that great time-saving can be obtained
in large-scale wire arrays. It should be noted that the OSMEI
also uses the same approximation of the Green’s function
traditionally used by the MoM for the thin wire antennas, i.e.,

.

II. OSMEI FORMULAS FOR WIRE ANTENNAS

For simplicity, only linear wire antennas are discussed in
this paper. The symmetrical axis of the wire is placed along
the axis, the two ends of the wire are located at and

, and the radius of the wire is thin enough so that
only -direction component of the vector potential and -
direction component of the current need to be considered.
We start to discretize the following wave equation of the vector
potential in cylindrical coordinate system:

(1)

where is the coordinate in radial direction. For theth node
among the total discretized nodes, the second-order partial
differential with respect to in (1) can be approximated as

(2)
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Fig. 1. The highly sparse impedance matrix obtained by the OSMEI method.

The second-order partial differential with respect toin (1)
can be approximately written as

(3)

In (3), is used and is approximately
substituted by a linear combination of and nearby fields
[11]. Substituting (2) and (3) into (1) and considering

on the surface of the wire antenna, we get the on-
surface MEI equation as follows:

(4)

The coefficients and
and in (4) are the MEI coefficients. Only

coefficients are independent for each. By means
of possible currents called metrons,
solutions of and , which are called measuring functions
can be obtained, as stated in Section III. If follow that the MEI
coefficients and can be determined.

What remains is to impose the boundary conditions of
in (4) for solving the real currents An existing analytical
solution for with two unknown constants can be used for
this purpose [12]

(5)

Fig. 2. Input impedance of a center-fed linear antenna with versus (solid
line: real part; dashed line: image part).

where is the intrinsic impedance of the free-space, is
the driving field in the feed region, and are constants to
be determined. Equation (5) is the boundary conditions that
(4) should satisfy. Substituting (5) into (4), we obtain the
following linear system of equations:

(6)

where the impedance matrix is determined by (4) and (5),
the exciting voltage vector comes from the last term in
(5). The unknown vector includes the surface current on
each node with the zero current conditions at the ends and the
constantsc and d. At first glance, (6) is very similar to that
obtained by the MoM for Hallen’s equation [13]. However, the
computation of the matrix is significantly different from
that of the MoM in that matrix is highly sparse, while the
matrix for the MoM is full.

III. M ETRONS TODETERMINE THE MEI COEFFICIENTS

Finding the MEI coefficients is the key for the OSMEI
method. The MEI coefficients in (4) are determined by a series
of the measuring function pairs of and
in (4) are directly approximated by the assumed metrons,

, and can be found by

(7)

where is the Green’s function in
free-space, is the wavenumber, and

is the permeability of free-space.
A series of possible current distributions is chosen

for determining the MEI coefficients and in (4).
The principle of choosing is that must satisfy
the end conditions of and . Thus, the
metrons should be

(8)

Since the real currents in the ends and feed region vary
rapidly [14], we have to represent this behavior in the set of
metrons. The simplest way is to include high order sinusoidal
functions. One technique we have used for choosing (the
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(a)

(b)

Fig. 3. Current distributions on a off-center fed linear antenna with
L = 1:77�, a = 0:0001�, and feeding pointz = L=4. (a) Amplitude.
(b) Phase.

order of metrons) is to combine a sequence of the lowest order
with a few of the discretely high order , i.e.,

(9)

where .
For a more exacting theoretic consideration, we choose the

amplitude of the metron of (9) to be paired with as

(10)

where is the zeroth-order Bessel function. This choice of
metron simplifies the calculations of (4) because the equivalent
currents along the axis produce the same
fields as excited by the real current [15]. The number of the
metrons needed for robust MEI coefficients is about 15.

IV. COMPUTATIONAL EXAMPLES

In this section, some numerical results obtained by the
OSMEI method are given and compared with the results of the
Hallen’s integration equation solved by the MoM method with
pulse base and point matching. In the following computations,
the wire antennas are driven by delta gap voltage source,
the five node scheme in the MEI equation (4)
is used, which produces highly sparse matrix, as shown

in Fig. 1. Fig. 2 gives the input impedance of a center-fed
linear antenna with versus . Because of the
rapid variation of the current densities near the driving point,
it is difficult to model the current in this region accurately.
However, the impedances calculated by the MEI method are
still reasonable compared with those of the MoM except
near the anti-resonant frequency. Fig. 3 shows the comparison
of the current distribution of the OSMEI with that of the
MoM for an off-center fed dipole antenna with ,

, and feeding at .

V. DISCUSSION

In this paper, the OSMEI is used to analyze the wire anten-
nas. The FD mesh is no longer necessary, the wire structures
can be accurately modeled by the nodes sampled on the wire
surface. The MEI equations, which describe the relationship
between the surface currents and vector potential functions, are
applied to characterize the electromagnetic property of the wire
surface. The examples of center-fed and off-center-fed dipoles
show that reasonable numerical results can be obtained by the
OSMEI method.

The formulas presented in this paper are limited to the
straight wires, however, they can be directly extended to the
case of a general curved wire, as long as the generalized
integral formulas are used [12]. It is noted that the same thin
wire approximation of the Green’s function is used in MEI as
in the MoM, there is no need for more accurate integration
of the Green’s function near its singularity. The method can
also be applied for the case of wires with series distributed
loads if the analogous modifications have been done as in the
extension of Hallen’s integral equation [13].

The advantage of the method discussed in this paper com-
pared with the MoM is that the highly sparse matrix can be
obtained. It should be pointed out that although time-saving
is not observed in the computations presented in this paper,
it is expected that great time-saving can be obtained in large-
scale wire arrays or computer-aided antenna synthesis using
optimization procedure.
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