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Hierarchal Vector Basis Functions of Arbitrary
Order for Triangular and Tetrahedral Finite Elements

Jon P. Webb,Member, IEEE

Abstract—New vector finite elements are proposed for electro-
magnetics. The new elements are triangular or tetrahedral edge
elements (tangential vector elements) of arbitrary polynomial
order. They are hierarchal, so that different orders can be used
together in the same mesh andp-adaption is possible. They
provide separate representation of the gradient and rotational
parts of the vector field. Explicit formulas are presented for
generating the basis functions to arbitrary order. The basis
functions can be used directly or after a further stage of partial
orthogonalization to improve the matrix conditioning. Matrix
assembly for the frequency-domain curl–curl equation is conve-
niently carried out by means of universal matrices. Application
of the new elements to the solution of a parallel-plate waveguide
problem demonstrates the expected convergence rate of the phase
of the reflection coefficient, for tetrahedral elements to order4. In
particular, the full-order elements have only the same asymptotic
convergence rate as elements with a reduced gradient space (such
as the Whitney element). However, further tests reveal that the
optimum balance of the gradient and rotational components is
problem-dependent.

Index Terms—Basis functions, finite-element methods.

I. INTRODUCTION

I N solving vector electromagnetic problems by the finite-
element method, it is generally recognized that the simple

approach of treating each Cartesian component of the vector
field as a scalar function does not work well. There are
difficulties in handling the interface conditions at boundaries
between materials; modeling of field singularities at sharp
edges and corners is very poor; and spurious (nonphysi-
cal) modes appear among the computed eigenvalues. These
problems can be avoided by the use ofedge elements(also
called tangential vector finite elements), which interpolate
the field in such a way that tangential continuity between
adjacent elements is enforced, while the normal component
is allowed to be discontinuous. This relaxation of continuity
is usually sufficient to eliminate spurious modes (though
further precautions are needed for brick elements [1], [2]);
it also greatly facilitates the imposition of correct boundary
and interface conditions, and improves substantially the field
modeling around singularities [3].

The most widely used edge element is the Whitney ele-
ment [4]. The tetrahedral version has six degrees of freedom,
one per edge. The Whitney element is simple and cheap to

Manuscript received October 30, 1998; revised June 29, 1999. This work
was supported by the Natural Sciences and Engineering Research Council of
Canada.

The author is with the Department of Electrical and Computer Engineering,
McGill University, Montreal, PQ, H3A 2A7, Canada.

Publisher Item Identifier S 0018-926X(99)07953-3.

assemble, and has degrees of freedom which have a ready
physical interpretation (the line integral of the tangential field
along the edges). However, it provides a field interpolation
that is not even first-order: a linear field such as
cannot be represented exactly. Consequently, convergence
of the field solution to the correct values as the mesh is
refined is comparatively slow, and large numbers of elements
may be needed. Recognition of that fact has led to the
invention of a variety of edge elements that are at least
fully first-order and usually involve second-order polynomials
[5]–[10]. Though more complicated, these are more accurate,
and some have found application in widely used commercial
software.

Then the question arises, as it did in the scalar case, can
we develop a general,th-order edge element, i.e., formulas
that would allow us, in principle, to build an edge element of
any order? Since convergence rates increase with, it should
be computationally advantageous to use the highestpossible
in a given problem. Rather than inventing each successive
order of element in anad hocway, it would be better to have
general expressions from which any order of element could
be obtained. Furthermore, once a range of high-order elements
is available, -adaption is possible, i.e., iterative increase of
the element orders in different regions of the problem until
convergence of the field to a specified accuracy is achieved
[11]. Experience with the scalar wave equation suggests that-
adaption is computationally very efficient [12]; in combination
with the more conventional -adaption (mesh refinement), it
can lead to exceptional performance [13].

The first problem one faces when considering theth-order
element is, what function space should it provide? The obvious
answer is the space of vector functionscomplete to order ,
i.e., all functions that are polynomials of degree no higher
than in the space coordinates, , and . However, there
is a good reason to believe that this choice is not necessarily
optimal. In vector electromagnetics, the curl of the field is
often as important as the field itself. If the field is represented
as a polynomial of order , its curl will be a polynomial of
order , and the overall convergence of the solution will
be dominated by this lower order. Why not, therefore, remove
those degrees of freedom that do not affect the curl—the
gradient degrees of freedom—while keeping the field order
complete to order ? The result is an element with fewer
degrees of freedom, but with a better balance in the accuracy
of representation of the field and its curl. The Whitney element
mentioned above is the result of applying this idea to an
element complete to first order.
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This approach was introduced by Nedelec [14] in the earliest
paper on high-order edge elements. However, a few years later
he published another paper [15] in which the function spaces
are now complete to order. The debate between proponents
of complete-order elements and those who favor a removal
of some gradient functions has continued. The argument will
be made in this paper that the optimum function space is, in
fact, problem-dependent. Consequently, two series of function
spaces are introduced: one representing gradient (irrotational)
functions, with zero curl; and one representingrotational
functions, i.e., functions with a nonzero curl. The general
high-order element has, then,two orders, for the gradient and
rotational parts separately. When these two orders are the
same, the result is an element which is complete toth order;
when the gradient order is one less than the rotational order,
the earlier Nedelec spaces are obtained. Other combinations
are also possible.

In fact, there are other advantages to maintaining the sep-
aration of gradient and rotational spaces in higher order
elements. Efficient low-frequency formulations, such as those
used to compute the induced eddy currents in solid conductors
[16], depend on the separation of the two spaces. So does
a promising new technique for solving the linear equation
system generated by the application of a second-order edge
element to the vector wave equation in the frequency domain
[17].

Having determined the spaces (Section II, below), the
next problem is to decide on basis functions for the spaces.
Nedelec’s answer is incomplete. He defines degrees of free-
dom in terms of projections of the field onto complete-order
polynomial spaces, but does not give bases for these spaces.
Graglia et al. [18] describe a generalth-order element of
the reduced-gradient kind, and provide an interpolatory basis
for it, i.e., a set of basis functions and an associated set of
points in the element, such that each basis function vanishes
at all the points except one. Yioultsis and Tsiboukis [19]
give a procedure for generating essentially the same kind of
element, and earlier Wang and Ida [20] took the same approach
with complete-order elements. The reduced-gradient element
of Sun et al. [21] is also partly interpolatory. Interpolatory
bases have certain advantages (good linear independence, ease
of physical interpretation of the unknowns) and have been
widely used for scalar elements [22], but have the decided
drawback of being nonhierarchal. The basis functions of the
th-order element are all different from those of the lower

order elements, and so mixing different orders within the
same mesh while preserving tangential continuity is next to
impossible. That rules out-adaption. Anderson and Volakis
[23] recently described a hierarchal basis for the reduced-
gradient series, with explicit expressions up to order. In
Section III, general expressions forth-order hierarchal basis
functions are given. Though these could be used directly,
in Section IV it is argued that a partial orthogonalization
will improve the matrix conditioning. Section V shows how
the finite-element matrices for the frequency-domain curl–curl
equation can be assembled efficiently for the new elements,
using universal matrices. Results for two test problems are
presented in Section VI.

(a)

(b)

(c)

Fig. 1. (a) One-dimensional (1-D) (line). (b) Two-dimensional (2-D) (trian-
gular). (c) Three-dimensional (3-D) (tetrahedral) finite elements.

II. FUNCTION SPACES

A. One Dimension: Line Element

The line element is shown in Fig. 1. The normalized
coordinates for this simplex are and , satisfying the
relationship . At node 1, ; at node 2, .

Let be the space of all one–dimensional (1-D) vector
functions on this element, that are polynomials inand of
degree less than or equal to. Since there are linearly
independent scalar polynomials of degree, the dimension of

is . Note that, because of the dependence ofon
, a function in can be written in any number of different

ways; in particular, each can be written in the form

(1)

where and are polynomials of degree . The gradient
operator here is just .

Let be the subspace of containing those vectors that
are gradients of scalars vanishing at nodes 1 and 2. Since there
are linearly independent scalar polynomials of degree ,
vanishing at and , the dimension of is .
Again, functions in can be written in a number of different
ways, including

(2)

where is a polynomial of degree .
To make up the difference between and , a one-

dimensional space is needed, having no functions in
common with (other than zero). A convenient basis for this
space is a constant function, say, which when written
in form (1) becomes

(3)

B Two Dimensions: Triangular Element

The triangular element is shown in Fig. 1. The normalized
coordinates for this simplex are , , and , satisfying
the relationship . At node 1, ; on
the opposite edge (connecting nodes 2 and 3), . The
linear relationship between simplex coordinates and Cartesian
coordinates is given by (for example) Silvester and
Ferrari [24].
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Let be the space of all 2-D vector functions on this
element, which are polynomials in, , and of degree less
than or equal to . Since there are linearly
independent scalar polynomials of degreein two dimensions,
the dimension of is .

Consider a basis for the 1-D space. If each basis function
is written in the form (1), it may be regarded as a 2-D vector
function in the 2-D space, with these properties:

a) its tangential component vanishes on the edge
and on the edge (remember that is

perpendicular to edge );
b) its tangential component on the edge is identical

to the 1-D basis function.

As a consequence of b), the 2-D functions generated in this
way must be linearly independent, and constitute a basis for
a subspace of dimension . This is a space of edge
functions, i.e., functions associated with the edge and
vanishing tangentially on the other two edges. By cyclically
permuting the indices in (1) , two similar
spaces can be obtained, one for edge and one for edge

can be divided into two parts. Consider a basis for the
1-D space. Each basis function, written in the form (2),
may be regarded as the 2-D gradient of a 2-D scalar function.
These linearly independent 2-D gradient functions span a
subspace of . Similarly, the 1-D space gives rise
to a 2-D space . So we have

(4)

Let be the subspace of consisting of functions
with vanishing tangential component on all three edges of the
triangle. Since these functions are not associated with edges,
but with the face of the element, they are calledfacefunctions.
It is easy to see that and the three spaces have no
function in common (except zero), and that any function in

can be expressed as the sum of functions from the four
spaces, i.e.,

(5)

where is just the sum of the three edge spaces (one
per edge). From this it follows that the dimension of is

. Functions in
can be written in a variety of ways, including

(6)

where , , and are polynomials of degree . Just like
, the face space can be partitioned. Let be the

subspace of consisting of functions that are gradients of
scalars. Since there are linearly independent scalar
polynomials of degree , vanishing on the edges ,

, and , the dimension of is .
Functions in can be written in the form

(7)

TABLE I
SPACES AND THEIR DIMENSIONS FOR THETRIANGULAR ELEMENT

(NOTE THAT Rp INCLUDES TWO CONSTANT

FUNCTIONS (GRADIENTS) FROM W
(e)
p )

where is a polynomial of degree . Let be any
other subspace of that has no functions in common with

(except zero) and has dimension equal to

Then

(8)

Since functions in cannot also belong to , they
cannot be expressed as a gradient, and must therefore have
a nonzero curl. is the space ofrotational face functions,
and (8) represents a (nonunique) split of the face functions
into gradient and rotational subspaces.

Note that the split (4) is not quite the same. The space
contains the function (3), which is the Whitney edge function.
The three Whitney edge functions for the element span a space
that includes a rotational function, but also includes the two
constant functions, which are gradients. A full separation of

into gradient and rotational parts can be achieved using
the tree and cotree of the graph of edges of the mesh [25], but
that approach will not be pursued here.

The various spaces and their dimensions for the triangular
element are summarized in Table I.

C. Three Dimensions: Tetrahedral Element

The tetrahedral element is shown in Fig. 1. The normalized
coordinates for this simplex are , , , and , satisfying
the relationship . At node 1, ; on
the opposite face (connecting nodes 2, 3, and 4), . The
linear relationship between simplex coordinates and Cartesian
coordinates is given by (for example) Silvester and
Ferrari [24].

Let be the space of all 3-D vector functions on this
element, which are polynomials in, , , and of degree
less than or equal to. Since there are
linearly independent scalar polynomials of degreein three
dimensions, the dimension of is .

Each basis function of the 1-D space, written in the
form (1), may regarded as a 3-D vector function in the 3-D

space, with these properties:

a) its tangential component vanishes on the face
and on the face ;

b) its tangential component on the edge
(connecting nodes 1 and 2) is identical to the 1-D basis
function.

As a consequence of b), the 3-D functions generated in this
way must be linearly independent, and constitute a basis for
a subspace of dimension . This is a space of edge
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functions associated with the edge . By replacing
the indices in (1) by ,
in turn, five similar spaces can be obtained, one for each edge.

As before, can be subdivided. Consider a basis for the
1-D space. Each basis function, written in the form (2)
may be regarded as the 3-D gradient of a 3-D scalar function.
These linearly independent 3-D gradient functions span a
subspace of . Similarly, the 1-D space gives rise
to a 3-D space . So we have (4) again.

Each basis function of the 2-D space, written in the
form (6), may regarded as a 3-D vector function in the 3-D

space, with the following properties:

a) its tangential component vanishes on the faces ,
, and (and, therefore, on all six edges);

b) its tangential component on the face (connecting
nodes 1, 2, and 3) is identical to the 2-D basis function.

As a consequence of b), the 3-D functions generated in this
way must be linearly independent, and constitute a basis
for a subspace of dimension equal to that of the 2-D ,
i.e., . This is a space of face functions
associated with the face and vanishing tangentially on
the other three faces. By replacing the indices in (6)
by , in turn, three similar spaces can
be obtained, one for each face.

can be divided into two parts. Consider a basis for the
2-D space. Each basis function, written in the form (7),
may be regarded as the 3-D gradient of a 3-D scalar function.
These linearly independent 3-D gradient functions
span a subspace of . Similarly, the 2-D space
gives rise to a 3-D subspace of . So we have (8) again.

Functions in the 3-D space satisfy the following
relation:

- - (9)

where - is the equivalent function in the 2-D space, andis
a unit vector perpendicular to the face. Since the 2-D space is
rotational, the right-hand side cannot vanish; therefore,must
have a nonzero curl, i.e., the 3-D space is also rotational.

Let be the subspace of consisting of functions
with vanishing tangential component on all four faces of the
tetrahedron. These are thevolumefunctions. It is easy to see
that , the four spaces, and the six spaces have
no overlap (except zero), and that any function incan be
expressed as the sum of functions from the 11 spaces, i.e.,

(10)

From this it follows that the dimension of is

Just like and , the interior space can be
subdivided. Let be the subspace of consisting
of functions that are gradients of scalars. Since there are

linearly independent scalar polynomials of
degree , vanishing on the faces , , ,

TABLE II
SPACES AND THEIR DIMENSIONS FOR THETETRAHEDRAL ELEMENT

(NOTE THAT Rp INCLUDES THREE CONSTANT

FUNCTIONS (GRADIENTS) FROM W
(e)
p )

and , the dimension of is . Let
be any other subspace of that has no function in

common with (except zero) and has dimension equal to

Then

(11)

Since functions in cannot also belong to , they cannot
be expressed as a gradient, and must, therefore, have a nonzero
curl. is a rotational space.

The various spaces and their dimensions for the tetrahedral
element are summarized in Table II. Note that the dimensions
presented here for the edge, face, and volume functions
complete to order coincide with those of Nedelec [15].

III. B ASIS FUNCTIONS

A. Edge Basis Functions

The 1-D gradient space needs basis functions, i.e., one
additional function is needed when the order increases from

to . This must be the gradient of a scalar which vanishes
at and . A suitable function, of form (2), is

(12)

Note that this function is either symmetric in (for odd),
or antisymmetric (for even). This is important. A symmetric
basis function will take the same form in every element that
shares the edge, so continuity is imposed simply by choosing
the same coefficient for the function in each element. An
antisymmetric basis function, on the other hand, comes in
two varieties which differ by a sign, depending on which
end of the edge is taken as local node 1 and which is local
node 2 within an element. Because of this, choosing the same
coefficient for the function for all the elements that share the
edge will not, on its own, impose continuity. However, the
fix is relatively simple: arbitrarily designate the 1 and 2 ends
of the edge, and for elements whose local numbering does
not match this choice, introduce a minus sign, i.e., multiply
the row and column of the local matrix corresponding to this
basis function by minus one.

Without symmetry or antisymmetry of the basis functions,
enforcing tangential continuity would be more difficult. Pro-
vision would have to be made for assembling two varieties of
each asymmetric edge function, with the appropriate variety
chosen at runtime in accordance with the relative orientation
of the edge.
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The single basis function for is , given in (3). It
is antisymmetric.

B. Face Basis Functions

A basis for the 2-D gradient space may conveniently
be found by first defining a basis for the scalar polynomials
that vanish on the three edges of the face, and then taking
their gradients.

A 2-D scalar space of order, vanishing on , ,
and , has dimension , so when the
order increases from to , the number of extra scalar
basis functions required is . In choosing these
functions, consideration must be given to the imposition of
tangential continuity between two tetrahedra sharing a face.
To ensure that a basis function of one tetrahedron
has a matching basis function in the neighboring tetrahedron,
two requirements are introduced:

a) Each basis function must be symmetric (or antisymmet-
ric) in , or , or .

b) The basis functions must be defined intriplets:
, where is an operator that “rotates” a

function in the direction

(13)

Then, for example, depending on the relative orientation of
the two tetrahedra, function of one tetrahedron might match
function (or ) of the neighboring tetrahedron.

Without loss of generality, we will assume henceforth that
the first function of the triplet is symmetric (antisymmetric)
in ; it follows that and are symmetric (antisym-
metric) in and , respectively.

The following polynomials of order satisfy a). They
are divided into triplets, where . All except the
last triplet satisfies b). The first function of theth triplet is

(14)

and

if

if

if (15)

When , all three functions of theth triplet are
the same, i.e., the triplet degenerates to a single function. Since
the single function is itself unaffected by the rotation operator
, it always has a matching function in the neighboring

tetrahedron.
When , there are apparently three distinct

functions in the th triplet, but in fact ,
so there are really only two. The simplest way to handle this
is to provide code for the assembly of all three functions, but
assemble just two of them, making sure that the one omitted
in one tetrahedron matches the one omitted in the neighboring
tetrahedron.

When , there are three distinct functions in the
th triplet, just as there are for all triplets . Overall,

the functions defined by (14) and (15) lead to linearly
independent scalar functions, as intended.

The gradient space needs basis functions,
so in going from order to order an additional
basis functions of order are needed. These can be generated
from the scalar triplets of order . The first functions of
the triplets of are

(16)

The rotational space is handled in a similar way. In
going from order to order an additional basis functions
of order are needed, each of the form (6). The symmetry
requirements a) and b), above, apply to these vector basis
functions too. A suitable basis has triplets.
The first function of the th triplet is

(17)

(equation (14) is extended to include the case ), and

if

if

if (18)

When , the triplet degenerates to a single
function. When , there are apparently three
distinct functions in the triplet , but in fact

, so there are really only two; one of the three must
be omitted when building the local stiffness matrix, as before.
With the special cases taken into account, the overall number
of basis functions obtained from (17) and (18) is, as required.

As pointed out earlier, the rotational space is not
unique. By selecting the above basis, one possible has
been defined. In fact, it is possible to choose a basis such
that is spatially biased: that is, a permutation of the
numbering of the three nodes of the face would result in
a different space. This kind of anisotropy is exhibited by
the earlier functions of the author [8] and of Lee [6],
and is intuitively undesirable. The question then arises, is
the new basis given above isotropic? For triplets that are
nondegenerate, the answer is clearly yes. The single function
that arises in the case is also isotropic, by
inspection of (18). In the case, it might be
thought that omitting one of the three functions would induce
anisotropy, but this is not true. The function omitted is linearly
dependent on the other two, and omitting it does not change
the space spanned by the original triplet, which is isotropic.
So in all cases, is isotropic.

C. Volume Basis Functions

A 3-D scalar space of order, vanishing on , ,
, and , has dimension ,
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so when the order increases from to , the number of
extra basis functions required is . Fortunately,
these functions can be chosen without regard to the need for
imposing continuity between elements. A suitable basis is

(19)

A basis for the gradient space is obtained by taking
the gradient of the scalar basis of degree . The additional
basis functions needed when the order increases from
to are

(20)

The rotational space has dimension
, so when the order increases from to , the number

of extra basis functions required is . A suitable basis is

(21)

IV. ORTHOGONALITY

The basis functions given above could be used directly to
solve problems in vector electromagnetics. However, as the
polynomial order increases, the issue of matrix ill-conditioning
becomes important. The basis functions become increasingly
similar to one another, and consequently the condition number
of the stiffness matrix built from them deteriorates, affecting
accuracy and, for iterative solution methods, overall com-
putation time. Notice that this is not a particular problem
for interpolatory bases, where a high degree of linear inde-
pendence seems to follow from the interpolation property.
However, with hierarchal bases it is an issue that must be
addressed.

A solution is to find a new set of basis functions which are
at least partially orthogonal to one another in an appropriate
inner product. If complete orthogonality could be achieved
in the natural inner product of the finite element method,
the condition number of the stiffness matrix would be one.
This is not possible. However, a partial approach does lead to
substantial improvements.

The inner product chosen is based on the usual function-
space inner product

(22)

Since we are looking for a new basis that is independent of
the particular problem being solved, the domain of integration
in (22) must be a single tetrahedron. In the scalar case [26],
the integral turns out to be independent of the shape of the
tetrahedron, scaling simply with its volume. Unfortunately,
this is not the case with vector basis functions, so a particular
tetrahedron must be chosen as the basis for the orthogonality.

The equilateral tetrahedron of unit side is the natural choice.
For this element, it can be shown that

(23)

where if and otherwise; and are defined
by the following expansions of the vectors , respectively:

(24)

Using (23) and a symbolic mathematics program, the inner
product of any two basis functions can be found, and new
basis functions derived.

Consider first the volume gradient functions. Straightfor-
ward Gram–Schmidt orthogonalization can be used to make
these all mutually orthogonal. The lowest order function
is left alone; is replaced by a linear combination of
and that is orthogonal to ; then is replaced by a
linear combination of , , and that is orthogonal
to and ; and so on.

The volume rotational functions can be orthogonalized in
the same way, but in addition they can be orthogonalized with
respect to the gradient functions of the same or lower order,
e.g., is orthogonalized with respect to by replacing
it by a linear combination of and . The converse
is not possible because it would destroy the irrotationality of
the gradient functions.

Edge functions are orthogonalized only with respect to
other edge functions on the same edge. Since symmetric
and antisymmetric functions are automatically orthogonal,
it is only necessary to orthogonalize a symmetric function
against lower order symmetric functions, and similarly for
antisymmetric functions.

Face functions are a little more involved, because of the
need to maintain the triplet structure. The orthogonalization
now must bebetween triplets, in the following sense. A
triplet based on a function (i.e., consisting of the functions

) is said to be orthogonal to a triplet based on a
function when each function of the triplet is orthogonal
to all three functions of the triplet. This orthogonalization
can be achieved by replacing by a linear combination of

and that is orthogonal to and .
Once again, however, symmetry plays a part in simplifying

the orthogonalization. Each triplet can be said to be symmetric
or antisymmetric, depending on whether the first functionis
symmetric or antisymmetric in . A symmetric triplet has
an alternative basis of three functions

symmetric in
symmetric in
antisymmetric in
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TABLE III
FUNCTIONS TO USE TO ORTHOGONALIZE fff WITH RESPECT TOTRIPLET ggg

TABLE IV
EDGE FUNCTIONS TO ORDER 3

s = SYMMETRIC, a = ANTISYMMETRIC

TABLE V
FACE FUNCTIONS TO ORDER 3

JUST THE FIRST FUNCTION OF THE TRIPLET IS GIVEN;
s = SYMMETRIC, a = ANTISYMMETRIC, t = NUMBER OF

INDEPENDENT FUNCTIONS IN THE TRIPLET

An antisymmetric triplet has this alternative basis

antisymmetric in
antisymmetric in
symmetric in

To orthogonalize the symmetric triplet with respect to the
symmetric triplet , then, it is only necessary to orthogonalize

with respect to and ; orthogonality between and
is automatic, since a face function symmetric in

is necessarily orthogonal to a face function antisymmetric in
. Not only does this cut down on the work, but it ensures

that the new, orthogonalized is still symmetric in ,
which is important for imposing continuity across faces (as
explained above).

Similar simplification is possible for other combinations of
symmetry and antisymmetry. The results are summarized in
Table III. The “single” cases are degenerate triplets consisting
of just one function, which is assumed to be unchanged by
the operator.

Tables IV–VI give the basis functions to order, both before
and after orthogonalization. To explain how these tables can be
used to construct an element providing gradient and rotational
spaces of given orders, consider the example of a tetrahedron
which is to have a gradient order ofand a rotational order
of . Begin with Table IV. Every element requires , so
that is the first set of basis functions, six in all, one per edge.
Since the gradient order is, both and are needed.
Each adds one function per edge, so there is a total of 18 edge
functions for this element. Turning to Table V, is needed.
As explained in the table caption, is just the first function
in a triplet. However, in this case the triplet is degenerate, and

TABLE VI
VOLUME FUNCTIONS TO ORDER 3

contains only one member, so including adds just one
function per face, or a total of four for the tetrahedron. The
next gradient function is not needed, but both and

are. The triplet is again degenerate, with only two
members

and
(25)

(or any other two out of the triplet). , on the other hand, is
not degenerate, and adds three functions per face, bringing the
total number of face functions for the tetrahedron to 24. From
Table VI just the rotational functions are needed, and there are
three of these. The tetrahedron, then, has basis
functions. (Cross check with Table II:

.)

V. MATRIX ASSEMBLY

Tetrahedral elements of the kind described above have
been used to solve the equation governing the time-harmonic
electric field in a closed region

(26)

where and are the relative permeability and permittivity,
respectively, given functions of position, and is the free-
space wavenumber. The boundary condition

on (27)

is applied, where is the tangential part of , and is a
specified tangential field.

Application of the finite-element method approximates these
equations by

(28)

where and are square matrices, is a column vector
of unknown coefficients, and is a known column vector
arising from the nonzero boundary condition. The unknown
coefficients are related to the electric field in each tetrahedral
element as follows:

(29)

where the are the vector basis functions of the element.
The matrices and are built by the usual process of
matrix assembly, starting from the following expressions for
the entries of the local matrices for tetrahedron:

(30)



WEBB: HIERARCHAL VECTOR BASIS FUNCTIONS OF ARBITRARY ORDER 1251

The assumption is made here that the material properties
and are constant throughout the tetrahedron.

The integration in (30) could be carried out numerically,
using for example a Gauss procedure. However, a universal-
matrix approach is more efficient, particularly for higher order
elements [27]. Let

(31)

Any basis function can be written in this form by eliminating
and using . Then by substituting

(31) into (30) it can be shown that

(32)

where is the volume of the tetrahedron; and the are
six symmetric universal matrices whose entries are given by

(33)

is if and are unequal, if they are equal.
Taking the curl of (31) leads to

(34)

where

(35)

and, similarly, by cyclic permutation of the indices, for,
, , . Substituting (34) into (30) gives

(36)

where the are another set of six symmetric universal
matrices

(37)

The and may be computed exactly with symbolic
mathematics software (e.g., Maple) and stored in double
precision with the finite-element program, to be used at run
time to build the local matrices.

VI. RESULTS

The following results are obtained with tetrahedral elements.
The order of the element is designated by a pair of indices,

, where is the order of the gradient space and
is the order of the rotational space .

The first example is a uniform length of parallel-plate
waveguide (Fig. 2), short-circuited at one end ( ) and
driven with a unit electric field at the other . The
conducting plates are at and . The boundary
surfaces and are left free; the natural boundary
condition for such surfaces is that the tangential magnetic field

Fig. 2. A short-circuited length of parallel-plate waveguide, excited by a
unit electric field. Surfaces with no specifiedEt are left free, implying that
the tangential magnetic field vanishes there.

vanishes there, which is correct, since the magnetic field of the
TEM mode of the waveguide has only acomponent.

The problem is meshed by subdividing it into
equal-sized blocks, and then subdividing each block into six
tetrahedra. Since in this problem there is no variation in the

and directions, and are both set to . As
is increased, the dimensionsand are scaled to keep the
blocks cubical, in order to avoid any effects that might arise
from severely distorted elements.

Once the problem is solved and the electric field calculated,
the phase of the reflection coefficient at is found as
follows. The normalized susceptanceat is obtained
from the finite-element functional

(38)

and the phase of the reflection coefficient is then

(39)

The exact value for the phase is radians.
Fig. 3 shows the reduction in the error of the phase as

the number of subdivisions is increased, for “full-order”
elements, . Note that the
frequency is set higher for the higher orders, so that the
asymptotic behavior can be seen on the same figure. The
results reveal that, asymptotically, the phase error decreases
as for the element, where is the element size.
This is to be expected. A field that is complete to orderhas
a curl that is only complete to order , which therefore
has errors. Since the functional depends on the square
of the curl of the field, and is stationary at the true solution,
the resulting error in the functional is .

Since the convergence rate is limited by the order of the
curl, reducing the gradient space by one order should leave it
unchanged. This is the rationale behind the “reduced-gradient”
spaces: . Fig. 4 gives the
results in this case. Indeed, the element is found
to have the same asymptotic convergence rate as the
element.

A discussion of convergence rates for high-order edge
elements (up to order) can also be found in [28].
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Fig. 3. Error in the phase of the reflection coefficient of a short-circuited
piece of waveguide, versus number of subdivisions, for full-order elements,
orders1 to 4. ko is in rads/m.

Fig. 4. Error in the phase of the reflection coefficient of a short-circuited
piece of waveguide, versus number of subdivisions, for reduced-gradient
elements, orders1 to 4. ko is in rads/m.

It might seem, then, that the element should always
be used instead of the element. That this is not the
case is demonstrated by the next example. A parallel-plate
waveguide is half blocked by a thin conducting plate, oriented
perpendicular to the electric field and therefore creating a
capacitive loading. When excited by equal electric fields on
either side, the blocking plate lies in a plane of symmetry
and one half of the problem can be solved, as shown in
Fig. 5. The susceptance,, at the input plane , and

Fig. 5. Parallel-plate waveguide, excited by a unit electric field, and partially
blocked by a conducting plate (atz = 1). Half the problem is modeled;z = 1

is a plane of symmetry. Surfaces with no specifiedEt are left free, implying
that the tangential magnetic field vanishes there.

Fig. 6. Phase error versus cost of solution, as the number of tetrahedra is
increased, for the capacitive obstacle shown in Fig. 5.ko = 1 rads/m.

the corresponding reflection coefficient, are calculated in the
same way as before.

Once again the problem is meshed by subdividing it into
equal-sized blocks, and then subdividing each

block into six tetrahedra. This time, however, , , and
are all set equal to the same value,.

Fig. 6 shows the phase error for a number of different ele-
ment types, as is increased. To compare the computational
efficiencies fairly, the errors are plotted against the number
of floating-point operations required to solve the resulting
matrix problem using a well-known sparse-matrix technique,
the frontal method [29]. The exact phase for this problem is
unknown, but a reference value obtained from extrapolation
of the results is believed to be accurate to within 0.1,
and is used as the true value for the purpose of calculating
the phase errors.

Fig. 6 clearly demonstrates the superior computational effi-
ciency of higher order elements, at least when a frontal solver
is used. An element such as can achieve the same phase
accuracy as in almost one tenth the CPU time. More
interestingly, the full-order elements significantly outperform
the reduced-gradient elements: the element does only
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about as well as ! (We are comparing here accuracyper
flop; it is still true that gives significantly higher phase
accuracy than with the same number of tetrahedra.)
The reason for the superior performance of the full-order
elements is that, because of the relatively low frequency and
the orientation of the sharp conducting edge, the electric field
in this problem is strongly gradient in nature. The curl of the
electric field, i.e., the magnetic field, is relatively unimportant,
and so the element, which favors the rotational space,
is much less efficient than the element. Of course, this
will not always be the case, but it is important to realize that
the best element type is problem (and region) dependent.

VII. CONCLUSION

Basis functions of arbitrary order for vector triangles and
tetrahedra have been presented. Convergence tests demonstrate
that the new elements have the expected characteristics, at
least to fourth order, in three dimensions. Earlier hierarchal
elements of this kind were limited to second order. The
increased polynomial range will increase the power of-
adaptive methods in 3-D electromagnetics.

The question of what are the “correct” higher order ex-
tensions of the elementary Whitney element has long been
debated. The natural extension appears to some to be the
reduced-gradient series, because of the importance of the
curl of the field in electromagnetics. Others have argued
for function spaces that are complete to a given polynomial
order. The results presented in this paper suggest that both
sides may be right: where the curl dominates, the reduced-
gradient element is more efficient; where the gradient is more
important, the full-order element works better. This insight
suggests that the balance of gradient to curl in the element
should in fact be determined nota priori, but through an
adaptive criterion.
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