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Hierarchal Vector Basis Functions of Arbitrary
Order for Triangular and Tetrahedral Finite Elements

Jon P. WebbMember, IEEE

Abstract—New vector finite elements are proposed for electro- assemble, and has degrees of freedom which have a ready
magnetics. The new elements are triangular or tetrahedral edge physical interpretation (the line integral of the tangential field

elements (tangential vector elements) of arbitrary polynomial ; ; . ; ;
order. They are hierarchal, so that different orders can be used a;:ong the edges)%. How(ejve.r, |t|lprOVIdf.es|da flelﬁ ;t(a_rpo[atlon
together in the same mesh andp-adaption is possible. They that is not even first-order: a linear field such As= zy

provide separate representation of the gradient and rotational cannot be represented exactly. Consequently, convergence
parts of the vector field. Explicit formulas are presented for of the field solution to the correct values as the mesh is

generating the basis functions to arbitrary order. The basis refined is comparatively slow, and large numbers of elements

functions can be used directly or after a further stage of partial o he needed. Recognition of that fact has led to the
orthogonalization to improve the matrix conditioning. Matrix

assembly for the frequency-domain curl—curl equation is conve- InNvention of a variety of edge elements that are at least
niently carried out by means of universal matrices. Application fully first-order and usually involve second-order polynomials
of the new elements to the solution of a parallel-plate waveguide [5]-[10]. Though more complicated, these are more accurate,

problem demonstrates the expected convergence rate of the phaseang some have found application in widely used commercial
of the reflection coefficient, for tetrahedral elements to ordert. In software

particular, the full-order elements have only the same asymptotic . . o
convergence rate as elements with a reduced gradient space (such 1hen the question arises, as it did in the SFa|ar case, can
as the Whitney element). However, further tests reveal that the we develop a generajth-order edge element, i.e., formulas

optimum balance of the gradient and rotational components is that would allow us, in principle, to build an edge element of
problem-dependent. any order? Since convergence rates increase ayithshould
Index Terms—Basis functions, finite-element methods. be computationally advantageous to use the highgstssible
in a given problem. Rather than inventing each successive
order of element in aad hocway, it would be better to have
general expressions from which any order of element could
N solving vector electromagnetic problems by the finitepe obtained. Furthermore, once a range of high-order elements
element method, it is generally recognized that the simplg available,p-adaptionis possible, i.e., iterative increase of
approach of treating each Cartesian component of the vegies element orders in different regions of the problem until
field as a scalar function does not work well. There amgnvergence of the field to a specified accuracy is achieved
difficulties in handling the interface conditions at boundariqq_l]_ Experience with the scalar wave equation Suggests)that
between materials; modeling of field singularities at shagjaption is computationally very efficient [12]; in combination
edges and corners is very poor; and spurious (nonphygjith the more conventionat-adaption (mesh refinement), it
cal) modes appear among the computed eigenvalues. Thesg§ |ead to exceptional performance [13].
problems can be avoided by the useenfge elementéalso  Tne first problem one faces when considering gtieorder
called tangential vector finite elements), which interpolai§ement is, what function space should it provide? The obvious
the_ field in such a way that tanggntial continuity betweefnswer is the space of vector functioosmplete to ordep,
adjacent elements is enforced, while the normal compongRt = g functions that are polynomials of degree no higher
is allowed to be discontinuous. This relaxation of continui%anp in the space coordinates y, and . However, there
is usually sufficient to eliminate spurious modes (thoug 5 good reason to believe that this choice is not necessarily
further precautions are needed for brick elements [1], [2lptimal. In vector electromagnetics, the curl of the field is
it also greatly facilitates the imposition of correct boundarysen as important as the field itself. If the field is represented
and interface conditions, and improves substantially the field 5 polynomial of ordep, its curl will be a polynomial of
modeling around singularities [3]. _ . orderp — 1, and the overall convergence of the solution will
The most widely used edge element is the Whitney €lgg gominated by this lower order. Why not, therefore, remove
ment [4]. The tetrahedrgl version has Six Qegrees of freedofRpse degrees of freedom that do not affect the curl—the
one per edge. The Whitney element is simple and cheapdo,gient degrees of freedom—while keeping the field order
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This approach was introduced by Nedelec [14] in the earliest l——2 — > x ()
paper on high-order edge elements. However, a few years later
he published another paper [15] in which the function spaces ! 5
are now complete to order. The debate between proponents
of complete-order elements and those who favor a removal 2 L x (b)
of some gradient functions has continued. The argument will
be made in this paper that the optimum function space is, in 3

: ) 1
fact, problem-dependent. Consequently, two series of function v
spaces are introduced: one representing gradient (irrotational) 4 . ©
functions, with zero curl; and one representirgational 3 .
2

functions, i.e., functions with a nonzero curl. The general
high-order element has, thetwo orders, for the gradient and
rotational parts separately. When these two orders are #¢ 1 (a) one-dimensional (1-D) (line). (b) Two-dimensional (2-D) (trian-
same, the result is an element which is completgttoorder; gular). (c) Three-dimensional (3-D) (tetrahedral) finite elements.
when the gradient order is one less than the rotational order,
the earlier Nedelec spaces are obtained. Other combinations I
are also possible.

In_ fact, there are other adva_ntages to mair_1tain_ing the S&0- One Dimension: Line Element
aration of gradient and rotational spaces in higher order
elements. Efficient low-frequency formulations, such as thoseThe line element is shown in Fig. 1. The normalized
used to compute the induced eddy currents in solid conduct§ordinates for this simplex arg; and ¢;, satisfying the
[16], depend on the separation of the two spaces. So dég@tionship(; +¢; = 1. At node 1,¢; = 0; at node 2, = 1.
a promising new technique for solving the linear equation Let V;, be the space of all one—dimensional (1-D) vector
system generated by the application of a second-order edg@ctions on this element, that are polynomialgirand¢; of
element to the vector wave equation in the frequency domalggree less than or equal po Since there arg + 1 linearly
[17]. independent scalar polynomials of degged¢he dimension of

Having determined the spaces (Section II, below), thé iS p+ 1. Note that, because of the dependence:0bn
next problem is to decide on basis functions for the spacés: & function inV;, can be written in any number of different
Nedelec's answer is incomplete. He defines degrees of fré3ys; in particular, each can be written in the form
dom in tgrms of projections of the _field onto complete-order PG, 6)GVE + Pa(Cr, )G VG 1)
polynomial spaces, but does not give bases for these spaces.
Graglia et al. [18] describe a generalth-order element of whereP; and are polynomials of degrge—1. The gradient
the reduced-gradient kind, and provide an interpolatory basigerator here is just-2.
for it, i.e., a set of basis functions and an associated set olet G, be the subspace df, containing those vectors that
points in the element, such that each basis function vanistase gradients of scalars vanishing at nodes 1 and 2. Since there
at all the points except one. Yioultsis and Tsiboukis [19rep linearly independent scalar polynomials of degreel,
give a procedure for generating essentially the same kindwfnishing at(; = 0 and {; = 1, the dimension ofG,, is p.
element, and earlier Wang and Ida [20] took the same approaggain, functions inG;,, can be written in a number of different
with complete-order elements. The reduced-gradient elem#ays, including
of Sun et al. [21] is also partly interpolatory. Interpolatory
bases have certain advantages (good linear independence, ease V(CICQP(CI’ CQ)) )
of physical interpretation of the unknowns) and have be&vhere P is a polynomial of degreg — 1.
widely used for scalar elements [22], but have the decidedTo make up the difference betwee®, and V,, a one-
drawback of being nonhierarchal. The basis functions of timensional spacéV, is needed, having no functions in
pth-order element are all different from those of the lowetommon withG,, (other than zero). A convenient basis for this
order elements, and so mixing different orders within thepace is a constant function,V¢; say, which when written
same mesh while preserving tangential continuity is next @ form (1) becomes
impossible. That rules ouyt-adaption. Anderson and Volakis
[23] recently described a hierarchal basis for the reduced- SAYCECAYCE (3)
gradient series, with explicit expressions up to or@erin ) ) )
Section Ill, general expressions fpth-order hierarchal basis B Two Dimensions: Triangular Element
functions are given. Though these could be used directly,The triangular element is shown in Fig. 1. The normalized
in Section IV it is argued that a partial orthogonalizatiowoordinates for this simplex aré;, (>, and (s, satisfying
will improve the matrix conditioning. Section V shows howthe relationshipl; + ¢ + {3 = 1. At node 1,{; = 1; on
the finite-element matrices for the frequency-domain curl-cuHe opposite edge (connecting nodes 2 and(3)= 0. The
equation can be assembled efficiently for the new elemeritagar relationship between simplex coordinates and Cartesian
using universal matrices. Results for two test problems areordinates(z,y) is given by (for example) Silvester and
presented in Section VI. Ferrari [24].

. FUNCTION SPACES
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Let V, be the space of all 2-D vector functions on this TABLE |
element. which are ponnomiaIs m Co anng of degree less SPACES AND THEIR DIMENSIONS FOR THE TRIANGULAR ELEMENT
' : ' > . NoOTE THAT R, | Two C
than or equal tg. Since there arép + 1)(p + 2)/2 linearly (NoTe Thar t, Inciupes Two o
. . . . . FUNCTIONS (GRADIENTS) FROM W)
independent scalar polynomials of deggeia two dimensions,

. . . Gradient Rotational/Whitney Complete to order p
the dlm_en5|on oﬂ_/p is(p+ D(p+2). _  Edge G,7 3w 7E 3x1 VO 3k
Consider a basis for the 1-B, space. If each basis function Face G re-b2 RO b2 Bf eheth
Total G, @22 -3 R, perh2+2 ¥,  @rheR)

is written in the form (1), it may be regarded as a 2-D vector
function in the 2-DV,, space, with these properties:

a) its tangential component vanishes on the edge= WhereP is a polynomial of degree — 2. Let R be any
0 and on the edge&s, = 0 (remember thatV(; is other subspace df},(f) that has no functions in common with
perpendicular to edg€; = 0); Géf) (except zero) and has dimension equal to

b) its tangential component on the edge= 0 is identical
to the 1-D basis function.

As a consequence of b), the 2-D functions generated in thigen

way must be linearly independent, and constitute a basis for

a subspace of dimensign+ 1. This is a spac&,® of edge Vi =6 e RY). (8)
functions, i.e., functions associated with the edge- 0 and . ) — o
vanishing tangentially on the other two edges. By cyclicallynce functions inf,’” cannot also belong tds;”’, they
permuting the indices in (1)1 — 2 — 3 — 1), two similar Cannot be expressed as a gradient, and must therefore have

spaces can be obtained, one for edge- 0 and one for edge & NONzero curIRéf) is the space ofotational face functions,

(o = 0. and (8) represents a (honunique) split of the face functions
V{” can be divided into two parts. Consider a basis for t{Bt0 gradient and r'otatlgnal subtc,paces. ’

1-D G,, space. Each basis function, written in the form (2), Note that the split (4) is not quite the same. The Spage _

may be regarded as the 2-D gradient of a 2-D scalar functigipntains the function (3), which is the Whitney edge function.

Thesep linearly independent 2-D gradient functions span &he three Whitney edge functions for the element span a space
subspacei?](f) of Vp(e)_ Similarly, the 1-D spacéV,, gives rise that includes a rotational function, but also includes the two

to a 2-D spacd/V]Se). So we have co(g)st'ant funct'ions, which gre gradients. A full separation .of
Vp"’ into gradient and rotational parts can be achieved using
Ve =Gl e w. (4) the tree and cotree of the graph of edges of the mesh [25], but
that approach will not be pursued here.
Let Vp(f) be the subspace of, consisting of functions  The various spaces and their dimensions for the triangular
with vanishing tangential component on all three edges of teement are summarized in Table I.
triangle. Since these functions are not associated with edges,
but with the face of the element, they are calladefunctions. C. Three Dimensions: Tetrahedral Element

Itis easy to see thal\”) and the thred/,* spaces have no  The tetrahedral element is shown in Fig. 1. The normalized
function in common (except zero), and that any function igygrdinates for this simplex arg, (o, (s, and (4, satisfying
V, can pe expressed as the sum of functions from the foyg relationshig; + Co + (3 + ¢4 = 1. At node 1,¢; = 1; on
Spaces, 1.e., the opposite face (connecting nodes 2, 3, and4} 0. The

V, =V @3v© 5) Iinear_relationship b_etw_een simplex coordinates_and Cartesian

P P coordinates(x, y, z) is given by (for example) Silvester and

rrari [24].
Let V, be the space of all 3-D vector functions on this

dimVp(f) - dimGz(qf) =(-D+2)/2

where 31/,,(9) is just the sum of the three edge spaces (orl|:

per edge). From this it follows that the dimensionk}ﬁ‘f) is element, which are polynomials ify, ¢a, Cs, and¢, of degree

_ ; i1 ()
(p+1)(p+2)=3(p+1) = (p—1)(p+1). Functions ;™" 1654 than or equal tp. Since there arép+1)(p+2)(p+3)/6
can be written in a variety of ways, including linearly independent scalar polynomials of deggesn three
€12 P3(C1, €2, 3) VG + QG P1(C1, G, 3) VG dimensions, the dimension 6, is (p + 1)(p + 2)(p + 3)/2.
p v 6 Each basis function of the 1-V, space, written in the
020G VEe 6) oy (1), may regarded as a 3-D vector function in the 3-D

whereP,, Py, andP; are polynomials of degree—2. Just like V» SPace, with these properties:
V{9, the face spac®"’ can be partitioned. Le” be the ~ @) its tangential component vanishes on the face= 0

subspace o¥/") consisting of functions that are gradients of __ and on the face, = 0;
scalars. Since there apép — 1)/2 linearly independent scalar ) ItS tangential component on the edge = ¢4, = 0
polynomials of degree + 1, vanishing on the edgeg = 0, (connecting nodes 1 and 2) is identical to the 1-D basis

¢2 = 0, and {3 = 0, the dimension ofGJ(qf) is p(p — 1)/2. function. _ o
Functions inGY” can be written in the form As a consequence of b), the 3-D functions generated in this
b

way must be linearly independent, and constitute a basis for
V(162G P((1,¢2,¢3)) (7) a subspace of dimensign+ 1. This is a spacé/p(e) of edge
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functions associated with the edge= ¢, = 0. By replacing TABLE I
the indices(l, 2) in (1) by (17 3)7 (17 4)7 (27 3)7 (27 4)7 (37 4)’ SPACES AND THEIR DIMENSIONS FOR THE TETRAHEDRAL ELEMENT
in turn, five similar spaces can be obtained, one for each edge. (NO;EN—(Z:IA(;)er?()GI:ACI;Eziz)TFHRTZ)EME ;?ﬁ?;ANT

As before,Vp(e) can be subdivided. Consider a basis for the -

. . . . - Gradient Rotational/Whitney Complete to order p
1-D G, space. Each basis function, written in the form (2)Esee G,7 oxp W7 6x1 VP 6x(prD
may be regarded as the 3-D gradient of a 3-D scalar functiofiace G2 4 xp(-172 RO 4xeben v 4x e
. . . . Vol- G, po-Dp-2)/6 RY 21 v, E-DE-DE+D2
Thesep linearly independent 3-D gradient functions span a,q. @pt3) 16

subspace?ée) of Vp(e). Similarly, the 1-D spacéV,, gives rise ~ Total G, G@3EH6 R, pEoes  Vy HEDER
to a 3-D spaceWzge). So we have (4) again.
Each basis function of the Z—ng(f) space, written in the . . (v)
form (6), may regarded as a 3-D vector function in the 3_5?9)414 = 0, the dimension of, (,U')S plp —Dlp - 2)/6'_ Let-
V,, space, with the following properties: R, be any ot?gr subspace &f,"’ that has no function in
a) its tangential component vanishes on the fages: 0, common withG,” (except zero) and has dimension equal to

(> = 0, and(3z = 0 (and, therefore, on all six edges); dim Vp('v) _ dim G§“> =(p—2)(p—1)(2p+3)/6.
b) its tangential component on the fa¢e= 0 (connecting
nodes 1, 2, and 3) is identical to the 2-D basis functiorl "€N
As a consequence of b), the 3-D functions generated in this Vv =6 e R (11)
way must be linearly independent, and constitute a basis )

for a subspace of dimension equal to that of the 24, Since functions irfz,” cannot also belong &7, they cannot
e, (p—1)(p+1). Thisis a Spacd/(f) of face functions be expressed as a gradient, and must, therefore, have a nonzero
L., . pr

. g . ) (v) ;
associated with the facg = 0 and vanishing tangentially on €Ul- £ is a rotational space. _
the other three faces. By replacing the indi¢es2, 3) in (6) The various spaces and their dimensions for the tetrahedral
by (1,2,4), (1,4,3), (2,3,4), in turn, three similar spaces Canelement are summarized in Table Il. Note that the dimensions

be obtained. one for each face. presented here for the edge, face, and volume functions

v,{¥) can be divided into two parts. Consider a basis for tfgPmplete to ordep coincide with those of Nedelec [15].

2-D Géf) space. Each basis function, written in the form (7),
may be regarded as the 3-D gradient of a 3-D scalar function.
Thesep(p — 1)/2 linearly independent 3-D gradient functions ) ]
span a subspac@éf) of Vp(f). Similarly, the 2-D spacé?éf) A. Edge Basis Functions
gives rise to a 3-D subspace bif) So we have (8) again_ The 1-D gradient spa(@p needsp basis functions, i.e., one
Functionsr in the 3-D spaceR' satisfy the following 2dditional function is needed when the order increases from
p—1top. This must be the gradient of a scalar which vanishes
at{; = 0 and({, = 0. A suitable function, of form (2), is

Gée) = V(GGG —Q)P), p=1 (12)

wherer,-p is the equivalent function in the 2-D space, anid . N :
a unit vector perpendicular to the face. Since the 2-D spacengte that this function is either symmetricqp, ¢, (for p odd),

rotational, the right-hand side cannot vanish; thereferaust or antisymmetric (fop even). This is important. A symmetric

h Lie. the 3-D w is al tational basis function will take the same form in every element that
ave a n(cg)nzero curl, 1.€., the 5-L'sp . 'S, aiso rota |o_na. shares the edge, so continuity is imposed simply by choosing
Let V;* be the subspace oF;, consisting of functions yhe same coefficient for the function in each element. An

with vanishing tangential component on all four faces of th§ntisymmetric basis function, on the other hand, comes in
tetrahedron. These are thelumefunctions. It is easy to see o varieties which differ by a sign, depending on which
that Vi), the four V") spaces, and the Sﬁx}v(ﬁ)_ spaces have eng of the edge is taken as local node 1 and which is local
no overlap (except zero), and that any functionljncan be node 2 within an element. Because of this, choosing the same
expressed as the sum of functions from the 11 spaces, i.€.¢oefficient for the function for all the elements that share the

Ill. BASIS FUNCTIONS

relation:

- (VX 1)|e,=0 =9 - Vap X Ta-p )

v, = Vp('”) @4‘/])(,0) @ GVP(F,). (10) gdge will _not, on its own, impose cpntinuity. However, the
fix is relatively simple: arbitrarily designate the 1 and 2 ends
From this it follows that the dimension dﬂf},('“) is of the edge, and for elements whose local numbering does
not match this choice, introduce a minus sign, i.e., multiply
p+Dp+2)p+3)/2-(p-E+1)-6(p+1) the row and column of the local matrix corresponding to this

=(p—2)(p—1)(p+1)/2. basis function by minus one.
Without symmetry or antisymmetry of the basis functions,
Just like ;") and V;), the interior space/s”’ can be enforcing tangential continuity would be more difficult. Pro-
subdivided. Letva) be the subspace of/p('”) consisting vision would have to be made for assembling two varieties of
of functions that are gradients of scalars. Since there aach asymmetric edge function, with the appropriate variety
p(p — 1)(p — 2)/6 linearly independent scalar polynomials othosen at runtime in accordance with the relative orientation
degreep + 1, vanishing on the face§ =0, (; =0, (3 =0, of the edge.
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The single basis function fo¥,, is w, given in (3). It Whenpmod 3 = 2, there are three distinct functions in the

is antisymmetric. rth triplet, just as there are for all triplets < 7. Overall,
the functions defined by (14) and (15) leadzte- 2 linearly
B. Face Basis Functions independent scalar functions, as intended.

. i : (£ : The gradient spacé?ﬁ,f) needsp(p — 1)/2 basis functions,
A basis for the 2-D gradient spa€e;’’ may conveniently 0 in going from ordep — 1 to orderp an additionalp — 1

be found by first defining a basis for the scalar ponnomiaE . .
. sis functions of ordey are needed. These can be generated
that vanish on the three edges of the face, and then takyp m the scalar triplets of order + 1. The first functions of

their gradients. he i iol f )
A 2-D scalar space of orde, vanishing or;; = 0, ¢, =0, heint((p+1)/3) triplets of &~ are

and {3 = 0, has dimension(p — 1)(p — 2)/2, so when the ] . +1
order increases from — 1 trg 2 th)e( numt)J{ar of extra scalar Gpi = VEpriivr,  i=0,int <pT> -9
basis functions required is — 2. In choosing thesey — 2
functions, consideration must be given to the imposition of The rotational spacé%},f) is handled in a similar way. In
tangential continuity between two tetrahedra sharing a fagming from ordep—1 to orderp an additionap basis functions
To ensure that a basis functigii(s , {2, (3) of one tetrahedron of order p are needed, each of the form (6). The symmetry
has a matching basis function in the neighboring tetrahedreaquirements a) and b), above, apply to these vector basis
two requirements are introduced: functions too. A suitable basis has= int ((p—1)/3) triplets.

a) Each basis function must be symmetric (or antisymmekhe first function of theith triplet is

ric) in (1, ¢, or (2,3, OF (3, (1.

b) The basis functions must be defined inplets:

f. pf. p*f, where p is an operator that “rotates” a(equation (14) is extended to include the case0), and
function in the directionl — 2 — 3 — 1

RY =F,VG,  i=0,--,0-1 (17)

) i _
PI(G G o) = F(GarCn ) g ~Feva ¥ pmoc 30
2 (1 Cor o) = F(Gos Cuy Co) (13) = ((1€2G) (G — )V
P 1,652,683 3561562/ +(C2—C3)VC1+(C3—C1)VC2], pr1n0d3:1
Then, for example, depending on the relative orientation of = (¢;¢,¢3)7[~2¢1 Vs + (VG + (3¢ V],
the two tetrahedra, functiofi of one tetrahedron might match if pmod3=2. (18)
function pf (or —pf) of the neighboring tetrahedron.
Without loss of generality, we will assume henceforth that/hen pmod3 = 1, the triplet & degenerates to a single
the first functionf of the triplet is symmetric (antisymmetric) function. Whenpmod3 = 2, there are apparently three
in (1, ¢; it follows that pf and p? f are symmetric (antisym- distinct functions in the triplet, but in factp>R,,, + pR,, +
metric) in (2, {3 and (s, 1, respectively. R,, = 0, so there are really only two; one of the three must
The following p — 2 polynomials of ordep satisfy a). They be omitted when building the local stiffness matrix, as before.
are divided intor triplets, wherer = int (p/3). All except the With the special cases taken into account, the overall number
last triplet satisfies b). The first function of thith triplet is  of basis functions obtained from (17) and (18);j¢saésjc)required.
; Caiio L As pointed out earlier, the rotational spa is not
Fpi = (G2G8) GG = @) o t=Lle ol unique. By selecting the above basis, one possitfié has
(14)  peen defined. In fact, it is possible to choose a basis such
that Réf) is spatially biased: that is, a permutation of the

and numbering of the three nodes of the face would result in
For = (GGG), if pmod3 =0 a different s(p)ace. This kind of anisotropy is exhibited by
— (o) (¢ — Go), if pmod3 = 1 the earlierRQf functions of the author [8] and of Lee [€],
. T and is intuitively undesirable. The question then arises, is
= (G6263) G, if pmod3=2.  (15) the new basis given above isotropic? For triplets that are

Whenpmod 3 = 0, all three functions of theth triplet are nondegenergte, the answer is clearly yes. The_.\ smgle_ function
that arises in thepmod3 = 1 case is also isotropic, by

the same, i.e., the triplet degenerates to a single function. Since

the single function is itself unaffected by the rotation operat(;)?ﬁSpeCtlon of (1.8.)' In thepmod 3 = 2 case, It m|ght_ be
. X T . - thought that omitting one of the three functions would induce
p, it always has a matching function in the neighborin

gnisotropy, but this is not true. The function omitted is linearly
tetrahedron. ependent on the other two, and omitting it does not change
When pmod3 = 1, there are apparently three distinc P ' 9 g

functions in therth triplet, but in fac? £, +pE, +F,. — 0, he space spanned by the original triplet, which is isotropic.

i (f) g i i
so there are really only two. The simplest way to handle thi0 N all cases/t, is isotropic.

is to provide code for the assembly of all three functions, but
assemble just two of them, making sure that the one omittéd
in one tetrahedron matches the one omitted in the neighboringA 3-D scalar space of ordex, vanishing onf; = 0, (s = 0,
tetrahedron. (s =0, and(y = 0, has dimensiorfp — 1)(p — 2)(p — 3)/6,

\Volume Basis Functions
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so when the order increases frgm- 1 to p, the number of The equilateral tetrahedron of unit side is the natural choice.
extra basis functions required (s — 2)(p — 3)/2. Fortunately, For this element, it can be shown that
these functions can be chosen without regard to the need for
imposing continuity between elements. A suitable basis is 3v2 LS
(f.9)= 4 Z Z €pq

iIO,"',p—4I p=1qg=1

A i . . 1 1—¢s pl—C2—(s
Veig = (QGGWETTGTE, 7=0014 (19) x / /< Fpuqg dCidCadCs  (23)
3=0

A basis for the gradient spac(éz(,’“) is obtained by taking 270 T

the gradient of the scalar basis of degpeg1. The additional wheree,,=1if p=¢ and—% otherwise; and,, g, are defined
basis functions needed when the order increases freml by the following expansions of the vectofsg, respectively:
to p are

4 4
i=0,--,p—3: F=Y 66 9=> 9,V (24)
G =VViyrij,  G=0, i (20) =1 g=1
Using (23) and a symbolic mathematics program, the inner
product of any two basis functions can be found, and new
basis functions derived.

Consider first the volume gradient functions. Straightfor-
i=0,---,p—3 ward Gram-Schmidt orthogonalization can be used to make
R](B — (6o V) {)—3—1‘(;—1'(;"7 j=0-i Fhese all mutug;ly orthogonal. The.lowest ordgr fgncﬁﬁ%

@) pB—iiej - ~ isleft alone;G,y, is replaced by a linear combination Gﬁoo
Ry i1y = (GGG G0, =0, andG{.), that is orthogonal t€); thenG'"), is replaced by a

The rotational spacR](;”) has dimensiolp—2)(p—1)(2p+
3)/6, so when the order increases frgm- 1 to p, the number
of extra basis functions requiredzgp —2). A suitable basis is

Rgz‘):?“r? = (GGG V)G T (21) linear combination OGEﬁ)o, G'%)O, andG'gB)O that is orthogonal
to G) and GS); and so on.
IV. ORTHOGONALITY The volume rotational functions can be orthogonalized in

The basis functions given above could be used directly {3€ Same way, but in addition they can be orthogonalized with
solve problems in vector electromagnetics. However, as tiRSPect to the gradient functions of the same or lower order,
polynomial order increases, the issue of matrix iII-conditionin@-g-aRgg)o is orthogonalized with respect @y, by replacing
becomes important. The basis functions become increasinglypy a linear combination oﬂgg)o and G'gg)o. The converse
similar to one another, and consequently the condition numhemot possible because it would destroy the irrotationality of
of the stiffness matrix built from them deteriorates, affectinthe gradient functions.
accuracy and, for iterative solution methods, overall com- Edge functions are orthogonalized only with respect to
putation time. Notice that this is not a particular problergther edge functions on the same edge. Since symmetric
for interpolatory bases, where a high degree of linear indgnd antisymmetric functions are automatically orthogonal,
pendence seems to follow from the interpolation property. is only necessary to orthogonalize a symmetric function
However, with hierarchal bases it is an issue that must B8ainst lower order symmetric functions, and similarly for

addressed. antisymmetric functions.

A solution is to find a new set of basis functions which are . . .
. ) -~ Face functions are a little more involved, because of the
at least partially orthogonal to one another in an appropriate . . o
r(ljeed to maintain the triplet structure. The orthogonalization

inner product. If complete orthogonality could be achieve ¢ bebetw triolets in the followi A
in the natural inner product of the finite element metho§OW Must bebetween tripletsin the following sense.

the condition number of the stiffness matrix would be ondfiPlet based on a functioff (i.e., consisting of the functions
AR :
This is not possible. However, a partial approach does leadhorf p”f) is said to be orthogonal to a triplet based on a

substantial improvements. function g when each function of th¢ triplet is orthogonal
The inner product chosen is based on the usual functidf- all three functions of the triplet. This orthogonalization
space inner product can be achieved by replacinfj by a linear combination of
f. 9. pg, and p?g that is orthogonal tg, pg, and p2g.
(f.9)= /f -gdV. (22) Once again, however, symmetry plays a part in simplifying

the orthogonalization. Each triplet can be said to be symmetric
Since we are looking for a new basis that is independent ®f antisymmetric, depending on whether the first functfois
the particular problem being solved, the domain of integratigfymmetric or antisymmetric it, ¢o. A symmetric triplet has
in (22) must be a single tetrahedron. In the scalar case [2§} alternative basis of three functions
the integral turns out to be independent of the shape of the o
tetrahedron, scaling simply with its volume. Unfortunately, f (symmetric inc;, C2)
this is not the case with vector basis functions, so a particular (p+p°)f (symmetric in¢y, (2)
tetrahedron must be chosen as the basis for the orthogonality. (p—p*f (antisymmetric in(;, ().
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TABLE Il TABLE VI
FuNcTioNs To USE TO ORTHOGONALIZE f WITH RESPECT TOTRIPLET g VoLuME FUNCTIONS TO ORDER 3
g symmetric g antisymmetric gsymmetric, g antisymmetric, Before Orthogonalizing After Orthogonalizing
lgin o Coeff. V¢, Coefl. 'V, Coeff. V{3 Coeff. V¢, Coeff, V&,  Coefl. Vs
f symmetric g (+pI)E (r-p)e g none Gio”  CLGeL) GGGt GGl Unchanged
f antisymmetric (e g (ptp))g none g ﬁmxi e (c;czg glcz@ CL(Gat30) g@gﬂ:ﬂ GGa(Cat38)
f sym., single g none g none o, N 2alaCa o e
f antisym., single none g none g Riw” O €41 0 4 [l L0
TABLE IV contains only one member, so includi@ﬁ) adds just one
EpGe FUNCTIONS TO ORDER 3 function per face, or a total of four for the tetrahedron. The
s = SYMMETRIC, a = ANTISYMMETRIC next gradient functior@$}) is not needed, but botRS,) and
P ooty R} are. The tripletRY}) is again degenerate, with only two
w® a ¢, & Unchanged members
Gl:e: A 4 Unchanged
G”  a LG (206G Unchanged
G 5 LGLIBLLD  GGL) GGt GG G4st- (2GBVE + GGV Eh — 206V
60¢162+158°—2) 600:8:+15¢,°-2) and
Vi + Vi —2 \% 25
TABLE V BGVEe+ GV =263V (25)
FACE FUNCTIONS TO ORDER 3 . (€3] .
JUST THE FIRST FUNCTION OF THE TRIPLET 1S GIVEN: (or any other two out of the triplet}s; ,on the other ha'nd,. is
s = SYMMETRIC, @ = ANTISYMMETRIC, ¢ = NUMBER OF not degenerate, and adds three functions per face, bringing the
INDEPENDENT FUNCTIONS IN THE TRIPLET total number of face functions for the tetrahedron to 24. From
T Before Orthogonalizing ‘After Orthogonalizing Table VI just the rotational functions are needed, and there are
T e e e e Yo (el e LYo three of these. The tetrahedron, then, I&s24+-3 = 45 basis
R 52 G GG 246 Unchanged functions. (Cross check with Table im G5 + dim Rz =
G’ a2 2 G626 LiGRGTC) GGLG—5) Unchanged =
Ry® a 3 0 0 Gl s s 20206,8, 16 4+ 29 = 40)

(13985, (13986~ @2
6990,+86) 699, +86)

V. MATRIX ASSEMBLY

An antisymmetric triplet has this alternative basis Tetrahedral elements of the kind described above have
been used to solve the equation governing the time-harmonic

antisymmetric i
{p + O f Eantiszmmetric l%?%; electric field E in a closed regior?
(p—p*)f (symmetric in¢, ¢2). UV LV E— ke, E =0 (26)

. . . . Hr
To orthogonalize the symmetric triplgt with respect to the \herey,, ande,. are the relative permeability and permittivity,
symmetric tripletg, then, it is only necessary to orthogonalizgespectively, given functions of position, ad is the free-

J with respect tqg and(p-+p?)g; orthogonality betweeif and  space wavenumber. The boundary condition
(p—p*)gis automatic, since a face function symmetricing, E,—E, onoQ 27)

is necessarily orthogonal to a face function antisymmetric in
(1, ¢. Not only does this cut down on the work, but it ensure$§ applied, whereE, is the tangential part oF, and E, is a
that the new, orthogonalized is still symmetric in¢;,(,, specified tangential field.
which is important for imposing continuity across faces (as Application of the finite-element method approximates these
explained above). equations by
Similar simplificgtion is possible for other combinatio_ns of. ([S] = k2[1)) {=} = {b} (28)
symmetry and antisymmetry. The results are summarized in : .
Table Ill. The “single” cases are degenerate triplets consistiW@ere[S] and (7] are square matr|ce$;c} Is a column vector
of just one function, which is assumed to be unchanged 8}/ annown coefficients, andb} is a k”OW.’? column vector
the p operator. arising from the nonzero boundary_ cqndltlpn. The unknown
Tables IV-VI give the basis functions to ordgrboth before coefficients are related to the electric field in each tetrahedral
and after orthogonalization. To explain how these tables Can%gment as follows:
used to construct an element providing gradient and rotational E = szNz (29)
spaces of given orders, consider the example of a tetrahedron i
which is to have a gradient order 8fand a rotational order where theN,; are the vector basis functions of the element.
of 3. Begin with Table IV. Every element requird¥{”), so The matrices[S] and [7] are built by the usual process of
that is the first set of basis functions, six in all, one per edg@atrix assembly, starting from the following expressions for
Since the gradient order i both G§€> andGée) are needed. the entries of the local matrices for tetrahedton

Each adds one function per edge, so there is a total of 18 edge S.. — 1 /V « N:-V x N, dQ

functions for this element. Turning to Table G%) is needed. Y e e ' ’

As explained in the table captioﬁ‘r:%) is just the first function T, =&, / N, - N, dQ. (30)
in a triplet. However, in this case the triplet is degenerate, and t
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The assumption is made here that the material propenties
ande, are constant throughout the tetrahedron.

The integration in (30) could be carried out numerically,
using for example a Gauss procedure. However, a universal-
matrix approach is more efficient, particularly for higher order

elements [27]. Let E=1

3

Ni= " Nin(Ci, G2, G)Vn- (31)
m=1
Any basis function can be written in this form by eliminating
¢4 and V¢, using(y + (2 + {3 + ¢4 = 1. Then by substituting
(31) into (30) it can be shown that
3 m
. mn Fig. 2. A short-circuited length of parallel-plate waveguide, excited by a
[T] =6V Z Z Vim - Vin [T ] (32) unit electric field. Surfaces with no specifidd are left free, implying that
m=1n=1 the tangential magnetic field vanishes there.

whereV is the volume of the tetrahedron; and f#€""] are
six symmetric universal matrices whose entries are given byanishes there, which is correct, since the magnetic field of the

o 1 1=Cs pl—Ca—Cs TEM mode of the waveguide has onlyyacomponent.
L5 = Omn / - /< - / - (Nim N Th? protc)ilebrln iskmeshdedhby subgévidcijng it irm@;1 xbzlvy :NZ
AT equal-sized blocks, and then subdividing each block into six
o F NinNjm) des dez d_C?" (33) tetrahedra. Since in this problem there is no variation in the
O IS 1 if m andn are unequal; if they are equal. z and y directions, N, and N, are both set tol. As NV,
Taking the curl of (31) leads to is increased, the dimensionsand b are scaled to keep the
3 blocks cubical, in order to avoid any effects that might arise
VXN;i=> Cim(G,GGem (34)  from severely distorted elements.
m=1 Once the problem is solved and the electric field calculated,
where the phase of the reflection coefficient at= 0 is found as
e1 =V x V(s follows. The normalized susceptanéeat » = 0 is obtained
IN;3  ON;y (35) from the finite-element functional
Ci = G G 1 1
2 3 B=— /(-vXE.VxE—kgs,,E-E>dQ:0
and, similarly, by cyclic permutation of the indices, fes, koab Jo \ pir
C;9, €3, C;3. Substituting (34) into (30) gives (38)
3. and the phase of the reflection coefficient is then
[SI=6V Y > e -ea[S™] (36) P .,
e /T'= —2tan"! B. (39)
where the[S™"| are another set of six symmetric universathe exact value for the phase i€k, — = radians.
matrices Fig. 3 shows the reduction in the error of the phase as
gmn _ g /1 /143 /142(3(0 o the number of subdivisions/. is increased, for “full-order”
U " Jes=oJeamo Jei=o ey elements,(g_,r) = (_1,1), (2,2), (3,3), (4,4). Note that the
+ CinClm) dCy dCy dCs. (37) frequency is set higher for the higher orders, so that the

The [77"] and[gmn b q v with boli asymptotic behavior can be seen on the same figure. The
el Jand[ ] may be computed exactly with sym OlCrasults reveal that, asymptotically, the phase error decreases

mathematics software (e.g., Maple) and stored in doubAg 12 for the (p,p) element, where is the element size.

precision V.Vith the finite-element program, to be used at Yhis is to be expected. A field that is complete to orgdéras
time to build the local matrices. a curl that is only complete to order— 1, which therefore
hasO(h?) errors. Since the functional depends on the square
of the curl of the field, and is stationary at the true solution,
The following results are obtained with tetrahedral elementse resulting error in the functional i9(h2P).
The order of the element is designated by a pair of indices,Since the convergence rate is limited by the order of the
(g,7), whereg is the order of the gradient spa¢€,) andr curl, reducing the gradient space by one order should leave it
is the order of the rotational spa¢&,.). unchanged. This is the rationale behind the “reduced-gradient”
The first example is a uniform length of parallel-platspaces(g,r) = (0,1), (1,2), (2,3), (3,4). Fig. 4 gives the
waveguide (Fig. 2), short-circuited at one end= 1m) and results in this case. Indeed, tlie — 1,p) element is found
driven with a unit electric field at the othée = 0). The to have the same asymptotic convergence rate agithe
conducting plates are at = 0 andxz = a. The boundary element.
surfacesy = 0 andy = b are left free; the natural boundary A discussion of convergence rates for high-order edge
condition for such surfaces is that the tangential magnetic fiedtements (up to orde) can also be found in [28].

VI. RESULTS
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1000
Im
7~
()
=
O
E
L%
LN
1721
=
A 001 —o—(1,1), ko=7
—8—(2,2), ko=7 Fig. 5. Parallel-plate waveguide, excited by a unit electric field, and partially
0.001 {--mmeme 3.3) ko=12 blocked by a conducting plate (at= 1). Half the problem is modeled; = 1
(3,3), ko= is a plane of symmetry. Surfaces with no specifiedare left free, implying
—o—(4,4), ko=14 that the tangential magnetic field vanishes there.
0.0001
10 =
0.00001 + + J
1 10
Number of divisions, Nz
Fig. 3. Error in the phase of the reflection coefficient of a short-circuited g~ | °
piece of waveguide, versus number of subdivisions, for full-order elements, 3~
orders1 to 4. k. is in rads/m. g
[¥]
4
1000 s
s
100
10 A
& 1 0.001  0.01 0.1 1 10 100
E Cost of Frontal Solution (Mflops)
5 0.1
o Fig. 6. Phase error versus cost of solution, as the number of tetrahedra is
a increased, for the capacitive obstacle shown in Figc,5= 1 rads/m.
A 001 e (0,1),ko=7
0.001 ——(1,2), ko=7 the corresponding reflection coefficient, are calculated in the
Rt —a—(2,3), ko=12 same way as before.
—e—(3,4), ko=14 Once again the problem is meshed by subdividing it into
0.0001 N, x N, x N, equal-sized blocks, and then subdividing each
block into six tetrahedra. This time, howevé¥,, N,, andV,
0.00001 — are all set equal to the same valué,

! 10 Fig. 6 shows the phase error for a number of different ele-

Number of divisions, Nz ment types, asV is increased. To compare the computational
o4 Eror in the o  the reflect i ¢ 2 shortcireu efficiencies fairly, the errors are plotted against the number
pilg(-:e of v(/r;)Jelg;]uitdg, pveizﬁsonhrﬁbr:r %?Iglrjlbzci)\?isilglnesrjtfgr e:e?ju?:retzﬁ;:gfgt flgat|ng-p0|nt operatlons required to solve t_he resu]tmg
elements, orders to 4. k, is in rads/m. matrix problem using a well-known sparse-matrix technique,
the frontal method [29]. The exact phase for this problem is
, unknown, but a reference value obtained from extrapolation
It might seem, then, that tg—1, p) element should always ¢ 1, (4,4) results is believed to be accurate to within.1
be used instead of thép,p) element. That this is not the 54 j5 ysed as the true value for the purpose of calculating
case is demonstrated by the next example. A parallel-plaig, phase errors.
waveguide is half blocked by a thin conducting plate, oriented Fig. 6 clearly demonstrates the superior computational effi-
perpendicular to the electric field and therefore creating cfency of higher order elements, at least when a frontal solver
capacitive loading. When excited by equal electric fields ag used. An element such &3 3) can achieve the same phase
either side, the blocking plate lies in a plane of symmetmccuracy ag1,1) in almost one tenth the CPU time. More
and one half of the problem can be solved, as shown imerestingly, the full-order elements significantly outperform
Fig. 5. The susceptancé}, at the input planez = 0, and the reduced-gradient elements: tfiz3) element does only



WEBB: HIERARCHAL VECTOR BASIS FUNCTIONS OF ARBITRARY ORDER

about as well ag1, 1)! (We are comparing here accurapgr

(9

flop; it is still true that(2,3) gives significantly higher phase

accuracy than(1,1) with the same number of tetrahedra.};o

The reason for the superior performance of the full-order
elements is that, because of the relatively low frequency a[?l ]
the orientation of the sharp conducting edge, the electric fie

in this problem is strongly gradient in nature. The curl of th&2]
electric field, i.e., the magnetic field, is relatively unimportant,
and so thép—1, p) element, which favors the rotational spacej13]
is much less efficient than thi, p) element. Of course, this
will not always be the case, but it is important to realize thaf,
the best element type is problem (and region) dependent.

VIl. CONCLUSION [16]

Basis functions of arbitrary order for vector triangles and
tetrahedra have been presented. Convergence tests demond#fété&. Peng, R. Dyczij-Edlinger, and J.-F. Lee, “Hierarchical methods for

that the new elements have the expected characteristics, at
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A. Ahagon and T. Kashimoto, “Three-dimensional electromagnetic
wave analysis using high order edge elemenlEEE Trans. Magn.
vol. 21, pp. 1753-1756, May 1995.

] A. Kameari, “Symmetric second order edge elements in triangles and

tetrahedrons,” presented at the Eighth Bienniel IEEE Conference on
Electromagnetic Field Computation, Tucson, AZ, June 1-3, 1998.

|. Babuska, B. A. Szabo, and I. N. Katz, “Theversion of the finite
element method,SIAM J. Numer. Anal.vol. 18, pp. 515-545, 1981.

S. McFee and J. P. Webb, “Adaptive finite element analysis of mi-
crowave and optical devices using hierarchal trianglé8EE Trans.
Magn, vol. 28, pp. 1708-1711, Mar. 1992.

O. C. Zienkiewicz, J. Z. Zhu, and N. G. Gong, “Effective and practical
h-p version adaptive analysis procedures for the finite element method,”
Int. J. Numer. Methods in Engvol. 28, pp. 879-891, 1989.

J. C. Nedelec, “Mixed finite elements in R3umerische Mathematik
vol. 35, pp. 315-341, 1980.

, “A new family of mixed finite elements in R3,Numerische
Mathematik vol. 50, pp. 57-81, 1986.

J. P. Webb and B. Forghani, “A T-Omega method using hierarchal edge
elements,” Proc. Inst. Elec. Eng.,, Sci. Meas. Techpebl. 142, no. 2,

pp. 133-141, Mar. 1995.

solving matrix equations from TVFEM's for microwave components,”
IEEE Trans. Magn.vol. 35, pp. 1474-1477, May 1999.

least to fourth order, in three dimensions. Earlier hierarchgB] R. D. Graglia, D. R. Wilton, and A. F. Peterson, “Higher order
elements of this kind were limited to second order. The
increased polynomial range will increase the power pef [19]
adaptive methods in 3-D electromagnetics.

The question of what are the “correct” higher order ex-
tensions of the elementary Whitney element has long begg;

debated. The natural extension appears to some to be the
reduced-gradient series, because of the importance of {
curl of the field in electromagnetics. Others have argue

for function spaces that are complete to a given polynomial
order. The results presented in this paper suggest that b
sides may be right: where the curl dominates, the reduceqgh)
gradient element is more efficient; where the gradient is more
important, the full-order element works better. This insighb,,
suggests that the balance of gradient to curl in the element
should in fact be determined nat priori, but through an [2°]
adaptive criterion.
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